Skip to main content

Selenium-Based Drug Design

  • Chapter
  • First Online:
Atypical Elements in Drug Design (EGC 2015)

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 17))

Included in the following conference series:

Abstract

The biochemistry, pharmacology and epidemiology of selenium and selenium-containing compounds continue to be subjects of considerable interest from the viewpoint of public health. Selenium has a long history of association with human health and disease, and we now recognize that this element is an essential nutrient that is critical to key cellular processes. We now know that the selenoproteins constituting the human selenoproteome are encoded by 25 genes in the human genome, and much progress is being made in our understanding of selenium metabolism and the health effects of selenium metabolites in normal and disease states. The idea that selenium-containing dietary supplements might be effective in preventing disease has gone through both optimistic and pessimistic phases in recent years, and the future prospects for such a nutritional approach are unclear at the present time. In contrast, a significant number of promising efforts are underway that are aimed at designing and developing pharmaceutical agents that are selenium-based or that target specific aspects of selenium metabolism. This chapter focuses on some of these efforts to develop new selenium-based anticancer, antioxidant, antihypertensive, antiviral, immunosuppressive, and antimicrobial agents. While most of the efforts that entail designed organoselenium compounds – as opposed to inorganic selenium metabolites – are still at the preclinical stage, evidence is emerging that selenium-based compounds can operate via several beneficial biochemical and pharmacological mechanisms. Since our understanding of the biology, biochemistry and pharmacology of selenium and selenoproteins is rapidly expanding, we can anticipate that the coming years will bring further development of new selenium-based pharmaceutical agents with therapeutic potential against human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olcott HS, Brown WD, Van Derveen J (1961) Selenomethionine as an antioxidant. Nature 191:1201–1202

    Article  CAS  Google Scholar 

  2. Walter R, Schwartz IL, Roy J (1972) Can selenoamino acids act as reversible biological antioxidants? Ann N Y Acad Sci 192:175–180

    Article  CAS  Google Scholar 

  3. Beck MA, Shi Q, Morris VC, Levander OA (1995) Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med 1(5):433–436

    Article  CAS  Google Scholar 

  4. Levander OA, Beck MA (1997) Interacting nutritional and infectious etiologies of Keshan disease. Insights from coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E. Biol Trace Elem Res 56(1):5–21. doi:10.1007/BF02778980

    Article  CAS  Google Scholar 

  5. May SW (1999) Selenium-based drug design: rationale and therapeutic potential. Expert Opin Investig Drugs 8(7):1017–1030. doi:10.1517/13543784.8.7.1017

    Article  CAS  Google Scholar 

  6. Shamberger RJ, Frost DV (1969) Possible protective effect of selenium against human cancer. Can Med Assoc J 100(14):682

    CAS  Google Scholar 

  7. Schrauzer GN, Rhead WJ (1971) Interpretation of the methylene blue reduction test of human plasma and the possible cancer protecting effect of selenium. Experientia 27(9):1069–1071

    Article  CAS  Google Scholar 

  8. Clark LC, Cantor KP, Allaway WH (1991) Selenium in forage crops and cancer mortality in U.S. counties. Arch Environ Health 46(1):37–42. doi:10.1080/00039896.1991.9937427

    Article  CAS  Google Scholar 

  9. Mugesh G, du Mont WW, Sies H (2001) Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 101(7):2125–2179

    Article  CAS  Google Scholar 

  10. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6285. doi:10.1021/cr0406559

    Article  CAS  Google Scholar 

  11. May SW (2002) Selenium-based pharmacological agents: an update. Expert Opin Investig Drugs 11(9):1261–1269. doi:10.1517/13543784.11.9.1261

    Article  CAS  Google Scholar 

  12. May SW, Pollock SH (1998) Selenium-based antihypertensives. Rationale and potential. Drugs 56(6):959–964

    Article  CAS  Google Scholar 

  13. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443. doi:10.1126/science.1083516

    Article  CAS  Google Scholar 

  14. Yoshizawa K, Willett WC, Morris SJ, Stampfer MJ, Spiegelman D, Rimm EB, Giovannucci E (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 90(16):1219–1224

    Article  CAS  Google Scholar 

  15. van den Brandt PA, Zeegers MP, Bode P, Goldbohm RA (2003) Toenail selenium levels and the subsequent risk of prostate cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 12(9):866–871

