Structure-Based Discovery of Small Molecules Binding to RNA

  • Thomas Wehler
  • Ruth BrenkEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 27)


Ribonucleic acids (RNAs) constitute attractive drug targets. The wealth of structural information about RNAs is steadily increasing making it possible to use this information for the design of new ligands. Two methods that make heavy use of structural knowledge for ligand discovery are molecular docking and fragment screening. In molecular docking the structure of the binding site is used as a template for the design of new ligands using computational methods whereas in fragment screening biophysical methods are used for the detection of weak binding ligands which are subsequently elaborated into tighter binding molecules. In this chapter, we give an overview of both methods in the context of ligand discovery for RNA targets and illustrate their applications for hit discovery.


Docking Fragment screening RNA Structure-based design 



We are grateful for internal university research funding from the Johannes Gutenberg University Mainz.


  1. 1.
    Guan L, Disney MD (2012) Recent advances in developing small molecules targeting RNA. ACS Chem Biol 7(1):73–86CrossRefGoogle Scholar
  2. 2.
    Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38(16):2326–2343CrossRefGoogle Scholar
  3. 3.
    Reiter NJ, Chan CW, Mondragón A (2011) Emerging structural themes in large RNA molecules. Curr Opin Struct Biol 21(3):319–326CrossRefGoogle Scholar
  4. 4.
    Thomas JR, Hergenrother PJ (2008) Targeting RNA with small molecules. Chem Rev 108(4):1171–1224CrossRefGoogle Scholar
  5. 5.
    Wilson DN (2013) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12(1):35–48CrossRefGoogle Scholar
  6. 6.
    Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24(12):1558–1564CrossRefGoogle Scholar
  7. 7.
    Deigan KE, Ferre-D’Amare AR (2011) Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res 44(12):1329–1338CrossRefGoogle Scholar
  8. 8.
    Matzner D, Mayer G (2015) (Dis)similar analogues of riboswitch metabolites as antibacterial lead compounds. J Med Chem 58(8):3275–3286CrossRefGoogle Scholar
  9. 9.
    Kim JN, Blount KF, Puskarz I, Lim J, Link KH, Breaker RR (2009) Design and antimicrobial action of purine analogues that bind Guanine riboswitches. ACS Chem Biol 4(11):915–927CrossRefGoogle Scholar
  10. 10.
    Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6(4):e1000865CrossRefGoogle Scholar
  11. 11.
    Ster C, Allard M, Boulanger S, Lamontagne Boulet M, Mulhbacher J, Lafontaine DA, Marsault E, Lacasse P, Malouin F (2013) Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J Dairy Sci 96(2):1000–1008CrossRefGoogle Scholar
  12. 12.
    Lee ER, Blount KF, Breaker RR (2009) Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 6(2):187–194CrossRefGoogle Scholar
  13. 13.
    Mansjo M, Johansson J (2011) The riboflavin analog roseoflavin targets an FMN-riboswitch and blocks Listeria monocytogenes growth, but also stimulates virulence gene-expression and infection. RNA Biol 8(4):674–680CrossRefGoogle Scholar
  14. 14.
    Ott E, Stolz J, Lehmann M, Mack M (2009) The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 6(3):276–280CrossRefGoogle Scholar
  15. 15.
    Pedrolli DB, Matern A, Wang J, Ester M, Siedler K, Breaker R, Mack M (2012) A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 40(17):8662–8673CrossRefGoogle Scholar
  16. 16.
    Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 12(12):1325–1335CrossRefGoogle Scholar
  17. 17.
    Blount KF, Megyola C, Plummer M, Osterman D, O’Connell T, Aristoff P, Quinn C, Alan Chrusciel R, Poel TJ, Schostarez HJ, Stewart CA, Walker DP, Wuts PGM, Breaker RR (2015) Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 59(9):5736–5746CrossRefGoogle Scholar
  18. 18.
    Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L, Galgoci AM, Malinverni JC, Mayhood T, Villafania A, Nahvi A, Murgolo N, Barbieri CM, Mann PA, Carr D, Xia E, Zuck P, Riley D, Painter RE, Walker SS, Sherborne B, de Jesus R, Pan W, Plotkin MA, Wu J, Rindgen D, Cummings J, Garlisi CG, Zhang R, Sheth PR, Gill CJ, Tang H, Roemer T (2015) Selective small-molecule inhibition of an RNA structural element. Nature 526(7575):672–677CrossRefGoogle Scholar
  19. 19.
