Advertisement

Computational Tools for Design of Selective Small Molecules Targeting RNA: From Small Molecule Microarrays to Chemical Similarity Searching

  • Matthew G. Costales
  • Jessica L. Childs-Disney
  • Matthew D. DisneyEmail author
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 27)

Abstract

RNA is an important drug target, yet few lead compounds elicit their effects by acting on RNA outside of the bacterial ribosome. Herein, we describe various synergistic strategies to identify small molecules that target RNA and how computational approaches can be utilized for lead optimization. In particular, we describe the development of small molecule microarray approaches applied towards RNA and its application to identify small molecule binders and for the facile study of antibiotic resistance mechanisms for known or novel lead antibacterials. Additionally, a microarray-based library-versus-library screen, which probes millions of combinations, is described that identifies RNA motif binding partners preferred by small molecules. Lead compounds can be designed by searching for these privileged interactions in a disease-causing RNA. Computational chemistry can be used to optimize these compounds. For example, lead compounds that target the r(CCUG) repeats expansions that cause myotonic dystrophy type 2 (DM2) were lead optimized by using structure-based design. Specifically, the compounds were developed to allow an in situ click chemistry approach in which a disease-affected cell synthesizes its own drug on-site by using the disease-causing biomolecule as a cellular catalyst. In another lead optimization strategy, chemical similarity searching was employed to lead optimize small molecules that target the r(CUG) repeat expansion that causes myotonic dystrophy type 1 (DM1). These studies allowed for the identification of an in vivo active small molecule that targets r(CUG) and improves disease-associated defects. As more studies are completed to understand the role of RNA in disease biology, the number of potential RNA targets will increase. In order to leverage these important investigations to develop compounds that target RNA, approaches that allow one to identify and optimize small molecules for selectivity and potency must be carefully considered.