    Google Scholar 

  16. Beck MA, Handy J, Levander OA (2004) Host nutritional status: the neglected virulence factor. Trends Microbiol 12(9):417–423. doi:10.1016/j.tim.2004.07.007

    Article  CAS  Google Scholar 

  17. Beck MA, Levander OA, Handy J (2003) Selenium deficiency and viral infection. J Nutr 133(5 Suppl 1):1463S–1467S

    CAS  Google Scholar 

  18. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41(6):443–447. doi:10.1055/s-0029-1220724

    Article  CAS  Google Scholar 

  19. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184(3):455–465. doi:10.1677/joe.1.05971

    Article  CAS  Google Scholar 

  20. Council NR (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC

    Google Scholar 

  21. Parnham M, Sies H (2000) Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Investig Drugs 9(3):607–619. doi:10.1517/13543784.9.3.607

    Article  CAS  Google Scholar 

  22. Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial .Nutritional Prevention of Cancer Study Group. JAMA 276(24):1957–1963

    Article  CAS  Google Scholar 

  23. Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM Jr, Kristal AR, Santella RM, Probstfield JL, Moinpour CM, Albanes D, Taylor PR, Minasian LM, Hoque A, Thomas SM, Crowley JJ, Gaziano JM, Stanford JL, Cook ED, Fleshner NE, Lieber MM, Walther PJ, Khuri FR, Karp DD, Schwartz GG, Ford LG, Coltman CA Jr (2005) Designing the selenium and vitamin E cancer prevention trial (SELECT). J Natl Cancer Inst 97(2):94–102. doi:10.1093/jnci/dji009

    Article  CAS  Google Scholar 

  24. Ledesma MC, Jung-Hynes B, Schmit TL, Kumar R, Mukhtar H, Ahmad N (2011) Selenium and vitamin E for prostate cancer: post-SELECT (selenium and vitamin E cancer prevention trial) status. Mol Med 17(1–2):134–143. doi:10.2119/molmed.2010.00136

    CAS  Google Scholar 

  25. Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA 301(1):39–51. doi:10.1001/jama.2008.864

    Article  CAS  Google Scholar 

  26. May SW, Herman HH, Roberts SF, Ciccarello MC (1987) Ascorbate depletion as a consequence of product recycling during dopamine beta-monooxygenase catalyzed selenoxidation. Biochemistry 26(6):1626–1633

    Article  CAS  Google Scholar 

  27. May SW, Wimalasena K, Herman HH, Fowler LC, Ciccarello MC, Pollock SH (1988) Novel antihypertensives targeted at dopamine beta-monooxygenase: turnover-dependent cofactor depletion by phenyl aminoethyl selenide. J Med Chem 31(6):1066–1068

    Article  CAS  Google Scholar 

  28. Herman HH, Wimalasena K, Fowler LC, Beard CA, May SW (1988) Demonstration of the ascorbate dependence of membrane-bound dopamine beta-monooxygenase in adrenal chromaffin granule ghosts. J Biol Chem 263(2):666–672

    CAS  Google Scholar 

  29. Wimalasena K, Herman HH, May SW (1989) Effects of dopamine beta-monooxygenase substrate analogs on ascorbate levels and norepinephrine synthesis in adrenal chromaffin granule ghosts. J Biol Chem 264(1):124–130

    CAS  Google Scholar 

  30. Pollock SH, Herman HH, Fowler LC, Edwards AS, Evans CO, May SW (1988) Demonstration of the antihypertensive activity of phenyl-2-aminoethyl selenide. J Pharmacol Exp Ther 246(1):227–234

    CAS  Google Scholar 

  31. Herman HH, Pollock SH, Fowler LC, May SW (1988) Demonstration of the potent antihypertensive activity of phenyl-2-aminoethyl sulfides. J Cardiovasc Pharmacol 11(5):501–510

    Article  CAS  Google Scholar 

  32. May SW, Wang L, Gill-Woznichak MM, Browner RF, Ogonowski AA, Smith JB, Pollock SH (1997) An orally active selenium-based antihypertensive agent with restricted CNS permeability. J Pharmacol Exp Ther 283(2):470–477

