pp 1-59 | Cite as

Anti-HIV Agents: Current Status and Recent Trends

  • Athina Geronikaki
  • Phaedra Eleftheriou
  • Vladimir Poroikov
Chapter
Part of the Topics in Medicinal Chemistry book series

Abstract

Human immunodeficiency virus is responsible for acquired immunodeficiency syndrome (AIDS), an infectious disease that consists a serious concern worldwide for more than three decades. By the end of 2013 UNAIDS estimated that there were 35 million (range 33.2–37.2 million) adults and children living with HIV/AIDS worldwide. Despite the introduction of highly active antiretroviral therapy (HAART), the need for new anti-HIV agents is extremely high because the existing medicines do not provide the complete curation and exhibit serious side effects, and their application leads to the appearance of resistant strains. This chapter explores the medicinal chemistry efforts that gave rise to currently launched drugs as well as investigational anti-HIV agents. Currently used and studied molecular targets of antiretrovirals and the main classes of HIV-1 inhibitors are presented. Among the future prospects, we discuss the efforts directed to overcome the latent HIV infection, utilization of natural products as potential anti-HIV agents, recent trends on development of biologics as potential anti-HIV medicines, and application of computer-aided methods in the discovery of new anti-HIV drugs.

Keywords

Anti-HIV medicines Computer-aided drug design and discovery HAART HIV/AIDS Natural products New antiretroviral agents Pharmacological targets TAR Tat-binding drugs 

References

  1. 1.
    Zhu T, Korber BT, Nahmias AJ, Hooper E, Sharp PM, Ho DD (1998) An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391(6667):594–597ADSPubMedCrossRefGoogle Scholar
  2. 2.
    Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe JJ, Kabongo JM, Kalengayi RM, Van Marck E, Gilbert MT, Wolinsky SM (2008) Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455(7213):661–664ADSPubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Frøland SS, Jenum P, Lindboe CF, Wefring KW, Linnestad PJ, Böhmer T (1988) HIV-1 infection in Norwegian family before 1970. Lancet 1(8598):1344–1345PubMedCrossRefGoogle Scholar
  4. 4.
    Worobey M, Telfer P, Souquière S, Hunter M, Coleman CA, Metzger MJ, Reed P, Makuwa M, Hearn G, Honarvar S, Roques P, Apetrei C, Kazanji M, Marx PA (2010) Island biogeography reveals the deep history of SIV. Science 329(5998):1487ADSPubMedCrossRefGoogle Scholar
  5. 5.
    Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, Marx PA, Hahn BH, Sharp PM (2003) Hybrid origin of SIV in chimpanzees. Science 300(5626):1713PubMedCrossRefGoogle Scholar
  6. 6.
    Gao G, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes. Nature 397:436–444ADSPubMedCrossRefGoogle Scholar
  7. 7.
    Lemey P, Pybus OG, Wang B, Saksena NK, Salemi M, Vandamme AM (2003) Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci 100:6588–6592ADSPubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Global report of the Joint United Nations Program for AIDS (UNAIDS) (2013) http://www.unaids.org/sites/default/files/media_asset/UNAIDS_Global_Report_2013_en_1.pdf
  9. 9.
    De Clercq E (2013) The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv Pharmacol 67:317–358PubMedCrossRefGoogle Scholar
  10. 10.
    Flexner C, Saag M (2013) The antiretroviral drug pipeline: prospects and implications for future treatment research. Curr Opin HIV AIDS 8(6):572–578PubMedCrossRefGoogle Scholar
  11. 11.
    McGowan I (2014) An overview of antiretroviral pre-exposure prophylaxis of HIV infection. Am J Reprod Immunol 71(6):624–630PubMedCrossRefGoogle Scholar
  12. 12.
    Assaes CP, Sáez-Cirión A (2014) HIV cure research: advances and prospects. Virology 454–455:340–352Google Scholar
  13. 13.
    De Clercq E (2013) A cutting-edge view on the current state of antiviral drug development. Med Res Rev 33(6):1249–1277PubMedGoogle Scholar
  14. 14.
    Maga G, Veljkovic N, Crespan E, Spadari S, Prljic J, Perovic V, Glisic S, Veljkovic V (2013) New in silico and conventional in vitro approaches to advance HIV drug discovery and design. Expert Opin Drug Discovery 8(1):83–92CrossRefGoogle Scholar
  15. 15.
    Métifiot M, Marchand C, Pommier Y (2013) HIV integrase inhibitors: 20-year landmark and challenges. Adv Pharmacol 67:75–105PubMedCrossRefGoogle Scholar
  16. 16.
    Yu F, Lu L, Du L, Zhu X, Debnath AK, Jiang S (2013) Approaches for identification of HIV-1 entry inhibitors targeting gp41 pocket. Viruses 5(1):127–149PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Lagunin AA, Filimonov DA, Gloriozova TA, Tarasova OA, Zakharov AV, Guasch L, Nicklaus MC, Poroikov VV (2013) Virtual screening for potential substances for the prophylaxis of HIV infection in libraries of commercially available organic compounds. Pharm Chem J 47(7):343–360CrossRefGoogle Scholar
  18. 18.
    Lange JM, Ananworanich J (2014) The discovery and development of antiretroviral agents. Antivir Ther 19(Suppl 3):5–14PubMedCrossRefGoogle Scholar
  19. 19.
    Veselovsky AV, Zharkova MS, Poroikov VV, Nicklaus MC (2014) Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy. SAR QSAR Environ Res 25(6):457–471PubMedCrossRefGoogle Scholar
  20. 20.
    Di Santo R (2014) Inhibiting the HIV integration process: past, present, and the future. J Med Chem 57(3):539–566. Erratum in: J Med Chem. 2014 Jul 24; 57(14):6273Google Scholar
  21. 21.
    Tintori C, Brai A, Fallacara AL, Fazi R, Schenone S, Botta M (2014) Protein-protein interactions and human cellular cofactors as new targets for HIV therapy. Curr Opin Pharmacol 18:1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Han YS, Xiao WL, Xu H, Kramer VG, Quan Y, Mesplède T, Oliveira M, Colby-Germinario SP, Sun HD, Wainberg MA (2015) Identification of a dibenzocyclooctadiene lignan as a HIV-1 non-nucleoside reverse transcriptase inhibitor. Antivir Chem Chemother 24(1):28–38PubMedCrossRefGoogle Scholar
  23. 23.
    Patel RV, Park SW (2015) Pyrroloaryls and pyrroloheteroaryls: inhibitors of the HIV fusion/attachment, reverse transcriptase and integrase. Bioorg Med Chem pii: S0968-0896(15)00510-6. doi: 10.1016/j.bmc.2015.06.016. [Epub ahead of print] Review. PubMed
  24. 24.
    Chiu IM, Yaniv A, Dahlberg JE, Gazit A, Skuntz SF, Tronick SR, Aaronson SA (1985) Nucleotide sequence evidence for relationship of AIDS retrovirus to lentiviruses. Nature 317(6035):366–3688ADSPubMedCrossRefGoogle Scholar
  25. 25.
    Wain-Hobson S, Alizon M, Montagnier L (1985) Relationship of AIDS to other retroviruses. Nature 313(6005):743ADSPubMedCrossRefGoogle Scholar
  26. 26.
    Vogt PK (1997) Historical introduction to the general properties of retroviruses. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–27Google Scholar
  27. 27.
    Weiss RA (1993) Cellular receptors and viral glycoproteins involved in retrovirus entry. In: Levy JA (ed) The retroviridae, vol 2. Plenum, New York, pp 1–108CrossRefGoogle Scholar
  28. 28.
    Miceli MC, Parnes JR (1993) Role of CD4 and CD8 in T cell activation and differentiation. Adv Immunol 53:59–122PubMedCrossRefGoogle Scholar
  29. 29.
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85(7):1135–1148PubMedCrossRefGoogle Scholar
  30. 30.
    Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381(6584):661–6666ADSPubMedCrossRefGoogle Scholar
  31. 31.
    Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85(7):1149–1158PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffman TL, Stephens EB, Narayan O, Doms RW (1998) HIV type I envelope determinants for use of the CCR2b, CCR3, STRL33, and APJ coreceptors. Proc Natl Acad Sci U S A 95(19):11360–11365ADSPubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R (2012) Pharmacological modulation of chemokine receptor function. Br J Pharmacol 165(6):1617–1643PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zhang L, He T, Huang Y, Chen Z, Guo Y, Wu S, Kunstman KJ, Brown RC, Phair JP, Neumann AU, Ho DD, Wolinsky SM (1998) Chemokine co-receptor usage by diverse primary isolates of human immunodeficiency virus type 1. J Virol 72(11):9307–9312PubMedPubMedCentralGoogle Scholar
  35. 35.
    Eckert DM, Kim PS (2001) Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70:777–810PubMedCrossRefGoogle Scholar
  36. 36.
    Chun TW, Carruth L, Finzi D, Shen X, Di Giuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188ADSPubMedCrossRefGoogle Scholar
  37. 37.
    Whittle H, Morris J, Todd J, Corrah T, Sabally S, Bangali J, Ngom PT, Rolfe M, Wilkins A (1994) HIV-2-infected patients survive longer than HIV-1-infected patients. AIDS 8:1617–1620PubMedCrossRefGoogle Scholar
  38. 38.
    Divita G, Rittinger K, Geourjon C, Deleage G, Goody RS (1995) Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. J Mol Biol 245:508–521PubMedCrossRefGoogle Scholar
  39. 39.
    Barat C, Lullien V, Schatz O, Keith G, Nugeyre MT, Gruninger-Leitch F, Barre-Sinoussi F, Grice L, Darlix JL (1989) HIV-1 reverse transcriptase specifically interacts with the anticodon domain of its cognate primer tRNA. EMBO J 8(32):3279–3285PubMedPubMedCentralGoogle Scholar
  40. 40.
    Sarih-Cottin L, Bordier B, Musier-Forsyth K, Andreola M-L, Barr PJ, Litvak S (1992) Preferential interaction of HIV RT with two regions of primer tRNALys3 as evidenced by footprinting studies and inhibition with synthetic oligoribonudeotides. J Mol Biol 226:1–6PubMedCrossRefGoogle Scholar
  41. 41.
    Litvak LE, Andderola M-L, Nevinsky GA, Sarih-Cofttin L, Litvax S (1994) The reverse transcriptase of HIV-1: from enzyrnology to therapeutic intervention Laboratoire de Replication et Expression des Genomes eucaryotes et Retroviraux, institut Biochimie Cellulaire, CNRS5 33077 Bordeaux cedex, France, vol 8. pp 497–502.8Google Scholar
  42. 42.
    Tu X, Das K, Han Q, Bauman JD, Clark AD, Hou X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH, Sarafianos SG, Arnold E (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17:1202PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH (2014) MMDB and VAST+: tracking structural similarities between macromolecular complexes. Nucleic Acids Res 42(Database issue):D297–D303PubMedCrossRefGoogle Scholar
  44. 44.
    Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 RT complexed with an inhibitor. Science 256:1783–1790ADSPubMedCrossRefGoogle Scholar
  45. 45.
    Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 28:1669–1675ADSCrossRefGoogle Scholar
  46. 46.
    Arts EJ, Wainberg MA (1996) Mechanisms of nucleoside analog antiviral activity and resistance during human immunodeficiency virus reverse transcription. Antimicrob Agents Chemother 40:527–540PubMedPubMedCentralGoogle Scholar
  47. 47.
    Squires KE (2001) An introduction to nucleoside and nucleotide analogues. Antivir Ther 6(Suppl 3):1–14MathSciNetPubMedGoogle Scholar
  48. 48.
    Prasad VR, Goff SP (1990) Structure-function studies of HIV reverse transcriptase. Ann N Y Acad Sci 616:11–21ADSPubMedCrossRefGoogle Scholar
  49. 49.
    St Clair MH, Richards CA, Spector T et al (1987) 3′-Azido-3′-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother 31:1972–1977PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lewis W, Gonzalez B, Chomyn A, Papoian T (1992) Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J Clin Invest 89:1354–1360PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1:417–422PubMedCrossRefGoogle Scholar
  52. 52.
    Schambelan M, Benson CA, Carr A, Currier JS, Dube P, Gerber JG, Grinspoon SK, Saag MS (2002) Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J Acquir Immune Defic Syndr 31:257–275PubMedCrossRefGoogle Scholar
  53. 53.
    Falco V, Rodriguez D, Ribera E, Martinez E, Miro JM, Domingo P, Diazaraque R, Jose RA, Gonzalez-Garcia JJ, Montero F, Sanchezl L, Pathissa A (2002) Severe nucleoside-associated lactic acidosis in human immunodeficiency virus-infected patients: report of 12 cases and review of the literature. Clin Infect Dis 34:838–846PubMedCrossRefGoogle Scholar
  54. 54.
    Miller KD, Cameron M, Wood LV, Dalakas MC, Kovacs JA (2000) Lactic acidosis and hepatic steatosis associated with use of stavudine: report of four cases. Ann Intern Med 133:192–196PubMedCrossRefGoogle Scholar
  55. 55.
    Bissuel F, Bruneel F, Habersetzer F et al (1994) Fulminant hepatitis with severe lactate acidosis in HIV-infected patients on didanosine therapy. J Intern Med 235:367–371PubMedCrossRefGoogle Scholar
  56. 56.
    Chattha G, Arieff AI, Cummings C, Tierney LM Jr (1993) Lactic acidosis complicating the acquired immunodeficiency syndrome. Ann Intern Med 118:37–39PubMedCrossRefGoogle Scholar
  57. 57.
    Smerdon SJ, Jager J, Wang J, Kohlstaedt LA, Chirino AJ, Friedman JM, Rice PA, Steitz TA (1994) Structure of the binding site for nonnucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 91(9):3911–3915ADSPubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pitta E, Crespan E, Geronikaki A, Maga G, Samuele A (2010) Novel thiazolidinone derivatives with an uncommon mechanism of inhibition towards HIV-1 reverse transcriptase. Lett Drug Des Discovery 7(4):228–234CrossRefGoogle Scholar
  59. 59.
    Das K, Lewi PJ, Hughes SH, Arnold E (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88:209–231PubMedCrossRefGoogle Scholar
  60. 60.
    Hsiou Y, Das K, Ding J, Clark AD Jr, Kleim JP, Rosner M, Winkler I, Riess G, Hughes SH, Arnold E (1998) Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. J Mol Biol 284(2):313–323PubMedCrossRefGoogle Scholar
  61. 61.
    Das K, Clark AD Jr, Lewi PJ, Heeres J, De Jonge MR, Koymans LM, Vinkers HM, Daeyaert F, Ludovici DW, Kukla MJ, De Corte B, Kavash RW, Ho CY, Ye H, Lichtenstein MA, Andries K, Pauwels R, De Bethune MP, Boyer PL, Clark P, Hughes SH, Janssen PA, Arnold E (2004) Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related nonnucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug resistant HIV-1 variants. J Med Chem 47(10):2550–2560PubMedCrossRefGoogle Scholar
  62. 62.
    Janssen PA, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J, Koymans L, Vinkers M, Guillemont J, Pasquier E, Kukla M, Ludovici D, Andries K, de Bethune MP, Pauwels R, Das K, Clark AD Jr, Frenkel YV, Hughes SH, Medaer B, De Knaep F, Bohets H, De Clerck F, Lampo A, Williams P, Stoffels P (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]-amino]benzonitrile (R278474, rilpivirine). J Med Chem 48(6):1901–1909PubMedCrossRefGoogle Scholar
  63. 63.
    Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Struct Fold Des 8:1089CrossRefGoogle Scholar
  64. 64.
    Ren J, Nichols CE, Chamberlain PP, Weaver KL, Short SA, Stammers DK (2004) Crystal structures of HIV-1 reverse transcriptases mutated at codons 100, 106 and 108 and mechanisms of resistance to non-nucleoside inhibitors. J Mol Biol 336:569–579PubMedCrossRefGoogle Scholar
  65. 65.
    Monforte AM, Logoteta P, Ferro S, De Luca L, Iraci N, Maga G, Clercq ED, Pannecouque C, Chimirri A (2009) Design, synthesis, and structure-activity relationships of 1,3-dihydrobenzimidazol-2-one analogues as anti-HIV agents. Bioorg Med Chem 17(16):5962–5967PubMedCrossRefGoogle Scholar
  66. 66.