Keywords

Chemical biology Drug design High throughput screening Nucleic acids RNA 

References

  1. 1.
    von Ahsen U, Noller HF (1993) Footprinting the sites of interaction of antibiotics with catalytic group I intron RNA. Science 260:1500–1503CrossRefGoogle Scholar
  2. 2.
    Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80:2170–2182CrossRefGoogle Scholar
  3. 3.
    Elghonemy S, Davis WG, Brinton MA (2005) The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331:238–246CrossRefGoogle Scholar
  4. 4.
    Chan JH, Lim S, Wong WS (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33:533–540CrossRefGoogle Scholar
  5. 5.
    Rayburn ER, Zhang R (2008) Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov Today 13:513–521CrossRefGoogle Scholar
  6. 6.
    Sharp PA, Zamore PD (2000) RNA interference. Science 287:2431–2433CrossRefGoogle Scholar
  7. 7.
    Swayze EE, Bhat B (2008) The medicinal chemistry of oligonucleotides. In: Crooke ST (ed) Antisense drug technology: principles, strategies, and applications, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  8. 8.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140Google Scholar
  9. 9.
    Rishton GM, LaBonte K, Williams AJ, Kassam K, Kolovanov E (2006) Computational approaches to the prediction of blood-brain barrier permeability: a comparative analysis of central nervous system drugs versus secretase inhibitors for Alzheimer’s disease. Curr Opin Drug Discov Devel 9:303–313Google Scholar
  10. 10.
    Atlas R, Behar L, Elliott E, Ginzburg I (2004) The insulin-like growth factor mRNA binding-protein IMP-1 and the Ras-regulatory protein G3BP associate with tau mRNA and HuD protein in differentiated P19 neuronal cells. J Neurochem 89:613–626CrossRefGoogle Scholar
  11. 11.
    Luo Y, Disney MD (2014) Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA. Chembiochem 15:2041–2044CrossRefGoogle Scholar
  12. 12.
    Jahromi AH, Nguyen L, Fu Y, Miller KA, Baranger AM, Zimmerman SC (2013) A novel CUGexp•MBNL1 inhibitor with therapeutic potential for myotonic dystrophy type 1. ACS Chem Biol 8:1037–1043CrossRefGoogle Scholar
  13. 13.
    Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD (2012) Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 7:856–862CrossRefGoogle Scholar
  14. 14.
    Gareiss PC, Sobczak K, McNaughton BR, Palde PB, Thornton CA, Miller BL (2008) Dynamic combinatorial selection of molecules capable of inhibiting the (CUG) repeat RNA-MBNL1 interaction in vitro: discovery of lead compounds targeting myotonic dystrophy (DM1). J Am Chem Soc 130:16254–16261CrossRefGoogle Scholar
  15. 15.
    Lee MM, Childs-Disney JL, Pushechnikov A, French JM, Sobczak K, Thornton CA, Disney MD (2009) Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing: targeting the RNAs that cause myotonic muscular dystrophy. J Am Chem Soc 131:17464–17472CrossRefGoogle Scholar
  16. 16.
    Parkesh R, Childs-Disney JL, Nakamori M, Kumar A, Wang E, Wang T, Hoskins J, Tran T, Housman DE, Thornton CA, Disney MD (2012) Design of a bioactive small molecule that targets the myotonic dystrophy type 1 RNA via an RNA motif-ligand database & chemical similarity searching. J Am Chem Soc 134:4731–4742CrossRefGoogle Scholar
  17. 17.
    Pushechnikov A, Lee MM, Childs-Disney JL, Sobczak K, French JM, Thornton CA, Disney MD (2009) Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. J Am Chem Soc 131:9767–9779CrossRefGoogle Scholar
  18. 18.
    Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA (2009) Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 106:18551–18556CrossRefGoogle Scholar
  19. 19.
    Velagapudi SP, Disney MD (2014) Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor. Chem Commun 50:3027–3029CrossRefGoogle Scholar
  20. 20.
    Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10:291–297CrossRefGoogle Scholar
  21. 21.
    Bose D, Jayaraj G, Suryawanshi H, Agarwala P, Pore SK, Banerjee R, Maiti S (2012) The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. Angew Chem Int Ed Engl 51:1019–1023CrossRefGoogle Scholar
  22. 22.
    Chen RX, Xia YH, Xue TC, Ye SL (2012) Suppression of microRNA-96 expression inhibits the invasion of hepatocellular carcinoma cells. Mol Med Rep 5:800–804Google Scholar
  23. 23.
    Mathews DH, Burkard ME, Freier SM, Wyatt JR, Turner DH (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5:1458–1469CrossRefGoogle Scholar
  24. 24.
    Moreno PMD, Pêgo AP (2014) Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem 2:87CrossRefGoogle Scholar
  25. 25.
    Disney MD, Seeberger PH (2004) Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins. Chemistry 10:3308–3314CrossRefGoogle Scholar
  26. 26.
    Disney MD, Magnet S, Blanchard JS, Seeberger PH (2004) Aminoglycoside microarrays to study antibiotic resistance. Angew Chem Int Ed Engl 43:1591–1594CrossRefGoogle Scholar
  27. 27.
    Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, Childs-Disney JL (2008) Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J Am Chem Soc 130:11185–11194CrossRefGoogle Scholar
  28. 28.
    Childs-Disney JL, Wu M, Pushechnikov A, Aminova O, Disney MD (2007) A small molecule microarray platform to select RNA internal loop-ligand interactions. ACS Chem Biol 2:745–754CrossRefGoogle Scholar
  29. 29.
    Rzuczek SG, Park H, Disney MD (2014) A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor. Angew Chem Int Ed Engl 53:10956–10959CrossRefGoogle Scholar
