The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives

  • Anton A. KomarEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 21)


In recent years, the demand for recombinant proteins for use in research laboratories or in medical settings has increased dramatically. Although a wide variety of recombinant protein expression systems and gene redesign approaches are available, obtaining active, correctly folded recombinant proteins in sufficient amounts remains a challenge in many cases. One of the main approaches to gene redesign with the potential to increase protein production involves introduction of synonymous codon substitutions in mRNAs aimed at increasing the rate/efficiency of translation. However, a number of recent studies have shown that synonymous codon substitutions can also negatively impact mRNA biogenesis, mRNA decoding, as well as protein folding and function. Maximizing the speed and output of translation may put conflicting demands on the protein synthesis machinery resulting in reduced accuracy of the decoding process and/or improper protein folding. An improved understanding of the impact of synonymous codon substitutions on mRNA/protein biogenesis and function is critically important for the development of safer and more effective recombinant protein therapeutics. This review discusses the most common approaches to gene redesign that involve synonymous codon substitutions and provides recommendations for their optimal use in light of recent developments in the field regarding the impact of synonymous codon usage on various aspects of protein production and function.


Codon usage Gene redesign Mistranslation mRNA turnover Protein folding Protein synthesis Rare synonymous codons Recombinant protein therapeutics Synonymous codons 



I apologize to those whose work or original publications could not be cited in this article because of space limitations. I thank Patricia Stanhope Baker for help with manuscript preparation. This work was supported in part by grants to A.A.K. from the Human Frontier Science Program (grant # RGP0024/2010), AHA (grant # 13GRNT17070025), and NIH (grant # 1R15HL121779).


  1. 1.
    Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372CrossRefGoogle Scholar
  2. 2.
    Berlec A, Strukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274CrossRefGoogle Scholar
  3. 3.
    Khan KH (2013) Gene expression in Mammalian cells and its applications. Adv Pharm Bull 3:257–263Google Scholar
  4. 4.
    Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402CrossRefGoogle Scholar
  5. 5.
    Young CL, Robinson AS (2014) Protein folding and secretion: mechanistic insights advancing recombinant protein production in S. cerevisiae. Curr Opin Biotechnol 30:168–177CrossRefGoogle Scholar
  6. 6.
    Sugiki T, Fujiwara T, Kojima C (2014) Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 9:1189–1204CrossRefGoogle Scholar
  7. 7.
    van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23CrossRefGoogle Scholar
  8. 8.
    Carlson ED, Gan R, Hodgman CE, Jewett MC (2012) Cell-free protein synthesis: applications come of age. Biotechnol Adv 30:1185–1194CrossRefGoogle Scholar
  9. 9.
    Whittaker JW (2013) Cell-free protein synthesis: the state of the art. Biotechnol Lett 35:143–152CrossRefGoogle Scholar
  10. 10.
    Yusibov V, Streatfield SJ, Kushnir N (2011) Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum Vaccin 7:313–321CrossRefGoogle Scholar
  11. 11.
    Abiri R, Valdiani A, Maziah M, Shaharuddin NA, Sahebi M, Yusof ZY, Atabaki N, Talei D (2015) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Curr Issues Mol Biol 18:21–42Google Scholar
  12. 12.
    Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320CrossRefGoogle Scholar
  13. 13.
    Bösze Z, Baranyi M, Whitelaw CB (2008) Producing recombinant human milk proteins in the milk of livestock species. Adv Exp Med Biol 606:357–393CrossRefGoogle Scholar
  14. 14.
    Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306CrossRefGoogle Scholar
  15. 15.
    Klammt C, Schwarz D, Löhr F, Schneider B, Dötsch V, Bernhard F (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J 273:4141–4153CrossRefGoogle Scholar
  16. 16.
    Saïda F (2007) Overview on the expression of toxic gene products in Escherichia coli. Curr Protoc Protein Sci 50:1–5Google Scholar
  17. 17.
