Skip to main content

The Role of Smoothened and Hh Signaling in Neovascularization

  • Chapter
  • First Online:
The Smoothened Receptor in Cancer and Regenerative Medicine

Abstract

New vessel formation plays a key role not only in physiological processes such as embryonic development and wound repair but also during several pathological situations. In this respect, favoring neovascularization represents a promising therapeutic approach that would allow inducing tissue repair. Among the candidate proteins able to modulate neovascularization, evidence show that the administration of recombinant hedgehog (Hh) protein, gene, or cell therapy based on Hh transfer or using extracellular vesicles as vectors enhance new vessel formation. Here, we summarized the role of Hh pathway on angiogenesis and its therapeutic potential during myocardial infarction and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

Ang(1, 2):

Angiopoietin(1, 2)

CECs:

Circulating endothelial cells

Dhh:

Desert hedgehog

ECM:

Extracellular matrix

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

Gli(1, 2, 3):

Glioma-associated oncogenes(1, 2, 3)

GPCR:

G-protein-coupled receptors

Hh:

Hedgehog

HIF-1:

Hypoxia-inducible factor-1

Ihh:

Indian hedgehog

iNOS:

Inducible nitric oxide synthase

JNK:

c-Jun N-terminal kinase

LGR5:

Leucine-rich repeat G-protein-coupled receptor 5

LMPs:

Lymphocytic microparticles

MAPK:

Mitogen-activated protein kinase

miRs:

MicroRNAs

MPs:

Microparticles

MPsShh+ :

Microparticles expressing sonic hedgehog

mRNA:

Messenger RNA

NO:

Nitric oxide

PDGF:

Platelet-derived growth factor

PECAM-1:

Platelet-endothelial cell-adhesion molecule-1

phShh:

Plasmid encoding the sonic hedgehog human gene

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

Ptc:

Patched

ROCK:

Rho-associated protein kinase

ROS:

Reactive oxygen species

SDF-1:

Stromal cell-derived factor-1

Shh:

Sonic hedgehog

Smo:

Smoothened

TGF-β:

Transforming growth factor β

TSP1:

Thrombospondin1

TYMP:

Thymidine phosphorylase

VE-cadherin:

Vascular endothelial cadherin

VEGF:

Vascular endothelial growth factor

VEGFR(−1, −2):

Vascular endothelial growth factor receptor(−1, −2)

References

  1. Fischer C, Schneider M, Carmeliet P. Principles and therapeutic implications of angiogenesis, vasculogenesis and arteriogenesis. Handb Exp Pharmacol. 2006;(176 Pt 2):157–212

    Google Scholar 

  2. Pola R, Ling LE, Aprahamian TR, Barban E, Bosch-Marce M, Curry C, Corbley M, Kearney M, Isner JM, Losordo DW (2003) Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108:479–485

    Google Scholar 

  3. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    CAS  Google Scholar 

  4. Adolphe C, Narang M, Ellis T, Wicking C, Kaur P, Wainwright B (2004) An in vivo comparative study of sonic, desert and Indian hedgehog reveals that hedgehog pathway activity regulates epidermal stem cell homeostasis. Development 131:5009–5019

    CAS  Google Scholar 

  5. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317

    CAS  Google Scholar 

  6. Bijlsma MF, Spek CA, Peppelenbosch MP (2004) Hedgehog: an unusual signal transducer. Bioessays 26:387–394

    CAS  Google Scholar 

  7. Lum L, Beachy PA (2004) The Hedgehog response network: sensors, switches, and routers. Science 304:1755–1759

    CAS  Google Scholar 

  8. Hooper JF, Scott MP (2005) Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6:306–317

    CAS  Google Scholar 

  9. Ruiz i Altaba A, Mas C, Stecca B (2007) The Gli code: an information nexus regulating cell fate, stemness and cancer. Trends Cell Biol 17:438–447