    Aboul-ela F (2009) Strategies for the design of RNA-binding small molecules. Future Med Chem 2(1):93–119CrossRefGoogle Scholar
  20. 20.
    Disney MD, Yildirim I, Childs-Disney JL (2014) Methods to enable the design of bioactive small molecules targeting RNA. Org Biomol Chem 12(7):1029–1039CrossRefGoogle Scholar
  21. 21.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25CrossRefGoogle Scholar
  22. 22.
    Mugumbate G, Overington JP (2015) The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorg Med Chem 23(16):5218–5224CrossRefGoogle Scholar
  23. 23.
    O’Shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51(10):2871–2878CrossRefGoogle Scholar
  24. 24.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefGoogle Scholar
  25. 25.
    Baker M (2012) Fragment-based lead discovery grows up. Nat Rev Drug Discov 12(1):5–7CrossRefGoogle Scholar
  26. 26.
    Rognan D (2011) Docking methods for virtual screening: principles and recent advances. In: Sotriffer C (ed) Virtual screening. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 153–176Google Scholar
  27. 27.
    Daldrop P, Brenk R (2014) Structure-based virtual screening for the identification of RNA-binding ligands. Methods Mol Biol 1103:127–139CrossRefGoogle Scholar
  28. 28.
    Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring new biology. J Med Chem 59(9):4103–4120CrossRefGoogle Scholar
  29. 29.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949CrossRefGoogle Scholar
  30. 30.
    Sotriffer C, Matter H (2011) The challenge of affinity prediction: scoring functions for structure-based virtual screening. In: Sotriffer C (ed) Virtual screening. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 177–221Google Scholar
  31. 31.
    Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288CrossRefGoogle Scholar
  32. 32.
    Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7(4):938–950CrossRefGoogle Scholar
  33. 33.
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3):470–489CrossRefGoogle Scholar
  34. 34.
    Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46(4):499–511CrossRefGoogle Scholar
  35. 35.
    Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428CrossRefGoogle Scholar
  36. 36.
    Abagyan R, Totrov M, Kuznetsov D (1994) ICM – a new method for protein modeling and design – applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15(5):488–506CrossRefGoogle Scholar
  37. 37.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749CrossRefGoogle Scholar
  38. 38.
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748CrossRefGoogle Scholar
  39. 39.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662CrossRefGoogle Scholar
  40. 40.
    Mysinger MM, Shoichet BK (2010) Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model 50(9):1561–1573CrossRefGoogle Scholar
  41. 41.
    Wei BQ, Baase WA, Weaver LH, Matthews BW, Shoichet BK (2002) A model binding site for testing scoring functions in molecular docking. J Mol Biol 322(2):339–355CrossRefGoogle Scholar
  42. 42.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196CrossRefGoogle Scholar
  43. 43.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  44. 44.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72(2):171–179CrossRefGoogle Scholar
  45. 45.
    Gohlke H, Hendlich M, Klebe G (2000) Predicting binding modes, binding affinities and “hot spots” for protein-ligand complexes using a knowledge-based scoring function. Persp Drug Discov Des 20:115–144CrossRefGoogle Scholar
  46. 46.
    Muegge I (2006) PMF scoring revisited. J Med Chem 49(20):5895–5902CrossRefGoogle Scholar
  47. 47.
    Mooij WT, Verdonk ML (2005) General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2):272–287CrossRefGoogle Scholar
  48. 48.
    Colizzi F, Lamontagne A-M, Lafontaine DA, Bussi G (2014) Probing riboswitch binding sites with molecular docking, focused libraries, and in-line probing assays. Methods Mol Biol 1103:141–151CrossRefGoogle Scholar
  49. 49.
    Fulle S, Gohlke H (2010) Molecular recognition of RNA: challenges for modelling interactions and plasticity. J Mol Recognit 23(2):220–231Google Scholar
  50. 50.
    Stefaniak F, Chudyk EI, Bodkin M, Dawson WK, Bujnicki JM (2015) Modeling of ribonucleic acid-ligand interactions. Wiley Interdiscip Rev Comput Mol Sci 5(6):425–439CrossRefGoogle Scholar
  51. 51.