    CAS  Google Scholar 

  33. Overcast JD, Ensley AE, Buccafusco CJ, Cundy C, Broadnax RA, He S, Yoganathan AP, Pollock SH, Hartley CJ, May SW (2001) Evaluation of cardiovascular parameters of a selenium-based antihypertensive using pulsed Doppler ultrasound. J Cardiovasc Pharmacol 38(3):337–346

    Article  CAS  Google Scholar 

  34. De Silva V, Woznichak MM, Burns KL, Grant KB, May SW (2004) Selenium redox cycling in the protective effects of organoselenides against oxidant-induced DNA damage. J Am Chem Soc 126(8):2409–2413. doi:10.1021/ja037294j

    Article  CAS  Google Scholar 

  35. Woznichak MM, Overcast JD, Robertson K, Neumann HM, May SW (2000) Reaction of phenylaminoethyl selenides with peroxynitrite and hydrogen peroxide. Arch Biochem Biophys 379(2):314–320. doi:10.1006/abbi.2000.1893

    Article  CAS  Google Scholar 

  36. Cowan EA, Oldham CD, May SW (2011) Identification of a thioselenurane intermediate in the reaction between phenylaminoalkyl selenoxides and glutathione. Arch Biochem Biophys 506(2):201–207. doi:10.1016/j.abb.2010.11.007

    Article  CAS  Google Scholar 

  37. Cowan EA, Taylor JL, Oldham CD, Dasari M, Doyle D, Murthy N, May SW (2013) Cellular antioxidant activity of phenylaminoethyl selenides as monitored by chemiluminescence of peroxalate nanoparticles and by reduction of lipopolysaccharide-induced oxidative stress. Enzyme Microb Technol 53(6–7):373–377. doi:10.1016/j.enzmictec.2013.08.002

    Article  CAS  Google Scholar 

  38. Kumar S, Singh HB, Wolmershauser G (2006) Protection against peroxynitrite-mediated nitration reaction by intramolecularly coordinated diorganoselenides. Organometallics 25:382–393

    Article  CAS  Google Scholar 

  39. Reich HJ, Jasperse CP (1987) Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J Am Chem Soc 109(18):5549–5551

    Article  CAS  Google Scholar 

  40. Back TG, Moussa Z, Parvez M (2004) The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew Chem Int Ed 43:1268–1270

    Article  CAS  Google Scholar 

  41. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6):L1005–L1028

    CAS  Google Scholar 

  42. Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC (2009) Redox control of the cell cycle in health and disease. Antioxid Redox Signal 11(12):2985–3011. doi:10.1089/ARS.2009.2513

    Article  CAS  Google Scholar 

  43. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616. doi:10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  Google Scholar 

  44. Hande KR (1998) Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta 1400(1–3):173–184

    Article  CAS  Google Scholar 

  45. Quiles JL, Huertas JR, Battino M, Mataix J, Ramirez-Tortosa MC (2002) Antioxidant nutrients and adriamycin toxicity. Toxicology 180(1):79–95

    Article  CAS  Google Scholar 

  46. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56(2):185–229. doi:10.1124/pr.56.2.6

    Article  CAS  Google Scholar 

  47. Pearlman M, Jendiroba D, Pagliaro L, Keyhani A, Liu B, Freireich EJ (2003) Dexrazoxane in combination with anthracyclines lead to a synergistic cytotoxic response in acute myelogenous leukemia cell lines. Leuk Res 27(7):617–626

    Article  CAS  Google Scholar 

  48. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, Mendenhall NP, Sposto R, Chauvenet A, Schwartz CL (2007) Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol 25(5):493–500. doi:10.1200/JCO.2005.02.3879

    Article  CAS  Google Scholar 

  49. Kang JY, Costyn LJ, Nagy T, Cowan EA, Oldham CD, May SW, Arnold RD (2011) The antioxidant phenylaminoethyl selenide reduces doxorubicin-induced cardiotoxicity in a xenograft model of human prostate cancer. Arch Biochem Biophys 515(1–2):112–119. doi:10.1016/j.abb.2011.08.008

    Article  CAS  Google Scholar 

  50. Parnham M (1996) The pharmaceutical potential of selenium. Pharmaceut News 3:7–10

    CAS  Google Scholar 

  51. Parnham MJ, Sies H (2013) The early research and development of ebselen. Biochem Pharmacol 86(9):1248–1253. doi:10.1016/j.bcp.2013.08.028