    Google Scholar 

  10. Dellovade T, Romer JT, Curran T, Rubin LL (2006) The Hedgehog pathway and neurological disorders. Annu Rev Neurosci 29:539–563

    CAS  Google Scholar 

  11. Taipale J, Beachy P (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354

    CAS  Google Scholar 

  12. Pasca di Magliano M, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3:903–911

    Google Scholar 

  13. Briscoe J, Therond P (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429

    Google Scholar 

  14. Katoh Y, Katoh M (2005) Comparative genomics on Sonic hedgehog orthologs. Oncol Rep 14:1087–1090

    CAS  Google Scholar 

  15. Katoh Y, Katoh M (2005) Hedgehog signaling in gastric cancer. Cancer Biol Ther 4:1050–1054

    CAS  Google Scholar 

  16. Kasper M, Regl G, Frischaf AM, Aberger F (2006) Gli transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer 42:437–445

    CAS  Google Scholar 

  17. Piccioni A, Gaetani E, Neri V, Gatto I, Palladino M, Silver M, Smith RC, Giarretta I, Pola E, Hlatky L, Pola R (2014) Sonic hedgehog therapy in a mouse model of age-associated impairment of skeletal muscle regeneration. J Gerontol A Biol Sci Med Sci 69:245–252

    CAS  Google Scholar 

  18. Griffioen AW, Molema G (2000) Angiogenesis: Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    CAS  Google Scholar 

  19. Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140:1097–1103

    CAS  Google Scholar 

  20. Murohara T (2001) Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med 11:303–307

    CAS  Google Scholar 

  21. Ema M, Rossant J (2003) Cell fate decisions in early blood vessel formation. Trends Cardiovasc Med 13:254–259

    CAS  Google Scholar 

  22. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945

    CAS  Google Scholar 

  23. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    CAS  Google Scholar 

  24. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during angiogenesis. Microvasc Res 14:53–65

    CAS  Google Scholar 

  25. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    CAS  Google Scholar 

  26. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin avβ3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661

    CAS  Google Scholar 

  27. Auerbach HR, Auerbach W (1997) Profound effects on vascular development caused by perturbations of during organogenesis. Am J Pathol 151:1183–1186

    CAS  Google Scholar 

  28. Pardanaud L, Dieterlen-Lièvre F (1999) Manipulation of the angiopoietic/hemangiopoietic commitment in the avian embryo. Development 26:617–627

    Google Scholar 

  29. Asahara T, Murohara T, Sullivan A, Silver M, Zee RVD, Li T, Witzenbichler B, Schattemen G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  Google Scholar 

  30. Milkiewicz M, Ispanovic E, Doyle JL, Haas TL (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 38:333–357

    CAS  Google Scholar 

  31. Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21:1104–1117

    CAS  Google Scholar 

  32. Axnick J, Lammert E (2012) Vascular lumen formation. Curr Opin Hematol 19:192–198

    Google Scholar 

  33. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    CAS  Google Scholar 

  34. Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224:391–402

    Google Scholar 

  35. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262

    CAS  Google Scholar 

  36. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    CAS  Google Scholar 

  37. Rossant J, Howard L (2002) Signaling pathways in vascular development. Annu Rev Cell Dev Biol 18:541–573

    CAS  Google Scholar 

  38. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    CAS  Google Scholar 

  39. Yue PYK, Mak NK, Cheng YK, Leung KW, Ng TB, Fan DTB, Yeung HW, Wong RNS (2007) Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin Med 2:6

    Google Scholar 

  40. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D'Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502

    CAS  Google Scholar 

  41. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364

    CAS  Google Scholar 

  42. Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637

    CAS  Google Scholar 

  43. Ng YS, D’Amore PA (2001) Therapeutic angiogenesis for cardiovascular disease. Curr Contr Trials Cardiovasc Med 2:278–285