    Ryabova LA, Morozov IY, Spirin AS (1998) Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. Methods Mol Biol 77:179–193Google Scholar
  18. 18.
    Murray CJ, Baliga R (2013) Cell-free translation of peptides and proteins: from high throughput screening to clinical production. Curr Opin Chem Biol 17:420–426CrossRefGoogle Scholar
  19. 19.
    Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353CrossRefGoogle Scholar
  20. 20.
    Elena C, Ravasi P, Castelli ME, Peirú S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 5:21CrossRefGoogle Scholar
  21. 21.
    Quax TE, Claassens NJ, Söll D, van der Oost J (2015) Codon bias as a means to fine-tune gene expression. Mol Cell 59:149–161CrossRefGoogle Scholar
  22. 22.
    Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1998) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–18211CrossRefGoogle Scholar
  23. 23.
    Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299CrossRefGoogle Scholar
  24. 24.
    Sharp PM, Emery LR, Zeng K (2010) Forces that influence the evolution of codon bias. Philos Trans R Soc Lond B Biol Sci 365:1203–1212CrossRefGoogle Scholar
  25. 25.
    Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34Google Scholar
  26. 26.
    Buchan JR, Stansfield I (2007) Halting a cellular production line: responses to ribosomal pausing during translation. Biol Cell 99:475–487CrossRefGoogle Scholar
  27. 27.
    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223CrossRefGoogle Scholar
  28. 28.
    Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34:16–24CrossRefGoogle Scholar
  29. 29.
    Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213CrossRefGoogle Scholar
  30. 30.
    Dana A, Tuller T (2014) The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res 42:9171–9181CrossRefGoogle Scholar
  31. 31.
    Gardin J, Yeasmin R, Yurovsky A, Cai Y, Skiena S, Futcher B (2014) Measurement of average decoding rates of the 61 sense codons in vivo. Elife 3, eLife.03735Google Scholar
  32. 32.
    Hatfield GW, Roth DA (2007) Optimizing scaleup yield for protein production: computationally optimized DNA assembly (CODA) and translation engineering. Biotechnol Annu Rev 13:27–42CrossRefGoogle Scholar
  33. 33.
    Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255–258CrossRefGoogle Scholar
  34. 34.
    Tuller T, Waldman YY, Kupiec M, Ruppin E (2010) Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A 107:3645–3650CrossRefGoogle Scholar
  35. 35.
    Kim HJ, Lee SJ, Kim HJ (2010) Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae. J Biotechnol 150:31–36CrossRefGoogle Scholar
  36. 36.
    Castillo-Méndez MA, Jacinto-Loeza E, Olivares-Trejo JJ, Guarneros-Pena G, Hernandez-Sanchez J (2012) Adenine-containing codons enhance protein synthesis by promoting mRNA binding to ribosomal 30S subunits provided that specific tRNAs are not exhausted. Biochimie 94:662–672CrossRefGoogle Scholar
  37. 37.
    Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479CrossRefGoogle Scholar
  38. 38.
    Bentele K, Saffert P, Rauscher R, Ignatova Z, Bluthgen N (2013) Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 9:675CrossRefGoogle Scholar
  39. 39.
    Li GW (2015) How do bacteria tune translation efficiency? Curr Opin Microbiol 24:66–71CrossRefGoogle Scholar
  40. 40.
    Wu G, Zheng Y, Qureshi I, Zin HT, Beck T, Bulka B, Freeland SJ (2007) SGDB: a database of synthetic genes re-designed for optimizing protein over-expression. Nucleic Acids Res 35:D76–D79CrossRefGoogle Scholar
  41. 41.
    de Marco A, Vigh L, Diamant S, Goloubinoff P (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10:329–339CrossRefGoogle Scholar
  42. 42.
    Komar AA, Lesnik T, Reiss C (1999) Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. FEBS Lett 462:387–391CrossRefGoogle Scholar
  43. 43.
    Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528CrossRefGoogle Scholar
  44. 44.
    Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, Liu Y (2015) Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell 59:744–754CrossRefGoogle Scholar
  45. 45.
    Zhou M, Guo J, Cha J, Chae M, Chen S, Barral JM, Sachs MS, Liu Y (2013) Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495:111–115CrossRefGoogle Scholar
  46. 46.
    Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16:274–280CrossRefGoogle Scholar
  47. 47.
    Sander IM, Chaney JL, Clark PL (2014) Expanding Anfinsen’s principle: contributions of synonymous codon selection to rational protein design. J Am Chem 136:858–861CrossRefGoogle Scholar
  48. 48.
    Hu S, Wang M, Cai G, He M (2013) Genetic code-guided protein synthesis and folding in Escherichia coli. J Biol Chem 288:30855–30861CrossRefGoogle Scholar
  49. 49.
    Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, Barral JM, Skach WR (2015) Protein folding. Translational tuning optimizes nascent protein folding in cells. Science 348:444–448CrossRefGoogle Scholar
  50. 50.
    Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA (2016) Synonymous codons direct cotranslational folding toward different protein conformations. Mol Cell 61:341–351. Google Scholar
  51. 51.
    Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691CrossRefGoogle Scholar
  52. 52.
    Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C (2014) Exposing synonymous mutations. Trends Genet 30:308–321CrossRefGoogle Scholar
  53. 53.
    Presnyak V, Alhusaini N, Chen YH, Martin S, Morris N, Kline N, Olson S, Weinberg D, Baker KE, Graveley BR, Coller J (2015) Codon optimality is a major determinant of mRNA stability. Cell 160:1111–1124CrossRefGoogle Scholar
  54. 54.
    Boël G, Letso R, Neely H, Price WN, Wong KH, Su M, Luff JD, Valecha M, Everett JK, Acton TB, Xiao R, Montelione GT, Aalberts DP, Hunt JF (2016) Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 529:358–363CrossRefGoogle Scholar
  55. 55.
    Pechmann S, Chartron JW, Frydman J (2014) Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 21:1100–1105CrossRefGoogle Scholar
  56. 56.
    Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341–352CrossRefGoogle Scholar
  57. 57.
    Chin JX, Chung BK-S, Lee D-Y (2014) Codon optimization on-line (COOL): a web-based multi-objective optimization platform for synthetic gene design. Bioinformatics 30:2210–2212CrossRefGoogle Scholar
  58. 58.
    Hoover DM, Lubkowski J (2002) DNA Works: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res 30, e43CrossRefGoogle Scholar
  59. 59.
    Guimaraes JC, Rocha M, Arkin AP, Cambray G (2014) D-Tailor: automated analysis and design of DNA sequences. Bioinformatics 30:1087–1094CrossRefGoogle Scholar
  60. 60.
    Gaspar P, Oliveira JL, Frommlet J, Santos MAS, Moura G (2012) EuGene: maximizing synthetic gene design for heterologous expression. Bioinformatics 28:2683–2684CrossRefGoogle Scholar
  61. 61.
    Richardson SM, Wheelan SJ, Yarrington RM, Boeke JD (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res 16:550–556CrossRefGoogle Scholar
  62. 62.
    Villalobos A, Ness JE, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinformat 7:285CrossRefGoogle Scholar
  63. 63.
    Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33:W526–W531CrossRefGoogle Scholar
  64. 64.
    Gaspar P, Moura G, Santos MAS, Oliveira JL (2013) mRNA secondary structure optimization using a correlated stem-loop prediction. Nucleic Acids Res 41, e73CrossRefGoogle Scholar
  65. 65.
    Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131CrossRefGoogle Scholar
  66. 66.