    Foloppe N, Matassova N, Aboul-ela F (2006) Towards the discovery of drug-like RNA ligands? Drug Discov Today 11(21–22):1019–1027CrossRefGoogle Scholar
  52. 52.
    Hermann T (2002) Rational ligand design for RNA: the role of static structure and conformational flexibility in target recognition. Biochimie 84(9):869–875CrossRefGoogle Scholar
  53. 53.
    Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136(4):604–609CrossRefGoogle Scholar
  54. 54.
    Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482(7385):322–330CrossRefGoogle Scholar
  55. 55.
    Barbault F, Zhang LR, Zhang LH, Fan BT (2006) Parametrization of a specific free energy function for automated docking against RNA targets using neural networks. Chemom Intel Lab Syst 82(1–2):269–275CrossRefGoogle Scholar
  56. 56.
    Detering C, Varani G (2004) Validation of automated docking programs for docking and database screening against RNA drug targets. J Med Chem 47(17):4188–4201CrossRefGoogle Scholar
  57. 57.
    Barbault F, Ren B, Rebehmed J, Teixeira C, Luo Y, Smila-Castro O, Maurel F, Fan B, Zhang L (2008) Flexible computational docking studies of new aminoglycosides targeting RNA 16S bacterial ribosome site. Eur J Med Chem 43(8):1648–1656CrossRefGoogle Scholar
  58. 58.
    Lu C, Calin GA, Zhang S (2012) Novel insights of structure-based modeling for RNA-targeted drug discovery. J Chem Inf Model 52(10):2741–2753CrossRefGoogle Scholar
  59. 59.
    Moitessier N, Westhof E, Hanessian S (2006) Docking of aminoglycosides to hydrated and flexible RNA. J Med Chem 49(3):1023–1033CrossRefGoogle Scholar
  60. 60.
    Pfeffer P, Gohlke H (2007) DrugScoreRNA – knowledge-based scoring function to predict RNA-ligand interactions. J Chem Inf Model 47(5):1868–1876CrossRefGoogle Scholar
  61. 61.
    Warui DM, Baranger AM (2009) Identification of specific small molecule ligands for stem loop 3 ribonucleic acid of the packaging signal Psi of human immunodeficiency virus-1. J Med Chem 52(17):5462–5473CrossRefGoogle Scholar
  62. 62.
    Warui DM, Baranger AM (2012) Identification of small molecule inhibitors of the HIV-1 nucleocapsid–stem-loop 3 RNA complex. J Med Chem 55(9):4132–4141CrossRefGoogle Scholar
  63. 63.
    Yan Z, Sikri S, Beveridge DL, Baranger AM (2007) Identification of an aminoacridine derivative that binds to RNA tetraloops. J Med Chem 50(17):4096–4104CrossRefGoogle Scholar
  64. 64.
    Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10(4):e1003571CrossRefGoogle Scholar
  65. 65.
    Daldrop P, Reyes FE, Robinson DA, Hammond CM, Lilley DM, Batey RT, Brenk R (2011) Novel ligands for a purine riboswitch discovered by RNA-ligand docking. Chem Biol 18(3):324–335CrossRefGoogle Scholar
  66. 66.
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 20(10–11):601–619CrossRefGoogle Scholar
  67. 67.
    Lind KE, Du Z, Fujinaga K, Peterlin BM, James TL (2002) Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9(2):185–193CrossRefGoogle Scholar
  68. 68.
    Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15(6):1219–1230Google Scholar
  69. 69.
    Philips A, Milanowska K, Lach G, Bujnicki JM (2013) LigandRNA: computational predictor of RNA-ligand interactions. RNA 19(12):1605–1616CrossRefGoogle Scholar
  70. 70.
    Li Y, Shen J, Sun X, Li W, Liu G, Tang Y (2010) Accuracy assessment of protein-based docking programs against RNA targets. J Chem Inf Model 50(6):1134–1146CrossRefGoogle Scholar
  71. 71.
    Filikov AV, Mohan V, Vickers TA, Griffey RH, Cook PD, Abagyan RA, James TL (2000) Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR. J Comput Aided Mol Des 14(6):593–610CrossRefGoogle Scholar
  72. 72.