    Pauwels R, Andries K, Debyser Z, Van Daele P, Schols D, Stoffels P, De Vreese K, Woestenborghs R, Vandamme AM, Janssen CG (1993) Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase. Proc Natl Acad Sci U S A 90(5):1711–1715ADSPubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Balzarini J, Orzeszko-Krzesińska B, Maurin JK, Orzeszko A (2009) Synthesis and anti-HIV studies of 2-and 3-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem 44:303–311PubMedCrossRefGoogle Scholar
  68. 68.
    Pauwels R, Andries K, Desmyter J, Schols D, Kukla MJ, Breslin HJ, Raeymaeckers A, Van Gelder J, Woestenborghs R, Heykants J, Schellekens K, Janssen M, De Clerq E, Janssen PAJ (1990) Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 343(6257):470–474ADSPubMedCrossRefGoogle Scholar
  69. 69.
    Althaus IW, Chou JJ, Gonzales AJ, Deibel MR, Chou KC, Kezdy FJ, Romero DL, Thomas RC, Aristoff PA, Tarpley WG et al (1994) Kinetic studies with the non-nucleoside human immunodeficiency virus type-1 reverse transcriptase inhibitor U-90152E. Biochem Pharmacol 47(11):2017–2028PubMedCrossRefGoogle Scholar
  70. 70.
    Souza TM, Rodrigues DQ, Ferreira VF, Marques IP, da Costa Santos F, Cunha AC, de Souza MC, de Palmer Paixao Frugulhetti IC, Bou-Habib DC, Fontes CF (2009) Characterization of HIV-1 enzyme reverse transcriptase inhibition by the compound 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3- carboxylic acid through kinetic and in silico studies. Curr HIV Res 7(3):327–335PubMedCrossRefGoogle Scholar
  71. 71.
    Pitta E, Geronikaki A, Surmava S, Eleftheriou P, Mehta V, Van der Eicken E (2013) Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the noncompetitive mechanism. J Enzyme Inhib Med Chem 28(1):113–122PubMedCrossRefGoogle Scholar
  72. 72.
    Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, Heeres J, Janssen P, De Corte B, Vingerhoets J, Pauwels R, de Bethune MP (2004) TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 48(12):4680–4686PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhan P, Liu X, Li Z, Fang Z, Li Z, Wang D, Pannecouque C, De Clercq E (2008) Novel 1,2,3-thiadiazole derivatives as HIV-1 NNRTIs with improved potency: synthesis and preliminary SAR studies. Acta Pharm 57:379–393Google Scholar
  74. 74.
    Rao A, Balzarini J, Carbone A, Chimirri A, De Clercq E, Monforte AM, Monforte P, Pannecouque C, Zappala M (2004) 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral Res 63:79–84PubMedCrossRefGoogle Scholar
  75. 75.
    Debyser Z, Pauwels R, Andries K, Desmyter J, Kukla M, Janssen PA, De Clercq E (1991) An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,1-jk][1,4]benzodiazepin-2 (1H)-one and -thione derivatives. Proc Natl Acad Sci U S A 88(4):1451–1455ADSPubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Goldman ME, Nunberg JH, O’Brien JA, Quintero JC, Schleif WA, Freund KF, Gaul SL, Saari WS, Wai JS, Hoffman JM et al (1991) Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc Natl Acad Sci U S A 88(15):6863–6867ADSPubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Miyasaka T, Tanaka H, Baba M, Hayakawa H, Walker RT, Balzarini J, De Clercq E (1989) A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine. J Med Chem 32(12):2507–2509PubMedCrossRefGoogle Scholar
  78. 78.
    Baba M, Tanaka H, De Clercq E, Pauwels R, Balzarini J, Schols D, Nakashima H, Perno CF, Walker RT, Miyasaka T (1989) Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem Biophys Res Commun 165(3):1375–1381PubMedCrossRefGoogle Scholar
  79. 79.
    Rawal RK, Tripathi R, Kulkarni S, Paranjape R, Katti SB, Pannecouque C, De Clercq E (2008) 2-(2,6-Dihalo-phenyl)-3-heteroaryl-2-ylmethyl-1, 3-thiazolidin-4-ones: anti-HIV agents. Chem Biol Drug Des 72(2):147–154PubMedCrossRefGoogle Scholar
  80. 80.
    Brzozowski Z, Saczewski F, Neamati N (2006) Synthesis, antitumor and anti-HIV activities of benzodithiazine-dioxides. Bioorg Med Chem 14:2985–2993PubMedCrossRefGoogle Scholar
  81. 81.
    Novikov MS, Valuev-Elliston VT, Babkov DA, Paramonova MP, Ivanov AV, Gavryushov SA, Khandazhinskaya AL, Kochetkov SN, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Seley-Radtke KL (2013) N1, N3-disubstituted uracils as nonnucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem 21:1150–1158PubMedCrossRefGoogle Scholar
  82. 82.
    Wang Y-P, Chen F-E, De Clercq E, Balzarini J, Pannecouque C (2009) Synthesis and in vitro anti-HIV evaluation of a new series of 6-arylmethyl-substituted S-DABOs as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 41:1016–1023CrossRefGoogle Scholar
  83. 83.
    La Regina G, Coluccia A, Piscitelli F, Bergamini A, Sinistro A, Cavazza A, Maga J, Samuele A, Zanoli S, Novellino E, Artico M, Silvestri R (2007) Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity. J Med Chem 50:5034–5038PubMedCrossRefGoogle Scholar
  84. 84.
    Balzarini J, Orzeszko B, Maurin JK, Orzeszko A (2007) Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur J Med Chem 42:993–1003PubMedCrossRefGoogle Scholar
  85. 85.
    Akkouh O, Tzi Bun N, Singh SS, Yin C, Dan X, Chan YC, Pan W, Cheung RCF (2015) Lectins with anti-HIV activity: a review. Molecules 20:648–668PubMedCrossRefGoogle Scholar
  86. 86.
    Famiglini V, Coluccia A, Brancale A, Pelliccia S, La Regina G, Silvestri R (2013) Arylsulfone-based HIV-1 non-nucleoside reverse transcriptase inhibitors. Future Med Chem 5(18):2141–2156PubMedCrossRefGoogle Scholar
  87. 87.
    De Clercq E (2013) Dancing with chemical formulae of antivirals: a personal account. Biochem Pharmacol 86(6):711–725PubMedCrossRefGoogle Scholar
  88. 88.
    Veljkovic N, Glisic S, Prljic J, Perovic V, Veljkovic V (2013) Simple and general criterion for “in silico” screening of candidate HIV drugs. Curr Pharm Biotechnol 14(5):561–569PubMedCrossRefGoogle Scholar
  89. 89.
    Li D, Zhan P, Liu H, Pannecouque C, Balzarini J, De Clercq E, Liu X (2013) Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs. Bioorg Med Chem 21:2128–2134PubMedCrossRefGoogle Scholar
  90. 90.
    La Regina G, Coluccia A, Brancale A, Piscitelli F, Gatti V, Maga G, Samuele A, Pannecouque C, Schols D, Balzarini J, Novellino E, Silvestri R (2011) Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide. J Med Chem 54:1587–1598PubMedCrossRefGoogle Scholar
  91. 91.
    La Regina G, Coluccia A, Brancale A, Piscitelli F, Famiglini V, Cosconati S, Maga G, Samuele A, Gonzalez E, Clotet B, Schols D, Esté JA, Novellino E, Silvestri R (2012) New nitrogen containing substituents at the indole-2-carboxamide yield high potent and broad spectrum indolylarylsulfone HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 55:6634–6638PubMedCrossRefGoogle Scholar
  92. 92.
    Rotili D, Samuele A, Tarantino D, Ragno R, Musmuca I, Ballante F, Botta G, Morera L, Pierini M, Cirilli R, Nawrozkij MB, Gonzalez E, Clotet B, Artico M, Esté JA, Maga G, Mai A (2012) 2-(Alkyl/aryl)amino-6-benzylpyrimidin-4(3H)-ones as inhibitors of wild-type and mutant HIV-1: enantioselectivity studies. J Med Chem 55:3558–3562PubMedCrossRefGoogle Scholar
  93. 93.
    Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E (2008) Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur J Med Chem 43:2800–2806PubMedCrossRefGoogle Scholar
  94. 94.
    Ravichandran S, Veerasamy R, Raman S, Krishnan PN, Agrawal RK (2008) An overview on HIV-1 reverse transcriptase inhibitors. Dig J Nanomater Biostruct 3(4):171–187Google Scholar
  95. 95.
    Paolucci S, Baldanti F, Tinelli M et al (2002) Q145M, a novel HIV-1 reverse transcriptase mutation conferring resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Antivir Ther 7(2):S35Google Scholar
  96. 96.
    Johnson VA, Brun-Vezinet F, Clotet B, Conway B, D’Acquila RT, Demeter LM, Kuritzkes DR, Pillay D, Shapiro JM, Telenta A, Richman DD (2004) Update of the drug resistance mutations in HIV-1: 2004. Top HIV Med 12(4):119–124PubMedGoogle Scholar
  97. 97.
    Mbuagbaw LC, Irlam JH, Spaulding A, Rutherford GW, Siegfried N (2010) Efavirenz or nevirapine in three-drug combination therapy with two nucleoside-reverse transcriptase inhibitors for initial treatment of HIV infection in antiretroviral-naive individuals. Cochrane Database Syst Rev 8(12):CD004246Google Scholar
  98. 98.
    Neukam K, Mira JA, Ruiz-Morales J, Rivero A, Collado A, Torres-Cornejo A, Merino D, de Los Santos-Gil I, Macias J, Gonzalez-Serrano M, Camacho A, Parra-Garcia G, Pineda JA, On behalf of the SEGURIDAD HEPATICA Study Team of the Grupo HEPAVIR de la Sociedad Andaluza de Enfermedades Infecciosas (SAEI) (2011) Liver toxicity associated with antiretroviral therapy including efavirenz or ritonavir-boosted protease inhibitors in a cohort of HIV/hepatitis C virus co-infected patients. J Antimicrob Chemother 66(11):2605–2614PubMedCrossRefGoogle Scholar
  99. 99.
    Esposito F, Corona A, Tramontan E (2012) HIV-1 reverse transcriptase still remains a new drug target: structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol Biol Int 2012:586401PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jochmans D, Deval J, Kesteleyn B, Van Marck H, Bettens E, De Baere I, Dehertogh P, Ivens T, Van Ginderen M, Van Schoubroeck B, Ethesami M, Wigerinck P, Gotte M, Hertogs K, Hertogs K (2006) Indolopyridones inhibit human immunodeficiency virus reverse transcriptase with a novel mechanism of action. J Virol 80(24):12283–12292PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhang Z, Walker M, Xu W, Shim JH, Giradet J-L, Hamatake RK, Hong Z (2006) Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 50(8):2772–2781PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Maga G, Radi M, Zanoli S, Manetti F, Cancio R, Hübscher U, Spadari S, Falciani C, Terrazas M, Vilarrasa J, Botta M (2007) Discovery of non-nucleoside inhibitors of HIV-1 reverse transcriptase competing with the nucleotide substrate. Angew Chem 16(11):1810–1813CrossRefGoogle Scholar
  103. 103.
    Radi M, Falciani C, Contemori L, Petricci E, Maga G, Samuele A, Zanoli S, Terrazas M, Castria M, Togninelli A, Este JA, Clotet-Codina I, Armand-Ugon M, Botta M (2008) A multidisciplinary approach for the identification of novel HIV-1 non-nucleoside reverse transcriptase inhibitors: S-DABOCs and DAVPs. ChemMedChem 3(4):573–593PubMedCrossRefGoogle Scholar
  104. 104.
    Freisz S, Bec G, Radi M, Wolff P, Crespan E, Angeli L, Dumas P, Maga G, Botta M, Ennifar E (2010) Crystal structure of HIV-1 reverse transcriptase bound to a non-nucleoside inhibitor with a novel mechanism of action. Angew Chem Int Ed Engl 49:1805–1808PubMedCrossRefGoogle Scholar
  105. 105.
    Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of hiv-1 integrase: implications for domain organization in the intact protein. EMBO J 20:7333–7343PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34(31):9826–9833PubMedCrossRefGoogle Scholar
  107. 107.
    Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Newman J, Martyn J, Coates JA, Ede NJ, Rea P, Deadman JJ (2011) Crystal structures of novel allosteric peptide inhibitors of HIV integrase identify new interactions at the LEDGF binding site. Chembiochem 12(15):2311–2315PubMedCrossRefGoogle Scholar
  108. 108.
    Sharma A, Slaughter A, Jena N, Feng L, Kessl JJ, Fadel HJ, Malani N, Male F, Wu L, Poeschla E, Bushman FD, Fuchs JR, Kvaratskhelia M (2014) A new class of multimerization selective inhibitors of HIV-1 integrase. Plos Pathog 10(5):e1004171PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wielens J, Headey SJ, Rhodes DI, Mulder RJ, Dolezal O, Deadman JJ, Newman J, Chalmers DK, Parker MW, Peat TS, Scanlon MJ (2013) Parallel screening of low molecular weight fragment libraries: do differences in methodology affect hit identification? J Biomol Screen 18:147–159PubMedCrossRefGoogle Scholar
  110. 110.
    Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287(5453):646–650ADSPubMedCrossRefGoogle Scholar
  111. 111.
    Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4(3):236–248PubMedCrossRefGoogle Scholar
  112. 112.
    Wai JS, Egbertson MS, Payne LS, Fisher TE, Embrey MW, Tran LO, Melamed JY, Langford HM, Guare JP Jr, Zhuang L, Grey VE, Vacca JP, Holloway MK, Naylor-Olsen AM, Hazuda DJ, Felock PJ, Wolfe AL, Stillmock KA, Schleif WA, Gabryelski LJ, Young SD (2000) 4-Aryl-2,4-dioxobutanoic acid inhibitors of HIV-1 integrase and viral replication in cells. J Med Chem 43(26):4923–4926PubMedCrossRefGoogle Scholar
  113. 113.
    Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Way JS, Young S, Vacca J, Hazuda DJ (2002) Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci 99(10):6661–6666ADSPubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Marchand C, Johnson AA, Karki RG, Pais GC, Zhang X, Cowansage K, Patel TA, Nicklaus M, Burke TR Jr, Pommier Y (2003) Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol 64(3):600–609PubMedCrossRefGoogle Scholar
  115. 115.
    Hazuda DJ, Young SD, Guare JP, Anthony NJ, Gomez RP, Wai JS, Vacca JP, Handt L, Motzel SL, Klein HJ, Dornadula G, Danovich RM, Witmer MV, Wilson KA, Tussey L, Schleif WA, Gabryelski LS, Jin L, Miller MD, Casimiro DR, Emini EA, Shiver JW (2004) Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science 305(5683):528–532ADSPubMedCrossRefGoogle Scholar
  116. 116.
    Asante-Appiah E, Skalka AM (1999) HIV-1 integrase: structural organization, conformational changes, and catalysis. Adv Virus Res 52:351–369PubMedCrossRefGoogle Scholar
  117. 117.
    Esposito D, Craigie R (1999) HIV integrase structure and function. Adv Virus Res 52:319–333PubMedCrossRefGoogle Scholar
  118. 118.
    Summa V, Petrocchi A, Matassa VG, Gardelli C, Muraglia E, Rowley M, Paz OG, Laufer R, Monteagudo E, Pace P (2006) 4,5-Dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmacokinetic profiles in preclinical species. J Med Chem 49(23):6646–6649PubMedCrossRefGoogle Scholar
  119. 119.
    Savarino A (2006) A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin Investig Drugs 15(12):1507–1522PubMedCrossRefGoogle Scholar
  120. 120.
    Iwamoto M, Wenning LA, Petry AS, Laethem M, De Smet M, Kost JT, Merschman SA, Strohmaier KM, Ramael S, Lasseter KC, Stone JA, Gottesdiener KM, Wagner JA (2008) Safety, tolerability, and pharmacokinetics of raltegravir after single and multiple doses in healthy subjects. Clin Pharmacol Ther 83(2):293–299PubMedCrossRefGoogle Scholar
  121. 121.