    Wu G, Bashir-Bello N, Freeland S (2005) The synthetic gene designer: a flexible web platform to explore sequence space of synthetic genes for heterolo-gous expression. In: 2005 I.E. computational systems bioinformatics conference, workshops and poster abstracts, 2005 Aug 8–11. Stanford University, California, pp 258–259Google Scholar
  67. 67.
    Li MH, Bode M, Huang MC, Cheong WC, Lim LS (2012) De novo gene synthesis design using TmPrime software. Methods Mol Biol 852:225–234CrossRefGoogle Scholar
  68. 68.
    Jung S-K, McDonald K (2011) Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinformat 12:340CrossRefGoogle Scholar
  69. 69.
    Gould N, Hendy O, Papamichail D (2014) Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2:41CrossRefGoogle Scholar
  70. 70.
    Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from the international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292CrossRefGoogle Scholar
  71. 71.
    Sharp PM, Li WH (1987) The codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295CrossRefGoogle Scholar
  72. 72.
    Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42CrossRefGoogle Scholar
  73. 73.
    Pechmann S, Frydman J (2011) Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol 20:237–243CrossRefGoogle Scholar
  74. 74.
    Chaney JL, Clark PL (2015) Roles for synonymous codon usage in protein biogenesis. Annu Rev Biophys 44:143–166CrossRefGoogle Scholar
  75. 75.
    Clarke TF 4th, Clark PL (2008) Rare codons cluster. PLoS One 3, e3412CrossRefGoogle Scholar
  76. 76.
    Clarke TF 4th, Clark PL (2010) Increased incidence of rare codon clusters at 5′ and 3′ gene termini: implications for function. BMC Genomics 11:118CrossRefGoogle Scholar
  77. 77.
    Allert M, Cox JC, Hellinga HW (2010) Multifactorial determinants of protein expression in prokaryotic open reading frames. J Mol Biol 402:905–918CrossRefGoogle Scholar
  78. 78.
    Gu W, Zhou T, Wilke CO (2010) A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol 6, e1000664CrossRefGoogle Scholar
  79. 79.
    Zalucki YM, Beacham IR, Jennings MP (2009) Biased codon usage in signal peptides: a role in protein export. Trends Microbiol 17:146–150CrossRefGoogle Scholar
  80. 80.
    Fluman N, Navon S, Bibi E, Pilpel Y (2014) mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. Elife 3:eLife.03440Google Scholar
  81. 81.
    Chartier M, Gaudreault F, Najmanovich R (2012) Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events. Bioinformatics 28:1438–1445CrossRefGoogle Scholar
  82. 82.
    McKown RL, Raab RW, Kachelries P, Caldwell S, Laurie GW (2013) Conserved regional 3′ grouping of rare codons in the coding sequence of ocular prosecretory mitogen lacritin. Invest Ophthalmol Vis Sci 54:1979–1987CrossRefGoogle Scholar
  83. 83.
    Widmann M, Clairo M, Dippon J, Pleiss J (2008) Analysis of the distribution of functionally relevant rare codons. BMC Genomics 9:207CrossRefGoogle Scholar
  84. 84.
    Purvis IJ, Bettany AJ, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJ (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193:413–417CrossRefGoogle Scholar
  85. 85.
    Krasheninnikov IA, Komar AA, Adzhubeĭ IA (1988) Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins. Dokl Akad Nauk SSSR 303:995–999Google Scholar
  86. 86.
    Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383:281–291CrossRefGoogle Scholar
  87. 87.
    Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597CrossRefGoogle Scholar
  88. 88.
    Zhang G, Ignatova Z (2011) Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr Opin Struct Biol 21:25–31CrossRefGoogle Scholar
  89. 89.
    Waudby CA, Launay H, Cabrita LD, Christodoulou J (2013) Protein folding on the ribosome studied using NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 74:57–75CrossRefGoogle Scholar
  90. 90.