    Stelzer AC, Frank AT, Kratz JD, Swanson MD, Gonzalez-Hernandez MJ, Lee J, Andricioaei I, Markovitz DM, Al-Hashimi HM (2011) Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol 7(8):553–559CrossRefGoogle Scholar
  73. 73.
    Guilbert C, James TL (2008) Docking to RNA via root-mean-square-deviation-driven energy minimization with flexible ligands and flexible targets. J Chem Inf Model 48(6):1257–1268CrossRefGoogle Scholar
  74. 74.
    Pinto IG, Guilbert C, Ulyanov NB, Stearns J, James TL (2008) Discovery of ligands for a novel target, the human telomerase RNA, based on flexible-target virtual screening and NMR. J Med Chem 51(22):7205–7215CrossRefGoogle Scholar
  75. 75.
    Morley SD, Afshar M (2004) Validation of an empirical RNA-ligand scoring function for fast flexible docking using Ribodock. J Comput Aided Mol Des 18(3):189–208CrossRefGoogle Scholar
  76. 76.
    Foloppe N, Chen IJ, Davis B, Hold A, Morley D, Howes R (2004) A structure-based strategy to identify new molecular scaffolds targeting the bacterial ribosomal A-site. Bioorg Med Chem 12(5):935–947CrossRefGoogle Scholar
  77. 77.
    Zhao X, Liu X, Wang Y, Chen Z, Kang L, Zhang H, Luo X, Zhu W, Chen K, Li H, Wang X, Jiang H (2008) An improved PMF scoring function for universally predicting the interactions of a ligand with protein, DNA, and RNA. J Chem Inf Model 48(7):1438–1447CrossRefGoogle Scholar
  78. 78.
    Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91(1):1–41CrossRefGoogle Scholar
  79. 79.
    Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594CrossRefGoogle Scholar
  80. 80.
    Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49(20):5912–5931CrossRefGoogle Scholar
  81. 81.
    Gilbert SD, Stoddard CD, Wise SJ, Batey RT (2006) Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 359(3):754–768CrossRefGoogle Scholar
  82. 82.
    Wong CF (2015) Flexible receptor docking for drug discovery. Expert Opin Drug Discovery 10(11):1189–1200CrossRefGoogle Scholar
  83. 83.
    Krüger DM, Bergs J, Kazemi S, Gohlke H (2011) Target flexibility in RNA-ligand docking modeled by elastic potential grids. ACS Med Chem Lett 2(7):489–493CrossRefGoogle Scholar
  84. 84.
    Frank AT (2016) Can holo NMR chemical shifts be directly used to resolve RNA-ligand poses? J Chem Inf Model 56(2):368–376CrossRefGoogle Scholar
  85. 85.
    Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137(7):2695–2703CrossRefGoogle Scholar
  86. 86.
    Sund J, Lind C, Åqvist J (2015) Binding site preorganization and ligand discrimination in the purine riboswitch. J Phys Chem B 119(3):773–782CrossRefGoogle Scholar
  87. 87.
    Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10(14):987–992CrossRefGoogle Scholar
  88. 88.
    Congreve M, Chessari G, Tisi D, Woodhead AJ (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680CrossRefGoogle Scholar
  89. 89.
    Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47(14):3463–3482CrossRefGoogle Scholar
  90. 90.
    Hall RJ, Mortenson PN, Murray CW (2014) Efficient exploration of chemical space by fragment-based screening. Prog Biophys Mol Biol 116(2–3):82–91CrossRefGoogle Scholar
  91. 91.
    Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comput Sci 41(3):856–864CrossRefGoogle Scholar
  92. 92.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three” for fragment-based lead discovery? Drug Discov Today 8(19):876–877CrossRefGoogle Scholar
  93. 93.
    Keserü GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD (2016) Design principles for fragment libraries: maximizing the value of learnings from pharma fragment-based drug discovery (FBDD) programs for use in academia. J Med Chem 59(18):8189–8206CrossRefGoogle Scholar
  94. 94.
    Bodoor K, Boyapati V, Gopu V, Boisdore M, Allam K, Miller J, Treleaven WD, Weldeghiorghis T, Aboul-Ela F (2009) Design and implementation of an ribonucleic acid (RNA) directed fragment library. J Med Chem 52(12):3753–3761CrossRefGoogle Scholar
  95. 95.
    Francois B (2005) Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 33(17):5677–5690CrossRefGoogle Scholar
  96. 96.