    Article  CAS  Google Scholar 

  52. Back TG, Moussa Z, Parvez M (2004) The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew Chem Int Ed 43(10):1268–1270. doi:10.1002/anie.200353128

    Article  CAS  Google Scholar 

  53. Kunwar A, Mishra B, Barik A, Kumbhare LB, Pandey R, Jain VK, Priyadarsini KI (2007) 3,3′-diselenodipropionic acid, an efficient peroxyl radical scavenger and a GPx mimic, protects erythrocytes (RBCs) from AAPH-induced hemolysis. Chem Res Toxicol 20(10):1482–1487. doi:10.1021/tx700137a

    Article  CAS  Google Scholar 

  54. Sarma BK, Mugesh G (2008) Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates. Chemistry 14(34):10603–10614. doi:10.1002/chem.200801258

    Article  CAS  Google Scholar 

  55. Back TG, Moussa Z (2003) Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl omega-hydroxyalkyl selenides. J Am Chem Soc 125(44):13455–13460. doi:10.1021/ja0357588

    Article  CAS  Google Scholar 

  56. Sarma BK, Mugesh G (2005) Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions. J Am Chem Soc 127(32):11477–11485. doi:10.1021/ja052794t

    Article  CAS  Google Scholar 

  57. Davies R, Bartholomeusz DA, Andrade J (2003) Personal sensors for the diagnosis and management of metabolic disorders. IEEE Eng Med Biol Mag 22(1):32–42

    Article  Google Scholar 

  58. Balkrishna SJ, Kumar S, Azad GK, Bhakuni BS, Panini P, Ahalawat N, Tomar RS, Detty MR, Kumar S (2014) An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org Biomol Chem 12(8):1215–1219. doi:10.1039/c4ob00027g

    Article  CAS  Google Scholar 

  59. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29(1):12–17

    Article  CAS  Google Scholar 

  60. Kono H, Arteel GE, Rusyn I, Sies H, Thurman RG (2001) Ebselen prevents early alcohol-induced liver injury in rats. Free Radic Biol Med 30(4):403–411

    Article  CAS  Google Scholar 

  61. Moussaoui S, Obinu MC, Daniel N, Reibaud M, Blanchard V, Imperato A (2000) The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson’s disease. Exp Neurol 166(2):235–245. doi:10.1006/exnr.2000.7516

    Article  CAS  Google Scholar 

  62. Chew P, Yuen DY, Stefanovic N, Pete J, Coughlan MT, Jandeleit-Dahm KA, Thomas MC, Rosenfeldt F, Cooper ME, de Haan JB (2010) Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes 59(12):3198–3207. doi:10.2337/db10-0195

    Article  CAS  Google Scholar 

  63. Chander PN, Gealekman O, Brodsky SV, Elitok S, Tojo A, Crabtree M, Gross SS, Goligorsky MS (2004) Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J Am Soc Nephrol 15(9):2391–2403. doi:10.1097/01.ASN.0000135971.88164.2C

    Article  CAS  Google Scholar 

  64. He M, Xing S, Yang B, Zhao L, Hua H, Liang Z, Zhou W, Zeng J, Pei Z (2007) Ebselen attenuates oxidative DNA damage and enhances its repair activity in the thalamus after focal cortical infarction in hypertensive rats. Brain Res 1181:83–92. doi:10.1016/j.brainres.2007.08.072

    Article  CAS  Google Scholar 

  65. Yamagata K, Ichinose S, Miyashita A, Tagami M (2008) Protective effects of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience 153(2):428–435. doi:10.1016/j.neuroscience.2008.02.028

    Article  CAS  Google Scholar 

  66. Moutet M, d’Alessio P, Malette P, Devaux V, Chaudiere J (1998) Glutathione peroxidase mimics prevent TNFalpha- and neutrophil-induced endothelial alterations. Free Radic Biol Med 25(3):270–281

    Article  CAS  Google Scholar 

  67. Erdelmeier I, Chaudiere J, Moutet M, Yadan J-C (1999) Compounds having a benzisoselen-azoline and -azine structure, method for preparing same and therapeutic uses thereof. United States Patent 5,968,920