    CAS  Google Scholar 

  44. Tunyogi-Csapo M, Koreny T, Vermes C, Galante JO, Jacobs JJ, Glant TT (2007) Role of fibroblasts and fibroblast-derived growth factors in periprosthetic angiogenesis. J Orthop Res 25:1378–1388

    CAS  Google Scholar 

  45. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242

    CAS  Google Scholar 

  46. Lau YT, Ma WC (1996) Nitric oxide inhibits migration of cultured endothelial cells. Biochem Biophys Res Commun 221:670–674

    CAS  Google Scholar 

  47. Tuomisto TT, Rissanen TT, Korkeela A, Korkeela A, Rutanen J, Ylä-Herttuala S (2004) HIF-VEGF-VEGFR-2, TNF-a and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174:111–120

    CAS  Google Scholar 

  48. Zachary I (2003) VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171–1177

    CAS  Google Scholar 

  49. Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107

    CAS  Google Scholar 

  50. Neagoe PE, Lemieux C, Sirois MG (2005) Vascular endothelial growth factor (VEGF)-A165-induced prostacyclin synthesis requires the activation of VEGF receptor-1 and −2 heterodimer. J Biol Chem 280:9904–9912

    CAS  Google Scholar 

  51. Silvestre JS, Smadja DM, Lévy BI (2013) Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 93:1743–1802

    CAS  Google Scholar 

  52. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    CAS  Google Scholar 

  53. Ziello JE, Jovin IS, Huang Y (2007) Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med 80:51–60

    CAS  Google Scholar 

  54. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6:521–534

    CAS  Google Scholar 

  55. Ohtani K, Dimmeler S (2011) Control of cardiovascular differentiation by microRNAs. Basic Res Cardiol 106:5–11

    CAS  Google Scholar 

  56. Baiguera S, Ribatti D (2013) Endothelialization approaches for viable engineered tissues. Angiogenesis 16:1–14

    CAS  Google Scholar 

  57. Hunting CB, Noort WA (2005) Zwaginga JJ Circulating endothelial (progenitor) cells reflect the state of the endothelium: vascular injury, repair and neovascularization. Vox Sang 88:1–9

    CAS  Google Scholar 

  58. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  Google Scholar 

  59. Dimmeler S, Hermann C, Galle J, Zeiher AM (1999) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–664

    CAS  Google Scholar 

  60. Ballieux BE, Hiemstra PS, Klar-Mohamad N, Hagen EC, van Es LA, van der Woude FJ, Daha MR (1994) Detachment and cytolysis of human endothelial cells by proteinase 3. Eur J Immunol 24:3211–3215

    CAS  Google Scholar 

  61. Re F, Zanetti A, Sironi M, Polentarutti N, Lanfrancone L, Dejana E, Colotta F (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127:537–546

    CAS  Google Scholar 

  62. Mancuso P, Calleri A, Cassi C, Gobbi A, Capillo M, Pruneri G, Martinelli G, Bertolini F (2003) Circulating endothelial cells as a novel marker of angiogenesis. Adv Exp Med Biol 522:83–97

    Google Scholar 

  63. Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+) endothelial precursor cells. Circ Res 88:167–174

    CAS  Google Scholar 

  64. Bombeli T, Muller M, Straub PW, Haeberli A (1996) Cyclosporine induced detachment of vascular endothelial cells initiates the intrinsic coagulation system in plasma and whole blood. J Lab Clin Med 127:621–634

    CAS  Google Scholar 

  65. Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ (1998) Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 4:408–414

    CAS  Google Scholar 

  66. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579

    CAS  Google Scholar 

  67. Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26:257–266

    CAS  Google Scholar 

  68. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  Google Scholar 

  69. Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29:1650–1655

    CAS  Google Scholar 

  70. Xu Q (2007) Progenitor cells in vascular repair. Curr Opin Lipidol 18:534–539

    CAS  Google Scholar 

  71. Lapergue B, Mohammad A, Shuaib A (2007) Endothelial progenitor cells and cerebrovascular diseases. Prog Neurobiol 83:349–362

    CAS  Google Scholar 

  72. Povsic T, Goldschmidt-Clermont P (2008) Endothelial progenitor cells: Markers of vascular reparative capacity. Ther Adv Cardiovasc Dis 2:199–213

    Google Scholar 

  73. Goligorsky MS (2013) Salven P Concise review: endothelial stem and progenitor cells and their habitats. Stem Cells Transl Med 2:499–504

    CAS  Google Scholar 

  74. Hillebrands JL, Onuta G, Rozing J (2005) Role of progenitor cells in transplant arteriosclerosis. Trends Cardiovasc Med 15:1–8

    CAS  Google Scholar 

  75. Hillebrands JL, Klatter FA, Bruggeman CA, Rozing J (2001) Development of transplant arteriosclerosis after allogeneic aorta transplantation in the rat: influence of recipient genotype. Transplant Proc 33:324–325

    CAS  Google Scholar 

  76. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R, Kushwaha SS, Caplice NM (2003) Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation 15(108):143–149

    Google Scholar 

  77. Minami E, Laflamme MA, Saffitz JE, Murry CE (2005) Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 112:2951–2958

    Google Scholar 

  78. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    CAS  Google Scholar 

  79. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903

    CAS  Google Scholar 

  80. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, Miche E, Böhm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226

    CAS  Google Scholar 

  81. Jevon M, Dorling A, Hornick PI (2008) Progenitor cells and vascular disease. Cell Prolif 41:146–164

    CAS  Google Scholar 

  82. Urbich C (2004) Dimmeler S Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353

    CAS  Google Scholar 

  83. Waltenberger J (2007) New horizons in diabetes therapy: the angiogenesis paradox in diabetes: description of the problem and presentation of a unifying hypothesis Immunol. Endocrinol Metab Agents Med Chem 7:87–93

    CAS  Google Scholar 

  84. Khazaei M, Fallahzadeh AR, Sharifi MR, Afsharmoghaddam N, Javanmard SH, Salehi E (2011) Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats. Clinics (Sao Paulo) 66:1419–1424

    Google Scholar 

  85. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350:48–58

    CAS  Google Scholar 

  86. Hammes HP (2011) Diabetic retinopathy and maculopathy. Internist (Berl) 52:518–532

    Google Scholar 

  87. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239

    CAS  Google Scholar 

  88. Kumar B, Gupta SK, Saxena R, Srivastava S (2012) Current trends in the pharmacotherapy of diabetic retinopathy. J Postgrad Med 58:132–139

    CAS  Google Scholar 

  89. Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267

    Google Scholar 

  90. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC (2007) Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast Reconstr Surg 119:59–70

    CAS  Google Scholar 

  91. Bento CF, Pereira P (2011) Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 54:1946–1956

    CAS  Google Scholar 

  92. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Google Scholar 

  93. Marigo V, Roberts DJ, Lee SM, Tsukurov O, Levi T, Gastier JM, Epstein DJ, Gilbert DJ, Copeland NG, Seidman CE, Jenkins NA, Seidman JG, Andrew P, Mcmahon AP, Tabin C (1995) Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics 28:44–51

    CAS  Google Scholar 

  94. van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, van Deventer SJ, Roberts DJ (2004) Peppelenbosch MP Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282

    Google Scholar 

  95. Mann RK, Beachy PA (2000) Cholesterol modification of proteins. Biochim Biophys Acta 1529:188–202

    CAS  Google Scholar 

  96. Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    CAS  Google Scholar 

  97. Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, Jessell TM (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81:445–455

    CAS  Google Scholar 

  98. Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP (2001) Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:599–612

    CAS  Google Scholar 

  99. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 15(18):641–659

    Google Scholar 

  100. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18:641–659

    CAS  Google Scholar 

  101. Lee JJ, von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71:33–50

    CAS  Google Scholar 

  102. Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214

    CAS  Google Scholar 

  103. Struhl G, Barbash DA, Lawrence PA (1997) Hedgehog organises the pattern and polarity of epidermal cells in the Drosophila abdomen. Development 124:2143–2154

    CAS  Google Scholar 

  104. Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411:716–720

    CAS  Google Scholar 

  105. Martínez MC, Larbret F, Zobairi F, Coulombe J, Debili N, Vainchenker W, Ruat M, Freyssinet JM (2006) Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood 108:3012–3020

    Google Scholar 

  106. Ruat M, Hoch L, Faure H, Rognan D (2014) Targeting of Smoothened for therapeutic gain. Trends Pharmacol Sci 35:237–246

    CAS  Google Scholar 

  107. Byrd N, Becker S, Maye P, Narasimhaiah R, St-Jacques B, Zhang X, McMahon J, McMahon A, Grabel L (2002) Hedgehog is required for murine yolk sac angiogenesis. Development 129:361–372

    CAS  Google Scholar 

  108. Lavine KJ, Long F, Choi K, Smith C, Ornitz DM (2008) Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135:3161–3171

    CAS  Google Scholar 

  109. Vokes SA, Yatskievych TA, Heimark RL, McMahon J, McMahon AP, Antin PB, Krieg PA (2004) Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development 131:4371–4380

    CAS  Google Scholar 

  110. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    CAS  Google Scholar 

  111. Coultas L, Nieuwenhuis E, Anderson GA, Cabezas J, Nagy A, Henkelman RM, Hui CC, Rossant J (2010) Hedgehog regulates distinct vascular patterning events through VEGF-dependent and -independent mechanisms. Blood 116:653–660

    CAS  Google Scholar 

  112. Kohli V, Schumacher JA, Desai SP, Rehn K, Sumanas S (2013) Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev Cell 25:196–206

    CAS  Google Scholar 

  113. Bijlsma MF, Peppelenbosch MP, Spek CA (2006) Hedgehog morphogen in cardiovascular disease. Circulation 114:1985–1991

    CAS  Google Scholar 

  114. Washington Smoak I, Byrd NA, Abu-Issa R, Goddeeris MM, Anderson R, Morris J, Yamamura K, Klingensmith J, Meyers EN (2005) Sonic hedgehog is required for cardiac outflow tract and neural crest cell development. Dev Biol 283:357–372

    CAS  Google Scholar 

  115. Clement CA, Kristensen SG, Møllgård K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST (2009) The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation. J Cell Sci 122:3070–3082

    CAS  Google Scholar 

  116. Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallón J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC (1999) Multiple left-right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 96:11376–11381

    CAS  Google Scholar 

  117. Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:781–792

    CAS  Google Scholar 

  118. DeBarber AE, Eroglu Y, Merkens LS, Pappu AS, Steiner RD (2011) Smith–Lemli–Opitz syndrome. Expert Rev Mol Med 13:e24

    Google Scholar 

  119. Peng T, Tian Y, Boogerd CJ, Lu MM, Kadzik RS, Stewart KM, Evans SM, Morrisey EE (2013) Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature 500:589–592

    CAS  Google Scholar 

  120. Goddeeris MM, Rho S, Petiet A, Davenport CL, Johnson GA, Meyers EN, Klingensmith J (2008) Intracardiac septation requires hedgehog-dependent cellular contributions from outside the heart. Development 135:1887–1895

    CAS  Google Scholar 

  121. Hoffmann AD, Peterson MA, Friedland-Little JM, Anderson SA, Moskowitz IP (2009) Sonic hedgehog is required in pulmonary endoderm for atrial septation. Development 136:1761–1770

    CAS  Google Scholar 

  122. Kanda S, Mochizuki Y, Suematsu T, Miyata Y, Nomata K, Kanetake H (2003) Sonic hedgehog induces capillary morphogenesis by endothelial cells through phosphoinositide 3-kinase. J Biol Chem 78:8244–8249

    Google Scholar 

  123. Ahmed RP, Haider KH, Shujia J, Afzal MR, Ashraf M (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One 5:e8576

    Google Scholar 

  124. Hirata-Tominaga K, Nakamura T, Okumura N, Kawasaki S, Kay EP, Barrandon Y, Koizumi N, Kinoshita S (2013) Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells 31:1396–1407

    CAS  Google Scholar 

  125. Fu JR, Liu WL, Zhou JF, Sun HY, Xu HZ, Luo L, Zhang H, Zhou YF (2006) Sonic hedgehog protein promotes bone marrow-derived endothelial progenitor cell proliferation, migration and VEGF production via PI 3-kinase/Akt signaling pathways. Acta Pharmacol Sin 27:685–693

    CAS  Google Scholar 

  126. Podolska K, Lipiec A, Hajdukiewicz K, Lubkowska H, Małecki M (2013) Sonic hedgehog stimulates the recruitment of endothelial progenitor cells. Med Wieku Rozwoj 17:151–156

    Google Scholar 

  127. Chinchilla P, Xiao L, Kazanietz MG, Riobo NA (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9:570–579

    CAS  Google Scholar 

  128. He QW, Xia YP, Chen SC, Wang Y, Huang M, Huang Y, Li JY, Li YN, Gao Y, Mao L, Mei YW, Hu B (2013) Astrocyte-derived sonic hedgehog contributes to angiogenesis in brain microvascular endothelial cells via RhoA/ROCK pathway after oxygen-glucose deprivation. Mol Neurobiol 47:976–987

    CAS  Google Scholar 

  129. Renault MA, Roncalli J, Tongers J, Thorne T, Klyachko E, Misener S, Volpert OV, Mehta S, Burg A, Luedemann C, Qin G, Kishore R, Losordo DW (2010) Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol 49:490–498

    CAS  Google Scholar 

  130. Yao Q, Renault MA, Chapouly C, Vandierdonck S, Belloc I, Jaspar-Vinassa B, Daniel-Lamazière JM, Laffargue M, Merched A, Desgranges C, Gadeau AP (2014) Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation. Blood. doi:10.1182/blood-2013-06-508689

  131. Renault MA, Robbesyn F, Chapouly C, Yao Q, Vandierdonck S, Reynaud A, Belloc I, Traiffort E, Ruat M, Desgranges C, Gadeau AP (2013) Hedgehog-dependent regulation of angiogenesis and myogenesis is impaired in aged mice. Arterioscler Thromb Vasc Biol 33:2858–2866

    CAS  Google Scholar 

  132. Pola R, Ling LE, Silver M, Corbley MJ, Kearney M, Blake Pepinsky R, Shapiro R, Taylor FR, Baker DP, Asahara T, Isner JM (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    CAS  Google Scholar 

  133. Straface G, Aprahamian T, Flex A, Gaetani E, Biscetti F, Smith RC, Pecorini G, Pola E, Angelini F, Stigliano E, Castellot JJ Jr, Losordo DW, Pola R (2009) Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med 13:2424–2435

    Google Scholar 

  134. Preda MB, Valen G (2013) Evaluation of gene and cell-based therapies for cardiac regeneration. Curr Stem Cell Res Ther 8:304–312

    CAS  Google Scholar 

  135. Xiao Q, Hou N, Wang YP, He LS, He YH, Zhang GP, Yi Q, Liu SM, Chen MS, Luo JD (2012) Impaired sonic hedgehog pathway contributes to cardiac dysfunction in type 1 diabetic mice with myocardial infarction. Cardiovasc Res 95:507–516

    CAS  Google Scholar 

  136. Kicheva A, Bollenbach T, Wartlick O, Julicher F, Gonzalez-Gaitan M (2012) Investigating the principles of morphogen gradient formation: from tissues to cells. Curr Opin Genet Dev 22:527–532

    CAS  Google Scholar 

  137. Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204

    CAS  Google Scholar 

  138. Johnson NR, Wang Y (2013) Controlled delivery of sonic hedgehog morphogen and its potential for cardiac repair. PLoS One 8:e63075

    CAS  Google Scholar 

  139. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, Kamide CE, Liu T, Gupta R, Sahoo S, Misener S, Kishore R, Losordo DW (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321

    CAS  Google Scholar 

  140. Agouni A, Mostefai HA, Porro C, Carusio N, Favre J, Richard V, Henrion D, Martínez MC, Andriantsitohaina R (2007) Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 21:2735–2741

    CAS  Google Scholar 

  141. Soleti R, Benameur T, Porro C, Panaro MA, Andriantsitohaina R, Martínez MC (2009) Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 30:580–588

    CAS  Google Scholar 

  142. Benameur T, Soleti R, Porro C, Andriantsitohaina R, Martínez MC (2010) Microparticles carrying Sonic hedgehog favor neovascularization through the activation of nitric oxide pathway in mice. PLoS One 5:e12688

    Google Scholar 

  143. Benameur T, Tual-Chalot S, Andriantsitohaina R, Martínez MC (2010) PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS One 5:e12392

    Google Scholar 

  144. Soleti R, Martinez MC (2012) Sonic Hedgehog on microparticles and neovascularization. Vitam Horm 88:395–438

    CAS  Google Scholar 

  145. Albayati MA, Shearman CP (2013) Peripheral arterial disease and bypass surgery in the diabetic lower limb. Med Clin North Am 97:821–834

    Google Scholar 

  146. Ozdemir BA, Brownrigg J, Patel N, Jones KG, Thompson MM, Hinchliffe RJ (2013) Population-based screening for the prevention of lower extremity complications in diabetes. Diabetes Metab Res Rev 29:173–182

    CAS  Google Scholar 

  147. Jarajapu YP, Grant MB (2010) The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res 106:854–869

    CAS  Google Scholar 

  148. Luo JD, Hu TP, Wang L, Chen MS, Liu SM, Chen AF (2009) Sonic hedgehog improves delayed wound healing via enhancing cutaneous nitric oxide function in diabetes. Am J Physiol Endocrinol Metab 297:E525–E531

    CAS  Google Scholar 

  149. Wang JM, Isenberg JS, Billiar TR, Chen AF (2013) Thrombospondin-1/CD36 pathway contributes to bone marrow-derived angiogenic cell dysfunction in type 1 diabetes via Sonic hedgehog pathway suppression. Am J Physiol Endocrinol Metabolism 305:E1464–E1472

    CAS  Google Scholar 

  150. Kusano KF, Allendoerfer KL, Munger W, Pola R, Bosch-Marce M, Kirchmair R, Yoon YS, Curry C, Silver M, Kearney M, Asahara T, Losordo DW (2004) Sonic hedgehog induces arteriogenesis in diabetic vasa nervorum and restores function in diabetic neuropathy. Arterioscler Thromb Vasc Biol 24:2102–2107

    CAS  Google Scholar 

  151. Asai J, Takenaka H, Kusano KF, Ii M, Luedemann C, Curry C, Eaton E, Iwakura A, Tsutsumi Y, Hamada H, Kishimoto S, Thorne T, Kishore R, Losordo DW (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113:2413–2424

    CAS  Google Scholar 

  152. Palladino M, Gatto I, Neri V, Straino S, Silver M, Tritarelli A, Piccioni A, Smith RC, Gaetani E, Losordo DW, Crea F, Capogrossi M, Pola R (2011) Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia. Mol Ther 19:658–666

    CAS  Google Scholar 

  153. Renault MA, Vandierdonck S, Chapouly C, Yu Y, Qin G, Metras A, Couffinhal T, Losordo DW, Yao Q, Reynaud A, Jaspard-Vinassa B, Belloc I, Desgranges C, Gadeau AP (2013) Gli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis. Circ Res 113:1148–1158

    CAS  Google Scholar 

  154. Palladino M, Gatto I, Neri V, Stigliano E, Smith RC, Pola E, Straino S, Gaetani E, Capogrossi M, Leone G, Hlatky L, Pola R (2012) Combined therapy with sonic hedgehog gene transfer and bone marrow-derived endothelial progenitor cells enhances angiogenesis and myogenesis in the ischemic skeletal muscle. J Vasc Res 49:425–431

    CAS  Google Scholar 

  155. Tual-Chalot S, Leonetti D, Andriantsitohaina R, Martinez MC (2011) Microvesicles: intracellular vectors of biological messages. Mol Interv 11:88–94

    Google Scholar 

  156. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, Reca R, Janowska-Wieczorek A, Ratajczak MZ (2002) Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol 30:450–459

    CAS  Google Scholar 

  157. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, Ratajczak J, Emerson SG, Kowalska MA, Ratajczak MZ (2001) Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–3149

    CAS  Google Scholar 

  158. Azevedo LC, Pedro MA, Laurindo FR (2007) Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Patents Cardiovasc Drug Discov 2:41–51

    CAS  Google Scholar 

  159. Yang C, Mwaikambo BR, Zhu T, Gagnon C, Lafleur J, Seshadri S, Lachapelle P, Lavoie JC, Chemtob S, Hardy P (2008) Lymphocytic microparticles inhibit angiogenesis by stimulating oxidative stress and negatively regulating VEGF-induced pathways. Am J Physiol Regul Integr Comp Physiol 294:467–476

    Google Scholar 

  160. Yang C, Xiong W, Qiu Q, Shao Z, Hamel D, Tahiri H, Leclair G, Lachapelle P, Chemtob S, Hardy P (2012) Role of receptor-mediated endocytosis in the antiangiogenic effects of human T lymphoblastic cell-derived microparticles. Am J Physiol Regul Integr Comp Physiol 302:R941–R949

    CAS  Google Scholar 

  161. Tahiri H, Yang C, Duhamel F, Omri S, Picard E, Chemtob S, Hardy P (2013) p75 neurotrophin receptor participates in the choroidal antiangiogenic and apoptotic effects of T-lymphocyte-derived microparticles. Invest Ophthalmol Vis Sci 54:6084–6092

    CAS  Google Scholar 

  162. Mostefai HA, Agouni A, Carusio N, Mastronardi ML, Heymes C, Henrion D, Andriantsitohaina R, Martinez MC (2008) Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol 180:5028–5035

    CAS  Google Scholar 

  163. Mostefai HA, Andriantsitohaina R, Martínez MC (2008) Plasma membrane microparticles in angiogenesis: role in ischemic diseases and in cancer. Physiol Res 57:311–320

    CAS  Google Scholar 

  164. Yang C, Gagnon C, Hou X, Hardy P (2010) Low density lipoprotein receptor mediates anti-VEGF effect of lymphocyte T-derived microparticles in Lewis lung carcinoma cells. Cancer Biol Ther 10:448–456

    CAS  Google Scholar 

  165. Waltenberger J (2009) VEGF resistance as a molecular basis to explain the angiogenesis paradox in diabetes mellitus. Biochem Soc Trans 37:1167–1170

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carmen Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Soleti, R., Andriantsitohaina, R., Martínez, M.C. (2014). The Role of Smoothened and Hh Signaling in Neovascularization. In: Ruat, M. (eds) The Smoothened Receptor in Cancer and Regenerative Medicine. Topics in Medicinal Chemistry, vol 16. Springer, Cham. https://doi.org/10.1007/7355_2014_70

Download citation

Publish with us

Policies and ethics