    DeJesus E, Berger D, Markowitz M, Cohen C, Hawkins T, Ruane P, Elion R, Farthing C, Zhong L, Cheng AK, McColl D, Kearney BP (2006) Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naive and treatment-experienced patients. J Acquir Immune Defic Syndr 43(1):1–5PubMedCrossRefGoogle Scholar
  122. 122.
    Temesgen Z, Siraj DS (2008) Raltegravir: first in class HIV integrase inhibitor. Ther Clin Risk Manag 4(2):493–500PubMedPubMedCentralGoogle Scholar
  123. 123.
    Mouscadet J-F, Tchertanov L (2009) Raltegravir: molecular basis of its mechanism of action. Eur J Med Res 14(Suppl III):5–16PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Shimura KL, Kodama EN (2009) Elvitegravir: a new HIV integrase inhibitor. Antivir Chem Chemother 20(2):79–85PubMedCrossRefGoogle Scholar
  125. 125.
    Fantauzzi A, Turriziani O, Mezzaroma I (2013) Potential benefit of dolutegravir once daily: efficacy and safety. HIV AIDS (Auckl) 5:29–40Google Scholar
  126. 126.
    Malet I, Delelis O, Valantin M-A, Montes B, Soulie C, Wirden M, Tchertanov L, Peytavin G, Reynes J, Mouscadet J-F, Katlama C, Calvez V, Marcelin A-G (2008) Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 52(4):1351–1358PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Métifiot M, Marchand C, Maddali K, Pommier Y (2010) Resistance to integrase inhibitors. Viruses 2(7):1347–1366PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, Foster SA, Hazen RJ, Miki S, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T (2011) In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 55(2):813–821PubMedCrossRefGoogle Scholar
  129. 129.
    Pommier Y, Marchand C, Neamati N (2000) Retroviral inhibition of HIV-1 vector integrase inhibitors year 2000: update and perspectives. Antiviral Res 47:139–148PubMedCrossRefGoogle Scholar
  130. 130.
    Neamati N, Marchand C, Pommier Y (2000) HIV-1 integrase inhibitors: past, present, and future. Adv Pharmacol 49:147–165PubMedCrossRefGoogle Scholar
  131. 131.
    Young SD (2001) Inhibition of HIV-1 integrase by small molecules: the potential for a new class of AIDS chemotherapeutics. Curr Opin Drug Discov Devel 4:402–410PubMedGoogle Scholar
  132. 132.
    Pannecouque C, Pluymers W, Van Maele B, Tetz V, Cherepanov P, De Clercq E, Debyser Z (2002) New class of HIV integrase inhibitors that block viral replication in cell culture. Curr Biol 12:1169–1177PubMedCrossRefGoogle Scholar
  133. 133.
    Brzozowski Z, Saczewski F, Sławiński J, Sanchez T, Neamati N (2009) Synthesis and anti-HIV-1 integrase activities of 3-aroyl-2,3-dihydro-1,1-dioxo-1,4,2-benzodithiazines. Eur J Med Chem 44:190–196PubMedCrossRefGoogle Scholar
  134. 134.
    Johnson TW, Tanis SP, Butler SL, Dalvie D, DeLisle DM, Dress KR, Flahive EJ, Hu Q, Kuehler JE, Kuki A, Liu W, McClellan GA, Peng Q, Plewe MB, Richardson PF, Smith GL, Solowiej J, Tran KT, Yu HWX, Zhang J, Zhu H (2011) Design and synthesis of novel N-hydroxy-dihydronaphthyridinones as potent and orally bioavailable HIV-1 integrase inhibitors. J Med Chem 54:3393–3417PubMedCrossRefGoogle Scholar
  135. 135.
    Kawasuji T, Johns BA, Yoshida H, Taishi T, Taoda Y, Murai H, Kiyama R, Fuji M, Yoshinaga T, Seki T, Kobayashi M, Sato A, Fujiwara T (2012) Carbamoyl pyridone HIV-1 integrase inhibitors. 1. Molecular design and establishment of an advanced two-metal binding pharmacophore. J Med Chem 55(20):8735–8744PubMedCrossRefGoogle Scholar
  136. 136.
    Tsiang M, Jones GS, Niedziela-Majka A, Kan E, Lansdon EB, Huang W, Hung M, Samuel D, Novikov N, Xu Y, Mitchell M, Guo H, Babaoglu K, Liu X, Geleziunas R, Sakowicz R (2012) New class of HIV-1 integrase (in) inhibitors with a dual mode of action. J Biol Chem 287:21189–21203PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Seelmeier S, Schmidt H, Turk V, von der Helm K (1988) Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc Natl Acad Sci U S A 85:6612–6616ADSPubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnik EM, Sigal IS (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85:4686–4690ADSPubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Degoey DA, Grampovnik DJ, Flentge CA, Flosi WJ, Chen HJ, Yeung CM, Randolph JT, Klein LL, Dekhtyar T, Colletti L, Marsh KC, Stoll V, Mamo M, Morfitt DC, Nguyen B, Schmidt JM, Swanson SJ, Mo H, Kati WM, Molla A, Kempf DJ (2009) 2-pyridyl p1′-substituted symmetry-based human immunodeficiency virus protease inhibitors (A-792611 and a-790742) with potential for convenient dosing and reduced side effects. J Med Chem 52:2571–2586PubMedCrossRefGoogle Scholar
  140. 140.
    McQuade TJ, Tomasselli AG, Liu L, Karacostas B, Moss B, Sawyer TK, Heinrikson RL, Tarpley WG (1990) A synthetic HIV protease inhibitor with antiviral activity arrests HIV-like particle maturation. Science 247:454–4566ADSPubMedCrossRefGoogle Scholar
  141. 141.
    Tang J, Lin Y, Co E, Hartsuck J, Lin X (1992) Understanding protease: can it be translated into effective therapy against AIDS. Scand J Clin Lab Invest 52(Suppl 210):127–135CrossRefGoogle Scholar
  142. 142.
    Brik A, Wong CH (2003) HIV-1 protease: mechanism and drug discovery. Org Biomol Chem 1(1):5–14PubMedCrossRefGoogle Scholar
  143. 143.
    Kurup A, Mekapati SB, Garg R, Hansch C (2003) HIV-1 protease inhibitors: a comparative QSAR analysis. Curr Med Chem 10:1679–1688PubMedCrossRefGoogle Scholar
  144. 144.
    Perez MAS, Fernandes PA, Ramos MJ (2007) Drug design: new inhibitors for HIV-1 protease based on Nelfinavir as lead. J Mol Graph Model 26:634–642PubMedCrossRefGoogle Scholar
  145. 145.
    Larder BA et al (2000) Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples. AIDS 14:1943–1948PubMedCrossRefGoogle Scholar
  146. 146.
    Zeldin RK, Petruschke RA (2004) Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 53(1):4–9PubMedCrossRefGoogle Scholar
  147. 147.
    Flentge CA, Randolph JT, Huang PP, Klein LL, Marsh KC, Harlan JE, Kempf DJ (2009) Synthesis and evaluation of inhibitors of cytochrome P450 3A (CYP3A) for pharmacokinetic enhancement of drugs. Bioorg Med Chem Lett 19:5444–5448PubMedCrossRefGoogle Scholar
  148. 148.
    Sperka T, Pitlik J, Bagossia P, Tozser J (2005) Beta-lactam compounds as apparently uncompetitive inhibitors of HIV-1 protease. Bioorg Med Chem Lett 15:3086–3090PubMedCrossRefGoogle Scholar
  149. 149.
    Bisacchi GS, Slusarchyk VA, Bolton SA, Hartl KS, Jacobs G, Mathur A, Meng W, Ogletree ML, Pi Z, Sutton JC, Treuner U, Zahle R, Zhao G, Seiler SM (2004) Synthesis of potent and highly selective nonguanidine azetidinone inhibitors of human tryptase. Bioorg Med Chem Lett 14:2227–2231PubMedCrossRefGoogle Scholar
  150. 150.
    Sutton JC, Bolton SA, Davis ME, Hartl KS, Jacobson B, Mathur A, Ogletree ML, Slusarchyk WA, Zahler SSM, Bisacchi GS (2004) Solid-phase synthesis and SAR of 4-carboxy-2-azetidinone mechanism-based tryptase inhibitors. Bioorg Med Chem Lett 14:2233–2239PubMedCrossRefGoogle Scholar
  151. 151.