  30. 30.
    Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD (2012) Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. ACS Chem Biol 7:496–505CrossRefGoogle Scholar
  31. 31.
    Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281CrossRefGoogle Scholar
  32. 32.
    Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6:1091–1105CrossRefGoogle Scholar
  33. 33.
    Jovine L, Djordjevic S, Rhodes D (2000) The crystal structure of yeast phenylalanine tRNA at 2.0 Å resolution: cleavage by Mg2+ in 15-year old crystals. J Mol Biol 301:401–414CrossRefGoogle Scholar
  34. 34.
    Robertus JD, Ladner JE, Finch JT, Rhodes D, Brown RS, Clark BFC, Klug A (1974) Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250:546–551CrossRefGoogle Scholar
  35. 35.
    Quigley GJ, Teeter MM, Rich A (1978) Structural analysis of spermine and magnesium ion binding to yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A 75:64–68CrossRefGoogle Scholar
  36. 36.
    Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed Engl 38:2326–2343CrossRefGoogle Scholar
  37. 37.
    Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940CrossRefGoogle Scholar
  38. 38.
    Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292CrossRefGoogle Scholar
  39. 39.
    Leontis NB, Stombaugh J, Westhof E (2002) The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–3531CrossRefGoogle Scholar
  40. 40.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090CrossRefGoogle Scholar
  41. 41.
    Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li W-J, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN (2016) Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun 7:10476CrossRefGoogle Scholar
  42. 42.
    Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2:a003665CrossRefGoogle Scholar
  43. 43.
    Zuker M, Jaeger JA, Turner DH (1991) A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19:2707–2714CrossRefGoogle Scholar
  44. 44.
    Ziehler WA, Engelke DR (2001) Probing RNA structure with chemical reagents and enzymes. Curr Protoc Nucleic Acid Chem Chapter 6:Unit 6.1Google Scholar
  45. 45.
    Stormo GD (2006) An overview of RNA structure prediction and applications to RNA gene prediction and RNAi design. Curr Protoc Bioinformatics Chapter 12:Unit 12.11Google Scholar
  46. 46.
    Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74:560–564CrossRefGoogle Scholar
  47. 47.
    Tijerina P, Mohr S, Russell R (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc 2:2608–2623CrossRefGoogle Scholar
  48. 48.
    Gopinath SCB (2009) Mapping of RNA–protein interactions. Anal Chim Acta 636:117–128CrossRefGoogle Scholar
  49. 49.
    Mortimer SA, Weeks KM (2007) A fast-acting reagent for accurate analysis of RNA secondary and tertiary ttructure by SHAPE chemistry. J Am Chem Soc 129:4144–4145CrossRefGoogle Scholar
  50. 50.
    Doudna JA, Cate JH (1997) RNA structure: crystal clear? Curr Opin Struct Biol 7:310–316CrossRefGoogle Scholar
  51. 51.
    Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962CrossRefGoogle Scholar
  52. 52.
    Ulyanov NB, Mujeeb A, Du Z, Tonelli M, Parslow TG, James TL (2006) NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J Biol Chem 281:16168–16177CrossRefGoogle Scholar
  53. 53.
    Doudna JA, Cech TR (1995) Self-assembly of a group I intron active site from its component tertiary structural domains. RNA 1:36–45Google Scholar
  54. 54.
    Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920CrossRefGoogle Scholar
  55. 55.
    Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348CrossRefGoogle Scholar
  56. 56.
    Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–128CrossRefGoogle Scholar
  57. 57.
    Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930CrossRefGoogle Scholar
  58. 58.
    Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–1839CrossRefGoogle Scholar
  59. 59.
    Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339CrossRefGoogle Scholar
  60. 60.
    Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896CrossRefGoogle Scholar
  61. 61.
    Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A 106:97–102CrossRefGoogle Scholar
  62. 62.
    Wimberly BT (2009) The use of ribosomal crystal structures in antibiotic drug design. Curr Opin Investig Drugs 10:750–765Google Scholar
  63. 63.
    Wong CH, Hendrix M, Priestley ES, Greenberg WA (1998) Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem Biol 5:397–406CrossRefGoogle Scholar
  64. 64.
    Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J Mol Biol 277:333–345CrossRefGoogle Scholar
  65. 65.
    Recht MI, Fourmy D, Blanchard SC, Dahlquist KD, Puglisi JD (1996) RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J Mol Biol 262:421–436CrossRefGoogle Scholar
  66. 66.
    Kaul M, Barbieri CM, Pilch DS (2006) Aminoglycoside-induced reduction in nucleotide mobility at the ribosomal RNA A-site as a potentially key determinant of antibacterial activity. J Am Chem Soc 128:1261–1271CrossRefGoogle Scholar
  67. 67.
    Barbieri CM, Kaul M, Pilch DS (2007) Use of 2-aminopurine as a fluorescent tool for characterizing antibiotic recognition of the bacterial rRNA A-site. Tetrahedron 63:3567–6574CrossRefGoogle Scholar
  68. 68.
    Kondo J, Pachamuthu K, Francois B, Szychowski J, Hanessian S, Westhof E (2007) Crystal structure of the bacterial ribosomal decoding site complexed with a synthetic doubly functionalized paromomycin derivative: a new specific binding mode to an a-minor motif enhances in vitro antibacterial activity. ChemMedChem 2:1631–1638CrossRefGoogle Scholar
  69. 69.
    Blount KF, Zhao F, Hermann T, Tor Y (2005) Conformational constraint as a means for understanding RNA-aminoglycoside specificity. J Am Chem Soc 127:9818–9829CrossRefGoogle Scholar
  70. 70.
    Wang H, Tor Y (1998) RNA-aminoglycoside interactions: design, synthesis, and binding of “amino-aminoglycosides” to RNA. Angew Chem Int Ed Engl 37:109–111CrossRefGoogle Scholar
  71. 71.
    Llano-Sotelo B, Azucena EF Jr, Kotra LP, Mobashery S, Chow CS (2002) Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol 9:455–463CrossRefGoogle Scholar
  72. 72.
    Haddad J, Kotra LP, Llano-Sotelo B, Kim C, Azucena EF Jr, Liu M, Vakulenko SB, Chow CS, Mobashery S (2002) Design of novel antibiotics that bind to the ribosomal acyltransfer site. J Am Chem Soc 124:3229–3237CrossRefGoogle Scholar
  73. 73.
    Lind KE, Du Z, Fujinaga K, Peterlin BM, James TL (2002) Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA. Chem Biol 9:185–193CrossRefGoogle Scholar
  74. 74.
    Hergenrother PJ, Depew KM, Schreiber SL (2000) Small-molecule microarrays: covalent attachment and screening of alcohol-containing small molecules on glass slides. J Am Chem Soc 122:7849–7850CrossRefGoogle Scholar
  75. 75.
    Disney MD, Barrett OJ (2007) An aminoglycoside microarray platform for directly monitoring and studying antibiotic resistance. Biochemistry 46:11223–11230CrossRefGoogle Scholar
  76. 76.
    Chow CS, Mahto SK, Lamichhane TN (2008) Combined approaches to site-specific modification of RNA. ACS Chem Biol 3:30–37CrossRefGoogle Scholar
  77. 77.
    Zhang W, Fisher JF, Mobashery S (2009) The bifunctional enzymes of antibiotic resistance. Curr Opin Microbiol 12:505–511CrossRefGoogle Scholar
  78. 78.
    Disney MD, Childs-Disney JL (2007) Using selection to identify and chemical microarray to study the RNA internal loops recognized by 6′-N-acylated kanamycin A. Chembiochem 8:649–656CrossRefGoogle Scholar
  79. 79.
    Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293:864–867CrossRefGoogle Scholar
  80. 80.
    Konieczny P, Stepniak-Konieczna E, Sobczak K (2014) MBNL proteins and their target RNAs, interaction and splicing regulation. Nucleic Acids Res 42:10873–10887CrossRefGoogle Scholar
  81. 81.
    Lee MM, Pushechnikov A, Disney MD (2009) Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2. ACS Chem Biol 4:345–355CrossRefGoogle Scholar
  82. 82.
    Childs-Disney JL, Yildirim I, Park H, Lohman JR, Guan L, Tran T, Sarkar P, Schatz GC, Disney MD (2014) Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity. ACS Chem Biol 9:538–550CrossRefGoogle Scholar
  83. 83.
    Kwon Y-U, Kodadek T (2007) Quantitative evaluation of the relative cell permeability of peptoids and peptides. J Am Chem Soc 129:1508–1509CrossRefGoogle Scholar
  84. 84.
    Wong CH, Fu Y, Ramisetty SR, Baranger AM, Zimmerman SC (2011) Selective inhibition of MBNL1-CCUG interaction by small molecules toward potential therapeutic agents for myotonic dystrophy type 2 (DM2). Nucleic Acids Res 39:8881–8890CrossRefGoogle Scholar
  85. 85.
    Nguyen L, Lee J, Wong CH, Zimmerman SC (2014) Small molecules that target the toxic RNA in myotonic dystrophy type 2. ChemMedChem 9:2455–2462CrossRefGoogle Scholar
  86. 86.
    Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed Engl 41:1053–1057CrossRefGoogle Scholar
  87. 87.
    Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K, et al (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255CrossRefGoogle Scholar
  88. 88.
    Miller JW, Urbinati CR, Teng-umnuay P, Stenberg MG, Byrne BJ, Thornton CA, Swanson MS (2000) Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J 19:4439–4448CrossRefGoogle Scholar
  89. 89.
    Mankodi A, Logigian E, Callahan L, McClain C, White R, Henderson D, Krym M, Thornton CA (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289:1769–1773CrossRefGoogle Scholar
  90. 90.
    Ofori LO, Hoskins J, Nakamori M, Thornton CA, Miller BL (2012) From dynamic combinatorial ‘hit’ to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy. Nucleic Acids Res 40:6380–6390CrossRefGoogle Scholar
  91. 91.
    Arambula JF, Ramisetty SR, Baranger AM, Zimmerman SC (2009) A simple ligand that selectively targets CUG trinucleotide repeats and inhibits MBNL protein binding. Proc Natl Acad Sci U S A 106:16068–16073CrossRefGoogle Scholar
  92. 92.
    Wong C-H, Nguyen L, Peh J, Luu LM, Sanchez JS, Richardson SL, Tuccinardi T, Tsoi H, Chan WY, Chan HYE, Baranger AM, Hergenrother PJ, Zimmerman SC (2014) Targeting toxic RNAs that cause myotonic dystrophy Type 1 (DM1) with a bisamidinium inhibitor. J Am Chem Soc 136:6355–6361CrossRefGoogle Scholar
  93. 93.
    Siboni RB, Nakamori M, Wagner SD, Struck AJ, Coonrod LA, Harriott SA, Cass DM, Tanner MK, Berglund JA (2015) Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep 13:2386–2394CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthew G. Costales
    • 1
  • Jessica L. Childs-Disney
    • 1
  • Matthew D. Disney
    • 1
    Email author
  1. 1.Departments of Chemistry and NeuroscienceThe Scripps Research InstituteJupiterUSA

Personalised recommendations