    Noble ME, Endicott JA, Johnson LN (2004) Protein kinase inhibitors: insights into drug design from structure. Science 303(5665):1800–1805CrossRefGoogle Scholar
  97. 97.
    Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432(7015):411–415CrossRefGoogle Scholar
  98. 98.
    Velagapudi SP, Pushechnikov A, Labuda LP, French JM, Disney MD (2012) Probing a 2-aminobenzimidazole library for binding to RNA internal loops via two-dimensional combinatorial screening. ACS Chem Biol 7(11):1902–1909CrossRefGoogle Scholar
  99. 99.
    Rzuczek SG, Southern MR, Disney MD (2015) Studying a drug-like, RNA-focused small molecule library identifies compounds that inhibit RNA toxicity in myotonic dystrophy. ACS Chem Biol 10(12):2706–2715CrossRefGoogle Scholar
  100. 100.
    Moumne R, Catala M, Larue V, Micouin L, Tisne C (2012) Fragment-based design of small RNA binders: promising developments and contribution of NMR. Biochimie 94(7):1607–1619CrossRefGoogle Scholar
  101. 101.
    Griffey RH, Hofstadler SA, Sannes-Lowery KA, Ecker DJ, Crooke ST (1999) Determinants of aminoglycoside-binding specificity for rRNA by using mass spectrometry. Proc Natl Acad Sci U S A 96(18):10129–10133CrossRefGoogle Scholar
  102. 102.
    Hofstadler SA, Griffey RH (2001) Analysis of noncovalent complexes of DNA and RNA by mass spectrometry. Chem Rev 101(2):377–390CrossRefGoogle Scholar
  103. 103.
    Maple HJ, Garlish RA, Rigau-Roca L, Porter J, Whitcombe I, Prosser CE, Kennedy J, Henry AJ, Taylor RJ, Crump MP, Crosby J (2012) Automated protein-ligand interaction screening by mass spectrometry. J Med Chem 55(2):837–851CrossRefGoogle Scholar
  104. 104.
    Swayze EE, Jefferson EA, Sannes-Lowery KA, Blyn LB, Risen LM, Arakawa S, Osgood SA, Hofstadler SA, Griffey RH (2002) SAR by MS: a ligand based technique for drug lead discovery against structured RNA targets. J Med Chem 45(18):3816–3819CrossRefGoogle Scholar
  105. 105.
    Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW (2011) Docking performance of fragments and druglike compounds. J Med Chem 54(15):5422–5431CrossRefGoogle Scholar
  106. 106.
    Setny P, Trylska J (2009) Search for novel aminoglycosides by combining fragment-based virtual screening and 3D-QSAR scoring. J Chem Inf Model 49(2):390–400CrossRefGoogle Scholar
  107. 107.
    Zeiger M, Stark S, Kalden E, Ackermann B, Ferner J, Scheffer U, Shoja-Bazargani F, Erdel V, Schwalbe H, Göbel MW (2014) Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR. Bioorg Med Chem Lett 24(24):5576–5580CrossRefGoogle Scholar
  108. 108.
    Davidson A, Begley DW, Lau C, Varani G (2011) A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol 410(5):984–996CrossRefGoogle Scholar
  109. 109.
    Seth PP, Miyaji A, Jefferson EA, Sannes-Lowery KA, Osgood SA, Propp SS, Ranken R, Massire C, Sampath R, Ecker DJ, Swayze EE, Griffey RH (2005) SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J Med Chem 48(23):7099–7102CrossRefGoogle Scholar
  110. 110.
    Jerod Parsons M, Castaldi P, Dutta S, Dibrov SM, Wyles DL, Hermann T (2009) Conformational inhibition of the hepatitis C virus internal ribosome entry site RNA. Nat Chem Biol 5(11):823–825CrossRefGoogle Scholar
  111. 111.
    Yu L, Oost TK, Schkeryantz JM, Yang J, Janowick D, Fesik SW (2003) Discovery of aminoglycoside mimetics by NMR-based screening of Escherichia coli A-site RNA. J Am Chem Soc 125(15):4444–4450CrossRefGoogle Scholar
  112. 112.
    Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273(5282):1678–1685CrossRefGoogle Scholar
  113. 113.
    Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay M, Murcko A, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6(10):755–769CrossRefGoogle Scholar
  114. 114.
    Johnson EC, Feher VA, Peng JW, Moore JM, Williamson JR (2003) Application of NMR SHAPES screening to an RNA target. J Am Chem Soc 125(51):15724–15725CrossRefGoogle Scholar
  115. 115.
    Chung F, Tisné C, Lecourt T, Dardel F, Micouin L (2007) NMR-guided fragment-based approach for the design of tRNALys3 ligands. Angew Chem Int Ed 46(24):4489–4491CrossRefGoogle Scholar
  116. 116.
    Chung F, Tisné C, Lecourt T, Seijo B, Dardel F, Micouin L (2009) Design of tRNA(Lys)3 ligands: fragment evolution and linker selection guided by NMR spectroscopy. Chemistry 15(29):7109–7116CrossRefGoogle Scholar
  117. 117.
    Moumné R, Larue V, Seijo B, Lecourt T, Micouin L, Tisné C (2010) Tether influence on the binding properties of tRNALys3 ligands designed by a fragment-based approach. Org Biomol Chem 8(5):1154–1159CrossRefGoogle Scholar
  118. 118.
    Chen L, Cressina E, Leeper FJ, Smith AG, Abell C (2010) A fragment-based approach to identifying ligands for riboswitches. ACS Chem Biol 5(4):355–358CrossRefGoogle Scholar
  119. 119.
    Cressina E, Chen L, Moulin M, Leeper FJ, Abell C, Smith AG (2011) Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem Soc Trans 39(2):652–657CrossRefGoogle Scholar
  120. 120.
    Warner KD, Homan P, Weeks KM, Smith AG, Abell C, Ferre-D’Amare AR (2014) Validating fragment-based drug discovery for biological RNAs: lead fragments bind and remodel the TPP riboswitch specifically. Chem Biol 21(5):591–595CrossRefGoogle Scholar
  121. 121.
    Lee M-K, Bottini A, Kim M, Bardaro MF, Zhang Z, Pellecchia M, Choi B-S, Varani G (2014) A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. Chem Commun 50(3):368–370CrossRefGoogle Scholar
  122. 122.
    Garavis M, Lopez-Mendez B, Somoza A, Oyarzabal J, Dalvit C, Villasante A, Campos-Olivas R, Gonzalez C (2014) Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19F-NMR based fragment screening. ACS Chem Biol 9(7):1559–1566CrossRefGoogle Scholar
  123. 123.
    Shepherd CA, Hopkins AL, Navratilova I (2014) Fragment screening by SPR and advanced application to GPCRs. Prog Biophys Mol Biol 116(2–3):113–123CrossRefGoogle Scholar
  124. 124.
    Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev Drug Discov 1(7):515–528CrossRefGoogle Scholar
  125. 125.
    David Wilson W (2002) Analyzing biomolecular interactions. Science 295(5562):2103–2105CrossRefGoogle Scholar
  126. 126.
    Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14(21–22):1051–1057CrossRefGoogle Scholar
  127. 127.
    González-Fernández E, Santos-Álvarez N d-l, Miranda-Ordieres AJ, Lobo-Castañón MJ (2012) SPR evaluation of binding kinetics and affinity study of modified RNA aptamers towards small molecules. Talanta 99:767–773CrossRefGoogle Scholar
  128. 128.
    Peselis A, Serganov A (2012) Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat Struct Mol Biol 19(11):1182–1184CrossRefGoogle Scholar
  129. 129.
    Schaffer MF, Choudhary PK, Sigel RKO (2014) The AdoCbl-riboswitch interaction investigated by in-line probing and surface plasmon resonance spectroscopy (SPR). Methods Enzymol 549:467–488CrossRefGoogle Scholar
  130. 130.
    Jenkins JL, Krucinska J, McCarty RM, Bandarian V, Wedekind JE (2011) Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem 286(28):24626–24637CrossRefGoogle Scholar
  131. 131.
    Hendrix M, Priestley ES, Joyce GF, Wong CH (1997) Direct observation of aminoglycoside-RNA interactions by surface plasmon resonance. J Am Chem Soc 119(16):3641–3648CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Johannes Gutenberg University Mainz, Institute for Pharmacy and BiochemistryMainzGermany
  2. 2.Department of BiomedicineUniversity of BergenBergenNorway

Personalised recommendations