    Stebbins J, Beboucl C (1997) A microtiter colorimetric assay for the HIV-1 protease. Anal Biochem 248(2):246–250PubMedCrossRefGoogle Scholar
  152. 152.
    Pitlik J, Townsend CA (1997) Solution-phase synthesis of a combinatorial monocyclic β-lactam library: potential protease inhibitors. Bioorg Med Chem Lett 7:3129–3133CrossRefGoogle Scholar
  153. 153.
    Tözsér J, Gustchina A, Weber IT, Blaha I, Wondrak EM, Oroszlan S (1991) Studies on the role of the S4 substrate binding site of HIV proteinases. FEBS Lett 279(2):356–360PubMedCrossRefGoogle Scholar
  154. 154.
    Wondrak EM, Louis JM, Oroszlan S (1991) purification of HIV-1 wild-type protease and characterization of proteolytically inactive HIV-1 protease mutants by pepstatin A affinity chromatography. FEBS Lett 280:347–350PubMedCrossRefGoogle Scholar
  155. 155.
    Bagossi P, János Kádas J, Gabriella Miklóssy G, Boross P, Weber IT, Tözsér J (2004) Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Methods 119:87–93PubMedCrossRefGoogle Scholar
  156. 156.
    Cígler P, Kožíšek M, Řezáčová P, Brynda J, Otwinowski Z, Pokorná J, Plešek J, Grüner B, Dolečková-Marešová L, Máša M, Sedláček J, Bodem J, Kräusslich H-G, Král V, Konvalinka J (2005) From nonpeptide toward noncarbon protease inhibitors: metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci U S A 102(43):15394–15399ADSPubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Ghosh AK, Anderson DD (2011) Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors. Future Med Chem 3(9):1181–1197PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Wang RR, Gao Y-D, Ma C-H, Zhang X-J, Huang C-G, Huang J-F, Zheng Y-T (2011) Mangiferin, an anti-HIV-1 agent targeting protease and effective against resistant strains. Molecules 16:4264–4277PubMedCrossRefGoogle Scholar
  159. 159.
    Jonckers THM, Rouan M-C, Hachι G, Schepens W, Hallenberger S, Baumeister J, Sasaki JC (2012) Benzoxazole and benzothiazole amides as novel pharmacokinetic enhancers of HIV protease inhibitors. Bioorg Med Chem Lett 22:4998–5002PubMedCrossRefGoogle Scholar
  160. 160.
    Surleraux DLNG, Tahri A, Verschueren WG, Pille GME, de Kock HA, Jonckers THM, Peeters A, De Meyer S, Azijn H, Pauwels R, de Bethune M-P, King NM, Prabu-Jeyabalan M, Schiffer CA, Wigerinck PBTP (2005) Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor. J Med Chem 48:1813–1822PubMedCrossRefGoogle Scholar
  161. 161.
    Manchanda T, Schiedel D, Fischer D, Dekaban GA, Rieder MJ (2002) Adverse drug reactions to protease inhibitors. Can J Clin Pharmacol 9(3):137–146, FallPubMedGoogle Scholar
  162. 162.
    Hui DY (2003) Effects of HIV protease inhibitor therapy on lipid metabolism. Prog Lipid Res 42(2):81–92PubMedCrossRefGoogle Scholar
  163. 163.
    Friis-Moller N, Weber R, Reiss P, Thiιbaut R, Kirk O, Monforte AD, Pradier C, Morfeldt L, Mateu S, Law M, El-Sadr W, DeWit S, Sabin CA, Phillips AN, Lundgren JD (2003) Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy: results from the DAD study. AIDS 17:1179–1193PubMedCrossRefGoogle Scholar
  164. 164.
    Friis-Moller N, Reiss P, Sabin CA, Weber R, Monforte AD, El-Sadr W, Thiιbaut R, DeWit S, Kirk O, Fontas E, Law MG, Phillips A, Lundgren JD (2007) Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med 356:1723–1735PubMedCrossRefGoogle Scholar
  165. 165.
    Smith C, Sabin CA, Lundgren JD, Thiebaut R, Weber R, Law RM, Monforte AD, Kirk O, Friis-Moller N, Phillips A, Reiss P, El Sadr W, Pradier C, Worm SW (2010) Factors associated with specific causes of death amongst HIV-positive individuals in the DAD study. AIDS 24:1537–1548PubMedCrossRefGoogle Scholar
  166. 166.
    Zaera M, Miro O, Pedrol E, Soler A, Picon M, Cardellach F, Casademont J, Nunes V (2001) Mitochondrial involvement in antiretroviral therapy-related lipodystrophy. AIDS 15:1643–1651PubMedCrossRefGoogle Scholar
  167. 167.
    Zhang S, Carper MJ, Lei X, Cade WT, Yarashesk KE, Ramanadham S (2009) Protease inhibitors used in the treatment of HIV+ induce beta-cell apoptosis via the mitochondrial pathway and compromise insulin secretion. Am J Physiol Endocrinol Metab 296:E925–E935PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Lagathu C, Eustace B, Prot M, Frantz D, Gu Y, Bastard J-P, Maachi M, Azoulay S, Briggs M, Caron M, Capeau J (2007) Some HIV antiretrovirals increase oxidative stress and alter chemokine, cytokine or adiponectin production in human adipocytes and macrophages. Antivir Ther 12:489–500PubMedGoogle Scholar
  169. 169.
    Chandra S, Mondal D, Agrawal KS (2009) HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone. Exp Biol Med 234:442–453CrossRefGoogle Scholar
  170. 170.
    Touzet O, Philips A (2010) Resveratrol protects against protease inhibitor-induced reactive oxygen species production, reticulum stress and lipid raft perturbation. AIDS 24:1437–1447PubMedCrossRefGoogle Scholar
  171. 171.
    Ben-Romano R, Rudich A, Etzion S, Potashnik R, Kagan E, Greenbaum U, Bashan N (2006) Nelfinavir induces adipocyte insulin resistance through the induction of oxidative stress: differential protective effect of antioxidant agents. Antivir Ther 11:1051–1060PubMedGoogle Scholar
  172. 172.
    Wang X, Chai H, Lin PH, Yao Q, Chen C (2009) Roles and mechanisms of human immunodeficiency virus protease inhibitor ritonavir and other anti-human immunodeficiency virus drugs in endothelial dysfunction of porcine pulmonary arteries and human pulmonary artery endothelial cells. Am J Pathol 174:771–781PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Wang X, Mu H, Chai H, Liao D, Yao Q, Chen C (2007) Human immunodeficiency virus protease inhibitor ritonavir inhibits cholesterol efflux from human macrophage-derived foam cells. Am J Pathol 171:304–314PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Conklin BS, Fu W, Lin PH, Lumsden AB, Yao Q, Chen C (2004) HIV protease inhibitor ritonavir decreases endothelium-dependent vasorelaxation and increases superoxide in porcine arteries. Cardiovasc Res 63:168–175PubMedCrossRefGoogle Scholar
  175. 175.
    Chai H, Yang H, Yan S, Li M, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Effects of HIV protease inhibitors on vasomotor function and superoxide anion production in porcine coronary arteries. J Acquir Immune Defic Syndr 40:12–19PubMedCrossRefGoogle Scholar
  176. 176.
    Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, Alldredge L, Hunter E, Lambert D, Bolognesi D, Matthews T, Johnson MR, Nowak MA, Shaw GM, Saag MS (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4(11):1302–1307PubMedCrossRefGoogle Scholar
  177. 177.
    Robertson D (2003) US FDA approves new class of HIV therapeutics. Nat Biotechnol 21(5):470–471PubMedCrossRefGoogle Scholar
  178. 178.
    Este JA, Telenti A (2007) HIV entry inhibitors. Lancet 370(9581):81–88PubMedCrossRefGoogle Scholar
  179. 179.
    Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390ADSPubMedCrossRefGoogle Scholar
  180. 180.
    Marcial M, Lu J, Deeks SG, Ziermann R, Kuritzkes DR (2006) Performance of human immunodeficiency virus type 1 gp41 assays for detecting enfuvirtide (T-20) resistance mutations. J Clin Microbiol 44(9):3384–3387PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Rimsky LT, Shugars DC, Matthews TJ (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 72:986–993PubMedPubMedCentralGoogle Scholar
  182. 182.