    Google Scholar 

  68. Lange RW (2000) BXT-51072 OXIS international. Curr Opin Investig Drugs 2(4):338–341

    CAS  Google Scholar 

  69. Oxis International, Inc. (2005) Form 10-QSB quarterly report pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 for the quarterly period ended March 31, 2005

    Google Scholar 

  70. Short MD, Xie Y, Li L, Cassidy PB, Roberts JC (2003) Characteristics of selenazolidine prodrugs of selenocysteine: toxicity and glutathione peroxidase induction in V79 cells. J Med Chem 46(15):3308–3313. doi:10.1021/jm020496q

    Article  CAS  Google Scholar 

  71. Li L, Xie Y, El-Sayed WM, Szakacs JG, Roberts JC (2004) Characteristics of selenazolidine prodrugs of selenocysteine: toxicity, selenium levels, and glutathione peroxidase induction in A/J mice. Life Sci 75(4):447–459. doi:10.1016/j.lfs.2003.12.018

    Article  CAS  Google Scholar 

  72. Franklin MR, Moos PJ, El-Sayed WM, Aboul-Fadl T, Roberts JC (2007) Pre- and post-initiation chemoprevention activity of 2-alkyl/aryl selenazolidine-4(R)-carboxylic acids against tobacco-derived nitrosamine (NNK)-induced lung tumors in the A/J mouse. Chem Biol Interact 168(3):211–220. doi:10.1016/j.cbi.2007.04.012

    Article  CAS  Google Scholar 

  73. Poerschke RL, Moos PJ (2011) Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction. Biochem Pharmacol 81(2):211–221. doi:10.1016/j.bcp.2010.09.024

    Article  CAS  Google Scholar 

  74. Spallholz JE, Reid TW (1998) Method for the preparation of free radical pharmaceuticals using selenium conjugates. United States Patent 5,783,454

    Google Scholar 

  75. Spallholz JE, Reid TW (2000) Method for the preparation of free radical pharmaceuticals diagnostics and devices using selenium conjugates United States Patent 6,077,714

    Google Scholar 

  76. Spallholz JE, Reid TW (1999) Selenium carrier conjugates. United States Patent 5,994,151

    Google Scholar 

  77. Tran PL, Hammond AA, Mosley T, Cortez J, Gray T, Colmer-Hamood JA, Shashtri M, Spallholz JE, Hamood AN, Reid TW (2009) Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl Environ Microbiol 75(11):3586–3592. doi:10.1128/AEM. 02683-08

    Article  CAS  Google Scholar 

  78. Tran P, Hamood A, Mosley T, Gray T, Jarvis C, Webster D, Amaechi B, Enos T, Reid T (2013) Organo-selenium-containing dental sealant inhibits bacterial biofilm. J Dent Res 92(5):461–466. doi:10.1177/0022034513482141

    Article  CAS  Google Scholar 

  79. Kunstelj M, Menart V, Ambrozic G, Gaberc-Porekar V (2013) Selenium containing modifying agents and conjugates. United States Patent 8,389,695

    Google Scholar 

  80. Miki K, Xu M, Tan Y (2005) Selenium-containing pro-drugs for cancer therapy. United States Patent 6,916,793

    Google Scholar 

  81. Powis G, Oblong JE, Gasdaska PY, Berggren M, Hill SR, Kirkpatrick DL (1994) The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res 6(10–11):539–544

    CAS  Google Scholar 

  82. Biguet C, Wakasugi N, Mishal Z, Holmgren A, Chouaib S, Tursz T, Wakasugi H (1994) Thioredoxin increases the proliferation of human B-cell lines through a protein kinase C-dependent mechanism. J Biol Chem 269(46):28865–28870

    CAS  Google Scholar 

  83. Fernandes AP, Capitanio A, Selenius M, Brodin O, Rundlof AK, Bjornstedt M (2009) Expression profiles of thioredoxin family proteins in human lung cancer tissue: correlation with proliferation and differentiation. Histopathology 55(3):313–320. doi:10.1111/j.1365-2559.2009.03381.x

    Article  Google Scholar 

  84. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120. doi:10.1016/j.tibs.2013.12.007

    Article  CAS  Google Scholar 

  85. Yoo MH, Xu XM, Carlson BA, Gladyshev VN, Hatfield DL (2006) Thioredoxin reductase 1 deficiency reverses tumor phenotype and tumorigenicity of lung carcinoma cells. J Biol Chem 281(19):13005–13008. doi:10.1074/jbc.C600012200