    O'Brien EP, Ciryam P, Vendruscolo M, Dobson CM (2014) Understanding the influence of codon translation rates on cotranslational protein folding. Acc Chem Res 47:1536–1544CrossRefGoogle Scholar
  91. 91.
    Gloge F, Becker AH, Kramer G, Bukau B (2014) Co-translational mechanisms of protein maturation. Curr Opin Struct Biol 24:24–33CrossRefGoogle Scholar
  92. 92.
    Hoekema A, Kastelein RA, Vasser M, de Boer HA (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7:2914–2924CrossRefGoogle Scholar
  93. 93.
    Caponigro G, Muhlrad D, Parker R (1993) A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol 13:5141–5148CrossRefGoogle Scholar
  94. 94.
    Deana A, Ehrlich R, Reiss C (1996) Synonymous codon selection controls in vivo turnover and amount of mRNA in Escherichia coli bla and ompA genes. J Bacteriol 178:2718–2720CrossRefGoogle Scholar
  95. 95.
    Kramer EB, Farabaugh PJ (2007) The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96CrossRefGoogle Scholar
  96. 96.
    Zaher HS, Green R (2009) Fidelity at the molecular level: lessons from protein synthesis. Cell 136:746–762CrossRefGoogle Scholar
  97. 97.
    Kramer EB, Vallabhaneni H, Mayer LM, Farabaugh PJ (2010) A comprehensive analysis of translational missense errors in the yeast Saccharomyces cerevisiae. RNA 16:1797–1808CrossRefGoogle Scholar
  98. 98.
    Ribas de Pouplana L, Santos MA, Zhu JH, Farabaugh PJ, Javid B (2014) Protein mistranslation: friend or foe? Trends Biochem Sci 39:355–362CrossRefGoogle Scholar
  99. 99.
    Dinman JD (2012) Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip Rev RNA 3:661–673CrossRefGoogle Scholar
  100. 100.
    Caliskan N, Peske F, Rodnina MV (2015) Changed in translation: mRNA recoding by -1 programmed ribosomal frameshifting. Trends Biochem Sci 40:265–274Google Scholar
  101. 101.
    Huang Y, Koonin EV, Lipman DJ, Przytycka TM (2009) Selection for minimization of translational frameshifting errors as a factor in the evolution of codon usage. Nucleic Acids Res 37:6799–6810CrossRefGoogle Scholar
  102. 102.
    Hamasaki-Katagiri N, Salari R, Simhadri VL, Tseng SC, Needlman E, Edwards NC, Sauna ZE, Grigoryan V, Komar AA, Przytycka TM, Kimchi-Sarfaty C (2012) Analysis of F9 point mutations and their correlation to severity of haemophilia B disease. Haemophilia 18:933–940CrossRefGoogle Scholar
  103. 103.
    Edwards NC, Hing ZA, Perry A, Blaisdell A, Kopelman DB, Fathke R, Plum W, Newell J, Allen CE, Shapiro SGA, Okunji C, Kosti I, Shomron N, Grigoryan V, Przytycka TM, Sauna ZE, Salari R, Mandel-Gutfreund Y, Komar AA, Kimchi-Sarfaty C (2012) Characterization of coding synonymous and non-synonymous variants in ADAMTS13 using ex vivo and in silico approaches. PLoS One 7:e38864Google Scholar
  104. 104.
    Salari R, Kimchi-Sarfaty C, Gottesman MM, Przytycka TM (2013) Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res 41:44–53CrossRefGoogle Scholar
  105. 105.
    Hamasaki-Katagiri N, Salari R, Wu A, Qi Y, Schiller T, Filiberto AC, Schisterman EF, Komar AA, Przytycka TM, Kimchi-Sarfaty C (2013) A gene-specific method for predicting hemophilia-causing point mutations. J Mol Biol 425:4023–4033CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental SciencesCleveland State UniversityClevelandUSA
  2. 2.DAPCEL, Inc.ClevelandUSA

Personalised recommendations