    Sista PR, Melby T, Davison D, Jin L, Mosier S, Mink M, Nelson EL, DeMasi R, Cammack N, Salgo MP, Matthews TJ, Greenberg ML (2004) Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. AIDS 18:1787–1794PubMedCrossRefGoogle Scholar
  183. 183.
    Marcelin AG, Reynes J, Yerly S, Ktorza N, Segondy M, Piot JC, Delfraissy JF, Kaiser L, Perrin L, Katlama C, Calvez V (2004) Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. AIDS 18:1340–1342PubMedCrossRefGoogle Scholar
  184. 184.
    Mink M, Mosier SM, Janumpalli S, Davison D, Jin L, Melby T, Sista P, Erickson J, Lambert D, Stanfield-Oakley SA, Salgo M, Cammack N, Matthews T, Greenberg ML (2005) Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol 79:12447–12454PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Xu L, Pozniak A, Wildfire A, Stanfield-Oakley SA, Mosier SM, Ratcliffe D, Workman J, Joall A, Myers R, Smit E, Cane PA, Greenberg ML, Pillay D (2005) Emergence and evolution of enfuvirtide resistance following long-term therapy involves heptad repeat 2 mutations within gp41. Antimicrob Agents Chemother 49:1113–1119PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Yao X, Chong H, Zhang C, Waltersperger S, Wang M, Cui S, He Y (2012) Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J Biol Chem 287:6788–6796PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Jiang S, Tala SR, Lu H, Abo-Dya NE, Avan I, Gyanda K, Lu L, Katritzky AR, Debnath AK (2011) Design, synthesis, and biological activity of novel 5-((arylfuran/1H-pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J Med Chem 54:572–579PubMedCrossRefGoogle Scholar
  188. 188.
    Jiang S, Lu H, Liu S, Zhao Q, He Y, Debnath AK (2004) N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six helix bundle formation and block virus fusion. Antimicrob Agents Chemother 48:4349–4359PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Katritzky AR, Tala SR, Lu H, Vakulenko AV, Chen Q-Y, Sivapackiam J, Pandya K, Jiang S, Debnath AK (2009) Design, synthesis, and structure-activity relationship of a novel series of 2-aryl 5-(4-oxo-3-phenethyl-2-thioxothiazolidinylidenemethyl) furans as HIV-1 entry inhibitors. J Med Chem 52:7631–7639PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Teixeira C, Gomes JRB, Gomes P, Maurel F (2011) Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur J Med Chem 46(4):979–992PubMedCrossRefGoogle Scholar
  191. 191.
    Acharya P, Lusvarghi S, Bewley CA, Kwong PD (2015) HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 19(6):765–783PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Dezube BJ, Dahl TA, Wong TK, Chapman B, Ono M, Yamaguchi N, Gillies SD, Chen LB, Crumpacker CS (2000) A fusion inhibitor (FP-21399) for the treatment of human immunodeficiency virus infection: a phase I study. J Infect Dis 182:607–610PubMedCrossRefGoogle Scholar
  193. 193.
    Hermann H, Westhof E (1998) RNA as a drug target: chemical, modeling, and evolutionary tools. Curr Opin Biotechnol 9:66–73PubMedCrossRefGoogle Scholar
  194. 194.
    Yang M (2005) Discoveries of Tat-Tar interaction inhibitors for HIV-1. Curr Drug Targets Infect Disord 5(4):433–444PubMedCrossRefGoogle Scholar
  195. 195.
    Gait MJ, Karn J (1993) RNA recognition by the human immunodeficiency virus Tat and Rev proteins. Trends Biochem Sci 18:255–259PubMedCrossRefGoogle Scholar
  196. 196.
    AbouI-Ela F, Karn J, Varani G (1995) The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol 253:313–332CrossRefGoogle Scholar
  197. 197.
    O’Brien WA, Sumner-Smith M, Mao SH, Sadeghi S, Zhao JQ, Chen IS (1996) Anti-human immunodeficiency virus type 1 activity of an oligocationic compound mediated via gp120 V3 interactions. J Virol 70:2825–2831PubMedPubMedCentralGoogle Scholar
  198. 198.
    Hamasaki K, Ueno A (2001) Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators. Bioorg Med Chem Lett 11:591–594PubMedCrossRefGoogle Scholar
  199. 199.
    Marciniak RA, Sharp PA (1991) HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 10:4189–4196PubMedPubMedCentralGoogle Scholar
  200. 200.
    Daelemans D, Este JA, Witvrouw M et al (1997) S-adenosylhomocysteine hydrolase inhibitors interfere with the replication of human immunodeficiency virus type 1 through inhibition of the LTR transactivation. Mol Pharmacol 52:1157–1163PubMedGoogle Scholar
  201. 201.
    De Clercq E (1998) Carbocyclic adenosine analogues as S-adenosylhomocysteine hydrolase inhibitors and antiviral agents: recent advances. Nucleosides Nucleotides 17:625–634PubMedCrossRefGoogle Scholar
  202. 202.
    Ratmeyer L, Zapp ML, Green MR, Vinayak R, Kumar A, Boykin DW, Wilson WD (1996) Inhibition of HIM-1 Rev-RRE interaction by diphenylfuran derivatives. Biochemistry 35:13689–13696PubMedCrossRefGoogle Scholar
  203. 203.
    Kaufmann GR, Cooper DA (2000) Antiretroviral therapy of HIV-1 infection: established treatment strategies and new therapeutic options. Curr Opin Microbiol 3(5):508–514PubMedCrossRefGoogle Scholar
  204. 204.
    Richman DD (2001) HIV chemotherapy. Nature 410(6831):995–1001ADSPubMedCrossRefGoogle Scholar
  205. 205.
    Lipshultz SE, Miller TL, Wilkinson JD, Scott GB, Somarriba G, Cochran TR, Fisher SD (2013) Cardiac effects in perinatally HIV-infected and HIV-exposed but uninfected children and adolescents: a view from the United States of America. J Int AIDS Soc 16(1):18597PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Maldarelli F, Palmer S, King MS, Wiegand A, Polis MA, Mican J, Kovacs JA, Davey RT, Rock-Kress D, Dewar R, Liu S, Metcalf JA, Rehm C, Brun SC, Hanna GJ, Kempf DJ, Coffin JM, Mellors JW (2007) ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog 3(4):e46PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Maartens G, Celum C, Lewin SR (2014) HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384(9939):258–271PubMedCrossRefGoogle Scholar
  208. 208.
    Didigu C, Doms R (2014) Gene therapy targeting HIV entry. Viruses 6(3):1395–1409PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM (2014) Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 12(11):750–764PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Siliciano JD, Siliciano RF (2014) Recent developments in the search for a cure for HIV-1 infection: targeting the latent reservoir for HIV-1. J Allergy Clin Immunol 134(1):12–19PubMedCrossRefGoogle Scholar
  211. 211.
    Manson McManamy ME, Hakre S, Verdin EM, Margolis DM (2014) Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 23(4):145–149PubMedCrossRefGoogle Scholar
  212. 212.
    Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF (2014) New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20(4):425–429PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, Dahl NP, Kearney MF, Anderson EM, Coffin JM, Strain MC, Richman DD, Robertson KR, Kashuba AD, Bosch RJ, Hazuda DJ, Kuruc JD, Eron JJ, Margolis D (2014) HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis 210(5):728–735PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Sogaard OS, Graversen ME, Leth S et al (2014) The HDAC inhibitor romidepsin is safe and effectively reverses HIV-1 latency in vivo as measured by standard clinical assays. In: 20th international AIDS conference, Melbourne, Abst TUAA0106LB, 20–25 July 2014Google Scholar
  215. 215.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Kumari A, Baskaran P, Van Staden J (2015) Enhanced HIV-1 reverse transcriptase inhibitory and antibacterial properties in callus of Catha edulis Forsk. Phytother Res 29(6):840–843PubMedCrossRefGoogle Scholar
  217. 217.