    Article  CAS  Google Scholar 

  86. Engman L, Cotgreave I, Angulo M, Taylor CW, Paine-Murrieta GD, Powis G (1997) Diaryl chalcogenides as selective inhibitors of thioredoxin reductase and potential antitumor agents. Anticancer Res 17(6D):4599–4605

    CAS  Google Scholar 

  87. Engman L, Kandra T, Gallegos A, Williams R, Powis G (2000) Water-soluble organotellurium compounds inhibit thioredoxin reductase and the growth of human cancer cells. Anticancer Drug Des 15(5):323–330

    CAS  Google Scholar 

  88. Zhao R, Masayasu H, Holmgren A (2002) Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proc Natl Acad Sci U S A 99(13):8579–8584. doi:10.1073/pnas.122061399

    Article  CAS  Google Scholar 

  89. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. doi:10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  Google Scholar 

  90. Casagrande S, Bonetto V, Fratelli M, Gianazza E, Eberini I, Massignan T, Salmona M, Chang G, Holmgren A, Ghezzi P (2002) Glutathionylation of human thioredoxin: a possible crosstalk between the glutathione and thioredoxin systems. Proc Natl Acad Sci U S A 99(15):9745–9749. doi:10.1073/pnas.152168599

    Article  CAS  Google Scholar 

  91. Wang L, Yang Z, Fu J, Yin H, Xiong K, Tan Q, Jin H, Li J, Wang T, Tang W, Yin J, Cai G, Liu M, Kehr S, Becker K, Zeng H (2012) Ethaselen: a potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent. Free Radic Biol Med 52(5):898–908. doi:10.1016/j.freeradbiomed.2011.11.034

    Article  CAS  Google Scholar 

  92. Li DD, He J, Zeng HH (2012) Biological evaluation of novel selenazole-based compounds as potential thioredoxin reductase inhibitors. Appl Organomet Chem 26:619–624. doi:10.1002/aoc.2910

    Article  CAS  Google Scholar 

  93. Baker AF, Adab KN, Raghunand N, Chow HH, Stratton SP, Squire SW, Boice M, Pestano LA, Kirkpatrick DL, Dragovich T (2013) A phase IB trial of 24-hour intravenous PX-12, a thioredoxin-1 inhibitor, in patients with advanced gastrointestinal cancers. Invest New Drugs 31(3):631–641. doi:10.1007/s10637-012-9846-2

    Article  CAS  Google Scholar 

  94. Traynor AM, Thomas JP, Ramanathan RK, Mody TD, Alberti D, Wilding G, Bailey HH (2011) Phase I trial of motexafin gadolinium and doxorubicin in the treatment of advanced malignancies. Invest New Drugs 29(2):316–322. doi:10.1007/s10637-009-9364-z

    Article  CAS  Google Scholar 

  95. Edelman MJ, Otterson G, Leach J, Malpass T, Salgia R, Jones D, Mody TD, Govindan R (2011) Multicenter phase II trial of Motexafin gadolinium and pemetrexed for second-line treatment in patients with non-small cell lung cancer. J Thorac Oncol 6(4):786–789. doi:10.1097/JTO.0b013e31820a443f

    Article  Google Scholar 

  96. Mahmood DF, Abderrazak A, El Hadri K, Simmet T, Rouis M (2013) The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 19(11):1266–1303. doi:10.1089/ars.2012.4757

    Article  CAS  Google Scholar 

  97. Combs GF Jr, Gray WP (1998) Chemopreventive agents: selenium. Pharmacol Ther 79(3):179–192

    Article  CAS  Google Scholar 

  98. Combs GF Jr (1999) Chemopreventive mechanisms of selenium. Med Klin 94(Suppl 3):18–24

    Article  Google Scholar 

  99. Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20(9):1657–1666

    Article  CAS  Google Scholar 

  100. Nogueira CW, Rocha JB (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85(11):1313–1359. doi:10.1007/s00204-011-0720-3

    Article  CAS  Google Scholar 

  101. Weekley CM, Harris HH (2013) Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 42(23):8870–8894. doi:10.1039/c3cs60272a

    Article  CAS  Google Scholar 

  102. Lanfear J, Fleming J, Wu L, Webster G, Harrison PR (1994) The selenium metabolite selenodiglutathione induces p53 and apoptosis: relevance to the chemopreventive effects of selenium? Carcinogenesis 15(7):1387–1392

    Article  CAS  Google Scholar 

  103. Cho DY, Jung U, Chung AS (1999) Induction of apoptosis by selenite and selenodiglutathione in HL-60 cells: correlation with cytotoxicity. Biochem Mol Biol Int 47(5):781–793

    CAS  Google Scholar 

  104. Ip C, Ganther HE (1992) Comparison of selenium and sulfur analogs in cancer prevention. Carcinogenesis 13(7):1167–1170

    Article  CAS  Google Scholar 

  105. Spyrou G, Bjornstedt M, Kumar S, Holmgren A (1995) AP-1 DNA-binding activity is inhibited by selenite and selenodiglutathione. FEBS Lett 368(1):59–63

    Article  CAS  Google Scholar 

  106. Ren X, Bjornstedt M, Shen B, Ericson ML, Holmgren A (1993) Mutagenesis of structural half-cystine residues in human thioredoxin and effects on the regulation of activity by selenodiglutathione. Biochemistry 32(37):9701–9708

    Article  CAS  Google Scholar 

  107. Bjornstedt M, Kumar S, Holmgren A (1995) Selenite and selenodiglutathione: reactions with thioredoxin systems. Methods Enzymol 252:209–219

    Article  CAS  Google Scholar 

  108. Nilsonne G, Olm E, Szulkin A, Mundt F, Stein A, Kocic B, Rundlof AK, Fernandes AP, Bjornstedt M, Dobra K (2009) Phenotype-dependent apoptosis signalling in mesothelioma cells after selenite exposure. J Exp Clin Cancer Res 28:92. doi:10.1186/1756-9966-28-92

    Article  CAS  Google Scholar 

  109. Asfour IA, El-Tehewi MM, Ahmed MH, Abdel-Sattar MA, Moustafa NN, Hegab HM, Fathey OM (2009) High-dose sodium selenite can induce apoptosis of lymphoma cells in adult patients with non-Hodgkin’s lymphoma. Biol Trace Elem Res 127(3):200–210. doi:10.1007/s12011-008-8240-6

    Article  CAS  Google Scholar 

  110. Wang L, Bonorden MJ, Li GX, Lee HJ, Hu H, Zhang Y, Liao JD, Cleary MP, Lu J (2009) Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev Res 2(5):484–495. doi:10.1158/1940-6207.CAPR-08-0173

    Article  CAS  Google Scholar 

  111. Yan L, DeMars LC (2012) Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int J Cancer 131(6):1260–1266. doi:10.1002/ijc.27355

    Article  CAS  Google Scholar 

  112. Hu H, Jiang C, Ip C, Rustum YM, Lu J (2005) Methylseleninic acid potentiates apoptosis induced by chemotherapeutic drugs in androgen-independent prostate cancer cells. Clin Cancer Res 11(6):2379–2388. doi:10.1158/1078-0432.CCR-04-2084

    Article  CAS  Google Scholar 

  113. Li Z, Carrier L, Belame A, Thiyagarajah A, Salvo VA, Burow ME, Rowan BG (2009) Combination of methylselenocysteine with tamoxifen inhibits MCF-7 breast cancer xenografts in nude mice through elevated apoptosis and reduced angiogenesis. Breast Cancer Res Treat 118(1):33–43. doi:10.1007/s10549-008-0216-x

    Article  CAS  Google Scholar 

  114. Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60(11):2882–2886

    CAS  Google Scholar 

  115. Bhattacharya A (2011) Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expert Opin Drug Deliv 8(6):749–763. doi:10.1517/17425247.2011.571672

    Article  CAS  Google Scholar 

  116. Hoffman JL, McConnell KP, Carpenter DR (1970) Aminoacylation of Escherichia coli methionine tRNA by selenomethionine. Biochim Biophys Acta 199(2):531–534

    Article  CAS  Google Scholar 

  117. Redman C, Scott JA, Baines AT, Basye JL, Clark LC, Calley C, Roe D, Payne CM, Nelson MA (1998) Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett 125(1–2):103–110

    Article  CAS  Google Scholar 

  118. Burke KE, Combs GF Jr, Gross EG, Bhuyan KC, Abu-Libdeh H (1992) The effects of topical and oral L-selenomethionine on pigmentation and skin cancer induced by ultraviolet irradiation. Nutr Cancer 17(2):123–137. doi:10.1080/01635589209514180

    Article  CAS  Google Scholar 

  119. Frenkel GD, Caffrey PB (2001) A prevention strategy for circumventing drug resistance in cancer chemotherapy. Curr Pharm Des 7(16):1595–1614

    Article  CAS  Google Scholar 

  120. Caffrey PB, Frenkel GD (2000) Selenium compounds prevent the induction of drug resistance by cisplatin in human ovarian tumor xenografts in vivo. Cancer Chemother Pharmacol 46(1):74–78. doi:10.1007/s002800000127

    Article  CAS  Google Scholar 

  121. Miki K, Xu M, Gupta A, Ba Y, Tan Y, Al-Refaie W, Bouvet M, Makuuchi M, Moossa AR, Hoffman RM (2001) Methioninase cancer gene therapy with selenomethionine as suicide prodrug substrate. Cancer Res 61(18):6805–6810

    CAS  Google Scholar 

  122. Pinton S, Bruning CA, Sartori Oliveira CE, Prigol M, Nogueira CW (2013) Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of Alzheimer’s type model in rats. J Nutr Biochem 24(1):311–317. doi:10.1016/j.jnutbio.2012.06.012

    Article  CAS  Google Scholar 

  123. Pinton S, Souza AC, Sari MH, Ramalho RM, Rodrigues CM, Nogueira CW (2013) p, p′-Methoxyl-diphenyl diselenide protects against amyloid-beta induced cytotoxicity in vitro and improves memory deficits in vivo. Behav Brain Res 247:241–247. doi:10.1016/j.bbr.2013.03.034

    Article  CAS  Google Scholar 

  124. Shin KM, Shen L, Park SJ, Jeong JH, Lee KT (2009) Bis-(3-hydroxyphenyl) diselenide inhibits LPS-stimulated iNOS and COX-2 expression in RAW 264.7 macrophage cells through the NF-kappaB inactivation. J Pharm Pharmacol 61(4):479–486. doi:10.1211/jpp/61.04.0010

    CAS  Google Scholar 

  125. Zasso FB, Goncales CE, Jung EA, Araldi D, Zeni G, Rocha JB, Nogueira CW (2005) On the mechanisms involved in antinociception induced by diphenyl diselenide. Environ Toxicol Pharmacol 19(2):283–289. doi:10.1016/j.etap.2004.08.003

    Article  CAS  Google Scholar 

  126. Nogueira CW, Rocha JBT (2010) Diphenyl diselenide a Janus-faced molecule. J Braz Chem Soc 21(11):2055–2071. doi:10.1016/j.bbr.2013.03.034

    Article  CAS  Google Scholar 

  127. Iwaoka M, Kenta A (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7:2–14

    Article  CAS  Google Scholar 

  128. Reich HJ (1978) Organoselenium oxidations. Oxidation in organic chemistry part C, pp 1–130

    Google Scholar 

  129. Xiao H, Parkin KL (2006) Induction of phase II enzyme activity by various selenium compounds. Nutr Cancer 55(2):210–223. doi:10.1207/s15327914nc5502_13

    Article  CAS  Google Scholar 

  130. Steinmann D, Nauser T, Beld J, Tanner M, Gunther D, Bounds PL, Koppenol WH (2008) Kinetics of tyrosyl radical reduction by selenocysteine. Biochemistry 47(36):9602–9607. doi:10.1021/bi801029f

    Article  CAS  Google Scholar 

  131. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94(3):739–777. doi:10.1152/physrev.00039.2013

    Article  CAS  Google Scholar 

  132. Murphy MP (2014) Antioxidants as therapies: can we improve on nature? Free Radic Biol Med 66:20–23. doi:10.1016/j.freeradbiomed.2013.04.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon W. May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

May, S.W. (2015). Selenium-Based Drug Design. In: Schwarz, J. (eds) Atypical Elements in Drug Design. EGC 2015. Topics in Medicinal Chemistry, vol 17. Springer, Cham. https://doi.org/10.1007/7355_2015_86

Download citation

Publish with us

Policies and ethics