    Xu L, Grandi N, Del Vecchio C, Mandas D, Corona A, Piano D, Esposito F, Parolin C, Tramontano E (2015) From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J Microbiol 53(4):288–293PubMedCrossRefGoogle Scholar
  218. 218.
    Huang SZ, Zhang X, Ma QY, Peng H, Zheng YT, Hu JM, Dai HF, Zhou J, Zhao YX (2014) Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr. Fitoterapia 95:34–41PubMedCrossRefGoogle Scholar
  219. 219.
    Ellithey MS, Lall N, Hussein AA, Meyer D (2014) Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms. BMC Complement Altern Med 14:77PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Helfer M, Koppensteiner H, Schneider M, Rebensburg S, Forcisi S, Müller C, Schmitt-Kopplin P, Schindler M, Brack-Werner R (2014) The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor. PLoS One 9(1):e87487ADSPubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Suedee A, Tewtrakul S, Panichayupakaranant P (2013) Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharm Biol 51(10):1256–1261PubMedCrossRefGoogle Scholar
  222. 222.
    Nutan, Modi M, Dezzutti CS, Kulshreshtha S, Rawat AK, Srivastava SK, Malhotra S, Verma A, Ranga U, Gupta SK (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J 10:309PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Leteane MM, Ngwenya BN, Muzila M, Namushe A, Mwinga J, Musonda R, Moyo S, Mengestu YB, Abegaz BM, Andrae-Marobela K (2012) Old plants newly discovered: Cassia sieberiana D.C. and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1c replication in peripheral blood mononuclear cells (PBMCs) by different modes of action. J Ethnopharmacol 141(1):48–56PubMedCrossRefGoogle Scholar
  224. 224.
    Park IW, Han C, Song X, Green LA, Wang T, Liu Y, Cen C, Song X, Yang B, Chen G, He JJ (2009) Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants. BMC Complement Altern Med 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Bobbin ML, Burnett JC, Rossi JJ (2015) RNA interference approaches for treatment of HIV-1 infection. Genome Med 7(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Swaminathan G, Navas-Martín S, Martín-García J (2014) MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 426(6):1178–1197PubMedCrossRefGoogle Scholar
  227. 227.
    Lai YT, DeStefano JJ (2012) DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 22(3):162–176PubMedPubMedCentralGoogle Scholar
  228. 228.
    Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818ADSPubMedCrossRefGoogle Scholar
  229. 229.
    Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216PubMedCrossRefGoogle Scholar
  230. 230.
    Wei Y, Li J, Chen Z, Wang F, Huang W, Hong Z, Lin J (2015) Multistage virtual screening and identification of novel HIV-1 protease inhibitors by integrating SVM, shape, pharmacophore and docking methods. Eur J Med Chem 101:409–418PubMedCrossRefGoogle Scholar
  231. 231.
    Tewtrakul S, Chaniad P, Pianwanit S, Karalai C, Ponglimanont C, Yodsaoue O (2015) Anti-HIV-1 integrase activity and molecular docking study of compounds from Caesalpinia sappan L. Phytother Res 29(5):724–729PubMedCrossRefGoogle Scholar
  232. 232.
    Ahmad M, Aslam S, Rizvi SU, Muddassar M, Ashfaq UA, Montero C, Ollinger O, Detorio M, Gardiner JM, Schinazi RF (2015) Molecular docking and antiviral activity of N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides. Bioorg Med Chem Lett 25(6):1348–1351PubMedCrossRefGoogle Scholar
  233. 233.
    Singh A, Yadav D, Yadav M, Dhamanage A, Kulkarni S, Singh RK (2015) Molecular modeling, synthesis and biological evaluation of N-heteroaryl compounds as reverse transcriptase inhibitors against HIV-1. Chem Biol Drug Des 85(3):336–347PubMedCrossRefGoogle Scholar
  234. 234.
    Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Compd 50(3):444–457CrossRefGoogle Scholar
  235. 235.
    Zhang C, Du C, Feng Z, Zhu J, Li Y (2015) Hologram quantitative structure activity relationship, docking, and molecular dynamics studies of inhibitors for CXCR4. Chem Biol Drug Des 85(2):119–136PubMedCrossRefGoogle Scholar
  236. 236.
    Corona A, Di Leva FS, Thierry S, Pescatori L, Cuzzucoli Crucitti G, Subra F, Delelis O, Esposito F, Rigogliuso G, Costi R, Cosconati S, Novellino E, Di Santo R, Tramontano E (2014) Identification of highly conserved residues involved in inhibition of HIV-1 RNase H function by diketo acid derivatives. Antimicrob Agents Chemother 58(10):6101–6110PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Meleddu R, Cannas V, Distinto S, Sarais G, Del Vecchio C, Esposito F, Bianco G, Corona A, Cottiglia F, Alcaro S, Parolin C, Artese A, Scalise D, Fresta M, Arridu A, Ortuso F, Maccioni E, Tramontano E (2014) Design, synthesis, and biological evaluation of 1,3-diarylpropenones as dual inhibitors of HIV-1 reverse transcriptase. ChemMedChem 9(8):1869–1879PubMedGoogle Scholar
  238. 238.
    Song Y, Zhan P, Li X, Rai D, De Clercq E, Liu X (2013) Multivalent agents: a novel concept and preliminary practice in Anti-HIV drug discovery. Curr Med Chem 20(6):815–832PubMedGoogle Scholar
  239. 239.
    Poroikov VV, Filimonov DA, Ihlenfeldt W-D, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 43(1):228–236PubMedCrossRefGoogle Scholar
  240. 240.
    Liao C, Nicklaus MC (2010) Computer tools in the discovery of HIV-1 integrase inhibitors. Future Med Chem 7:1123–1140CrossRefGoogle Scholar
  241. 241.
    Alcaro S, Artese A, Ceccherini-Silberstein F, Chiarella V, Dimonte S, Ortuso F, Perno CF (2010) Computational analysis of Human Immunodeficiency Virus (HIV) Type-1 reverse transcriptase crystallographic models based on significant conserved residues found in Highly Active Antiretroviral Therapy (HAART)-treated patients. Curr Med Chem 17(4):290–308PubMedCrossRefGoogle Scholar
  242. 242.
    Kirchmair J, Distinto S, Liedl KR, Markt P, Rollinger JM, Schuster D, Spitzer GM, Wolber G (2011) Development of anti-viral agents using molecular modeling and virtual screening techniques. Infect Disord Drug Targets 11(1):64–93PubMedCrossRefGoogle Scholar
  243. 243.
    Rawal RK, Murugesan V, Katti SB (2012) Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs. Curr Med Chem 19(31):5364–5380PubMedCrossRefGoogle Scholar
  244. 244.
    Hao GF, Yang SG, Yang GF (2014) Structure-based design of conformationally flexible reverse transcriptase inhibitors to combat resistant HIV. Curr Pharm Des 20(5):725–739PubMedCrossRefGoogle Scholar
  245. 245.
    Seckler JM, Leioatts N, Miao H, Grossfield A (2013) The interplay of structure and dynamics: insights from a survey of HIV-1 reverse transcriptase crystal structures. Proteins 81(10):1792–1801PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36(15):1132–1156PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Tarasova OA, Urusova AF, Filimonov DA, Nicklaus MC, Zakharov AV, Poroikov VV (2015) QSAR modeling using large-scale databases: case study for HIV-1 reverse transcriptase inhibitors. J Chem Inf Model. doi: 10.1021/acs.jcim.5b00019. First published online June 5, 2015
  248. 248.
    De Clercq E (2015) Curious discoveries in antiviral drug development: the role of serendipity. Med Res Rev 35(4):698–719PubMedCrossRefGoogle Scholar
  249. 249.
    Filimonov DA, Lagunin AA, Gloriozova TA, Gawande D, Goel R, Poroikov VV (2014) Libraries of natural and synthetic compounds as sources of novel drug-candidates. In: Chemistry of heterocyclic compounds. Modern trends, vol 1. ICSPF, Moscow. pp 464–471 (Rus)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Athina Geronikaki
    • 1
  • Phaedra Eleftheriou
    • 2
  • Vladimir Poroikov
    • 3
  1. 1.Department of Medicinal Chemistry, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Medical Laboratory Studies, School of Health and Medical CareAlexander Technological Educational Institute of ThessalonikiThessalonikiGreece
  3. 3.Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations