Advertisement

Adenosine A2A Receptor Antagonists

  • Brian C. Shook
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 18)

Abstract

This chapter summarizes and updates the work on adenosine A2A receptor antagonists for Parkinson’s disease. Adenosine A2A receptor antagonists were, and still are, a promising non-dopaminergic approach for the potential treatment of Parkinson’s disease. There have been numerous publications, patent applications, and press releases that highlight new medicinal chemistry approaches to this attractive and promising target to treat Parkinson’s disease. There have been many research efforts from various pharmaceutical and academic institutions targeting this receptor, and several compounds have advanced into clinical development. The chapter was broken down by scaffold type and will discuss the efforts to optimize particular scaffolds for activity, SAR, pharmacokinetics, and other drug discovery parameters. The majority of approaches focus on preparing selective A2A antagonists, but a few approaches to dual A2A/A1 antagonists and A2A/MAO-B will also be highlighted. The in vivo profiles of compounds will be highlighted and discussed to compare activities across different chemical series. A clinical report and update will be given on compounds that have entered clinical trials.

Keywords

6-Hydroxydopamine A2A antagonist Adenosine Catalepsy Dopamine MPTP Parkinson’s disease 

Abbreviations

6-OHDA

6-Hydroxydopamine

APEC

(2-[(2-aminoethylamino)carbonylethyl-phenyl-ethylamino]-5′-ethylcarboxamido-adenosine)

AR

Adenosine receptors

Bu

Butyl

cAMP

Cyclic adenosine monophosphate

COMT

Catechol O-methyltransferase

Et

Ethyl

h

Hour(s)

i-Pr

Isopropyl

L

Liter(s)

L-DOPA

Levodopamine

MAO-B

Monoamine oxidase B

Me

Methyl

min

Minute(s)

mol

Mole(s)

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

p.o.

Oral dose

PD

Parkinson’s disease

Ph

Phenyl

PK

Pharmacokinetics

Pr

Propyl

rt

Room temperature

s

Second(s)

s-Bu

sec-Butyl

t-Bu

tert-Butyl

References

  1. 1.
    Druri AN, Szent-Gyorgy A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237CrossRefGoogle Scholar
  2. 2.
    Van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005CrossRefGoogle Scholar
  3. 3.
    Stiles GL (1992) Adenosine receptors. J Biol Chem 267:6451–6454Google Scholar
  4. 4.
    Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484CrossRefGoogle Scholar
  5. 5.
    Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55CrossRefGoogle Scholar
  6. 6.
    Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in rat central nervous system. J Comp Neurol 401:163–186CrossRefGoogle Scholar
  7. 7.
    Fredholm BB, Svenningsson P (1998) Striatal adenosine A2A receptors-where are they? What do they do? Comments. Trends Pharmacol Sci 19:46–47CrossRefGoogle Scholar
  8. 8.
    Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K (2005) First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 55:133–136CrossRefGoogle Scholar
  9. 9.
    Svenningsson P, Hall H, Sedvall G, Fredholm BB (1997) Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse 27:322–335CrossRefGoogle Scholar
  10. 10.
    Ledent C, Vaugeois JM, Schiffmann SN, Pedrazzini T, Wl Yacoubi M, Vanderhaeghen JJ, Constentin J, Heath JK, Vassart G, Parmentier M (1997) Aggressive Hypoalgesia, and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678CrossRefGoogle Scholar
  11. 11.
    Chem Y, King K, Lai H (1992) Molecular cloning of a novel adenosine receptor gene from rat brain. Biochem Biophys Res Commun 185:304–309CrossRefGoogle Scholar
  12. 12.
    Meng F, Xie G, Chalmers D, Morgan C, Watson SJ, Akil H (1994) Cloning and expression of the A2A adenosine receptor from guinea pig brain. Neurochem Res 19:613–621CrossRefGoogle Scholar
  13. 13.
    Furlong TJ, Pierce KD, Selbie LA, Shine J (1992) Molecular characterization of a human brain adenosine A2 receptor. Brain Res 15:62–66CrossRefGoogle Scholar
  14. 14.
    Fink JS, Weaver DR, Rivkees SA, Peterfreund RA, Pollack AE, Adler EM, Reppert SM (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol Brain Res 14:186–195CrossRefGoogle Scholar
  15. 15.
    Schiffmann SN, Lipert F, Vassart G, Vanderhaeghen JJ (1991) Distribution of adenosine A2receptor mRNA in the human brain. Neurosci Lett 130:177–181CrossRefGoogle Scholar
  16. 16.
    Pollack AE, Fink JS (1995) Adenosine antagonists potentiate D2 dopamine dependent activation of Fos in the striatopallidal pathway. Neuroscience 68:721–728CrossRefGoogle Scholar
  17. 17.
    Ungerstedt U (1968) 6-Hydroxydopamine-induced generation of central monoamine neurons. Eur J Pharmacol 5:107–110CrossRefGoogle Scholar
  18. 18.
    Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493CrossRefGoogle Scholar
  19. 19.
    Luthman J, Fredriksson A, Sundstroem E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alteration at adult stage. Behav Brain Res 33:267–277CrossRefGoogle Scholar
  20. 20.
    Bankiewicz KS (1991) MPTP-induced parkinsonism in nonhuman primates. Methods Neurosci 7:168–182CrossRefGoogle Scholar
  21. 21.
    Jakowec MW, Petzinger GM (2004) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced lesion model of Parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med 54:497–513Google Scholar
  22. 22.
    Campos-Romo A, Ojeda-Flores R, Moreno-Briseno P, Fernandez-Ruiz J (2009) Quantitative evaluation of MPTP-treated nonhuman parkinsonian primates in the hallway task. J Neurosci Methods 177:361–368CrossRefGoogle Scholar
  23. 23.
    Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N, Schwarzchild MA (2001) Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143/1–RC143/6Google Scholar
  24. 24.
    Grondin R, Bedard PJ, Hadj Tahar A, Gregoire L, Mori A, Kase H (1999) Antiparkinsonian effect of a new adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 52:1673–1677CrossRefGoogle Scholar
  25. 25.
    Ongini E, Monopoli A, Impagnatiello F, Fredduzzi S, Schwarzchild M, Chen JF (2001) Dual actions of A2A adenosine receptor antagonists on motor dysfunction and neurodegenerative processes. Drug Dev Res 52:379–386CrossRefGoogle Scholar
  26. 26.
    Ikeda K, Kurokawa M, Aoyama S, Kuwana Y (2002) Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 80:262–270CrossRefGoogle Scholar
  27. 27.
    Kanda T, Jackson MJ, Smith LA, Pearce RKB, Nakamura J, Kase H, Kuwana Y, Jenner P (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513CrossRefGoogle Scholar
  28. 28.
    Koga K, Kurokawa M, Ochi M, Nakamura J, Kuwana Y (2000) Adenosine A2A receptor antagonists KF17837 and KW-6002 potentiate rotation induced by dopaminergic drugs in hemi-Parkinsonian rats. Eur J Pharmacol 408:249–255CrossRefGoogle Scholar
  29. 29.
    Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (2000) Combined use of the adenosine A2A antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases antiparkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 162:321–327CrossRefGoogle Scholar
  30. 30.
    Hauser RA, Hubble JP, Truong DD (2003) Randomized trial of adenosine A2A receptor antagonist istradefylline in advanced PD. Neurology 61:297–303CrossRefGoogle Scholar
  31. 31.
    Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie M, Morris MJ, Mouradian MM, Chase TN (2003) Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 61:293–296CrossRefGoogle Scholar
  32. 32.
    Ballarin M, Reiriz J, Ambrosio S, Mahy N (1995) Effect of locally infused 2-cholroadenosine, an A1 receptor agonist, on spontaneous and evoked dopamine release in rat neostriatum. Neurosci Lett 185:29–32CrossRefGoogle Scholar
  33. 33.
    Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci U S A 100:14397–14402CrossRefGoogle Scholar
  34. 34.
    Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA (2003) Subcellular localization of adenosine A1 receptors in nerve terminal and synapses of the rat hippocampus. Brain Res 987:49–58CrossRefGoogle Scholar
  35. 35.
    Maemoto T, Miho T, Takuma M, Noriko U, Hideaki M, Katsuya H, Takayuki Y, Kiyoharu S, Satoru K, Atsushi A, Akinori I, Nobuya M, Seitaro M (2004) Pharmacological characterization of FR194921, a new potent, selective, orally active antagonist for central adenosine A1 receptors. J Pharmacol Sci 96:42–52CrossRefGoogle Scholar
  36. 36.
    Gottlieb SS, Skettino SL, Wolff W, Beckman E, Fisher ML, Freudenberger R, Gladwell T, Marshall J, Cines M, Bennett D, Liittschwager EB (2000) Effects of BG9719 (CVT-124), an A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Amer Coll Cardiol 35:56–59CrossRefGoogle Scholar
  37. 37.
    Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Amer Coll Cardiol 50:1551–1560CrossRefGoogle Scholar
  38. 38.
    Stobel A, Schlenk M, Hinz S, Kuppers P, Heer P, Gutschow M, Muller CE (2013) Dual targeting of adenosine A2A receptors and monoamine oxidase B by 4H-3,1-benzothiazin-4-ones. J Med Chem 56:4580–4596CrossRefGoogle Scholar
  39. 39.
    Rivara S, Piersanti G, Bartoccini F, Diamantini G, Pala D, Riccioni T, Stasi MA, Cabri W, Borsini F, Mor M, Tarzia G, Minetti P (2013) Synthesis of (E)-8-(3-chlorostyryl)caffeine analogues leading to 9-deazaxanthine derivatives as dual A2A antagonists/MAO-B inhibitors. J Med Chem 56:1247–1261CrossRefGoogle Scholar
  40. 40.
    Nicotra A, Pierucci F, Parvez H, Senatori O (2004) Monoamine oxidase expression during development and aging. Neurotoxicology 25:155–165CrossRefGoogle Scholar
  41. 41.
    Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188CrossRefGoogle Scholar
  42. 42.
    Palhagen S, Heinonen E, Hagglund J (2006) Selegiline slows the progression of the symptoms of Parkinson’s disease. Neurology 66:1200–1206CrossRefGoogle Scholar
  43. 43.
    Parkinson Study Group (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson’s disease. Arch Neurol 61:561–566CrossRefGoogle Scholar
  44. 44.
    Schapira AH, Stocchi F, Borgohain R, Onofrj M, Bhatt M, Lorenzana P, Lucini V, Giuliani R, Anand R (2013) Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol 20:271–280CrossRefGoogle Scholar
  45. 45.
    Jones CK, Bubser M, Thompson AD, Dickerson JW, Turle-Lorenzo N, Amalric M, Blobaum AL, Bridges TM, Morrison RD, Jadhav S, Engers DW, Italiano K, Bode J, Daniels JS, Lindsley CW, Hopkins CR, Conn PJ, Niswender CM (2012) The metabotropic glutamate receptor 4-positve allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine A2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340:404–421CrossRefGoogle Scholar
  46. 46.
    Conn PJ, Barraglia G, Marino MJ, Nicoletti F (2005) Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787–798CrossRefGoogle Scholar
  47. 47.
    Lopez S, Turle-Lorenzo N, Archer F, De Leonibus E, Mele A, Amalric M (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J Neurosci 27:6701–6711CrossRefGoogle Scholar
  48. 48.
    de Lera Ruiz M, Lim Y-H, Zheng J (2013) Adenosine A2A receptor as a drug discovery target. J Med Chem 57:3623–3650. doi: 10.1021/jm4011669 CrossRefGoogle Scholar
  49. 49.
    Shook BC, Jackson PF (2011) Adenosine A2A receptor antagonists and Parkinson’s disease. ACS Chem Neurosci 2:555–567CrossRefGoogle Scholar
  50. 50.
    Shah U, Hodgson R (2010) Recent progress in the discovery of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Curr Opin Drug Disc Dev 13:466–480Google Scholar
  51. 51.
    Pinna A (2009) Novel investigational adenosine A2A receptor antagonists for Parkinson’s disease. Expert Opin Investig Drugs 18:1619–1631CrossRefGoogle Scholar
  52. 52.
    Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263CrossRefGoogle Scholar
  53. 53.
    Valls MD, Cronstein BN, Montesinos MC (2009) Adenosine receptor agonists for promotion of dermal would healing. Biochem Pharmacol 77:1117–1124CrossRefGoogle Scholar
  54. 54.
    Fredholm BB (1980) Are methylxanthines effects due to antagonism of endogenous adenosine? Trends Pharmacol Sci 1:129–132CrossRefGoogle Scholar
  55. 55.
    Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen PJ, Karton Y (1993) Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 36:1333–1342CrossRefGoogle Scholar
  56. 56.
    Sauer R, Maurinsh J, Reith U, Fulle F, Klotz KN, Muller CE (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A2A selective adenosine receptor antagonists. J Med Chem 43:440–448CrossRefGoogle Scholar
  57. 57.
    Kase H (2003) The adenosine A2A receptor selective antagonist KW6002: research toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology 61:S97–S100CrossRefGoogle Scholar
  58. 58.
    Seale TW, Abla KA, Shamim MT, Carney JM, Daly JW (1988) 3,7-Dimethyl-1-propargylxanthine: a potent and selective in vivo antagonist of adenosine analogs. Life Sci 43:1671–1684CrossRefGoogle Scholar
  59. 59.
    Hokemeyer J, Burbiel J, Muller CE (2004) Multigram-scale synthesis, stability and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318CrossRefGoogle Scholar
  60. 60.
    Dungo R, Deeks ED (2013) Istradefylline: first global approval. Drugs 73:875–882CrossRefGoogle Scholar
  61. 61.
    Kanda T, Tashiro T, Kuwana Y, Jenner P (1998) Adenosine A2A receptors modify motor function in MPTP-treated common marmosets. Neuroreport 9:2857–2860CrossRefGoogle Scholar
  62. 62.
    Kyowa Hakko Kogyo Co. Ltd. (2008) Kyowa Hakko receives not approvable letter from FDA for istradefylline (KW-6002). Press Release, February 28Google Scholar
  63. 63.
    Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, Stone GA, Cash WD (1987) Biochemical characterization of the triazoloquinazoline, CGS15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241:415–420Google Scholar
  64. 64.
    Sorges R, Howard HR, Browne RG, Lebel LA, Seymour PA, Koe BK (1990) 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J Med Chem 33:2240–2254CrossRefGoogle Scholar
  65. 65.
    Gatta F, Del Giudice MR, Borioni A, Borea PA, Dionisotti S, Ongini E (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4-triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–576CrossRefGoogle Scholar
  66. 66.
    Ongini E (1997) SCH 58261: a selective A2A adenosine receptor antagonist. Drug Dev Res 42:63–70CrossRefGoogle Scholar
  67. 67.
    Shah U, Boyle CD, Chackalamannil S, Neustadt BR, Lindo N, Greenlee WJ, Foster C, Arik L, Zhai Y, Ng K, Wang S, Monopoli A, Lachowicz JE (2008) Biaryl and heteroaryl derivatives of SCH 58261 as potent and selective adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18:4199–4203CrossRefGoogle Scholar
  68. 68.
    Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Monopoli A, Ongini E, Varani K, Borea PA (2002) 7-Substituted 5-amino-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as A2A adenosine receptor antagonists: a study on the importance of modifications at the side chain on the activity and solubility. J Med Chem 45:115–126CrossRefGoogle Scholar
  69. 69.
    Neustadt BR, Hao J, Lindo N, Greenlee WJ, Stamford AW, Tulshian D, Ongini E, Hunter J, Monopoli A, Bertorelli R, Foster C, Arik L, Lachowicz J, Ng K, Feng KI (2007) Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 17:1376–1380CrossRefGoogle Scholar
  70. 70.
    Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME, Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR, Stamford AW, Parker EM, Reggiani A, Hunter JC (2009) Characterization of the potent and highly selective 2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 330:294–303CrossRefGoogle Scholar
  71. 71.
    Thomson Reuters Pharma. https://www.thomson-pharma.com/portal/page/portal/popups/NEWS%20ARTICLE%20DETAILS?_dummy = y&referenceid = 1427557&dbsource = Iddb
  72. 72.
    Shah U, Lankin CM, Boyle CD, Chackalamannil S, Greenlee WJ, Neustadt BR, Cohen-Williams ME, Higgins GA, Ng K, Varty GB, Zhang H, Lachowicz JE (2008) Design, synthesis, and evaluation of fused heterocyclic analogs of SCH 58261 as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18:4204–4209CrossRefGoogle Scholar
  73. 73.
    Neustadt BR, Boyle CD, Chackalamannil S, Harris J, Lankin CM, Liu H, Shah U, Stanford A (2007) 2-Heteroaryl-pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]-pyrimidine as adenosine A2A receptor antagonists. US-20070066620Google Scholar
  74. 74.
    Neustadt BR, Hao J, Liu H, Boyle CD, Chackalamannil S, Shah UG, Stamford A, Harris JM (2005) Preparation of pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]-pyrimidine adenosine A2A receptor antagonists. US-20050239795Google Scholar
  75. 75.
    Neustadt BR, Hao J, Liu H, Boyle C, Chackalamannil S, Shah U, Stamford A (2004) 2-Alkynyl- and 2-alkenyl-pyrazolo-[4,3-e]-1,2,4-triazolo-[1,5-c]-pyrimidine adenosine A2A receptor antagonists. WO-2004094431Google Scholar
  76. 76.
    Shah U, Boyle C, Chackalamannil S, Lankin C, Neustadt B, Stamford A, Cohen-Williams M, Hodgson R, Lachowicz J, Varty G, Zhai Y et al (2010) Identification of structurally distinct analogs of SCH 420814 (preladenant) as adenosine A2A receptor antagonists. 239th American Chemical Society National Meeting, San Francisco, CA, USA: MEDI 547Google Scholar
  77. 77.
    Silverman LS, Caldwell JP, Greenlee WJ, Kiselgof E, Matasi JJ, Tulshian DB, Arik L, Foster C, Bertorelli R, Monopoli A, Ongini E (2007) 3H-[1,2,4]-Triazolo[5,1-i]purin-5-amine derivatives as adenosine A2A antagonists. Bioorg Med Chem Lett 17:1659–1662CrossRefGoogle Scholar
  78. 78.
    Harris JM, Neustadt BR, Zhang H, Lachowicz J, Cohen-Williams M, Varty G, Hao J, Stamford AW (2011) Potent and selective adenosine A2A receptor antagonists: [1,2,4]-triazolo[4,3-c]pyrimidin-3-ones. Bioorg Med Chem Lett 21:2497–2501CrossRefGoogle Scholar
  79. 79.
    Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (2000) 1,2,4-Triazolo[4,3-a]quinoxalin-1-one: a versatile tool for the synthesis of potent and selective adenosine receptor antagonists. J Med Chem 43:1158–1164CrossRefGoogle Scholar
  80. 80.
    Colotta V, Catarzi D, Varano F, Filacchioni G, Martini C, Trincavelli L, Lucacchini A (2003) Synthesis of 4-amino-6-(hetero)arylalkylamino-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent A2A receptor antagonists. Bioorg Med Chem 11:5509–5518CrossRefGoogle Scholar
  81. 81.
    Mishra CB, Barodia SK, Prakash A, Senthil Kumar JB, Luthra PM (2010) Novel 8-(furan-2-yl)-3-substituted thiazolo [5,4-e][1,2,4] triazolo[1,5-c] pyrimidine-2(3H)-thione derivatives as potential adenosine A2A receptor antagonists. Bioorg Med Chem 18:2491–2500CrossRefGoogle Scholar
  82. 82.
    Shook BC, Rassnick S, Hall D, Rupert KC, Heintzelman GR, Hansen K, Chakravarty D, Bullington JL, Scannevin RH, Magliaro B, Westover L, Carroll K, Lampron L, Russell R, Branum S, Wells K, Damon S, Youells S, Li X, Osbourne M, Demarest K, Tang Y, Rhodes K, Jackson PF (2010) Methylene amine substituted arylindenopyrimidines as potent adenosine A2A/A1 antagonists. Bioorg Med Chem Lett 20:2864–2867CrossRefGoogle Scholar
  83. 83.
    Shook BC, Rassnick S, Osborne MC, Davis S, Westover L, Boulet J, Hall D, Rupert KC, Heintzelman GR, Hansen K, Chakravarty D, Bullington JL, Russell R, Branum S, Wells KM, Damon S, Youells S, Li X, Beauchamp DA, Palmer D, Reyes M, Demarest K, Tang Y-T, Rhodes K, Jackson PF (2010) In vivo characterization of a dual adenosine A2A/A1 receptor antagonist in animal models of Parkinson’s disease. J Med Chem 53:8104–8115CrossRefGoogle Scholar
  84. 84.
    Shook BC, Rassnick S, Chakravarty D, Wallace N, Ault M, Crooke J, Barbay JK, Wang A, Leonard K, Powell MT, Alford V, Hall D, Rupert KC, Heintzelman GR, Hansen K, Bullington JL, Scannevin RH, Carroll K, Lampron L, Westover L, Russell R, Branum S, Wells K, Damon S, Youells S, Beauchamp D, Li X, Rhodes K, Jackson PF (2010) Optimization of arylindenopyrimidines as potent adenosine A2A/A1 antagonists. Bioorg Med Chem Lett 20:2868–2871CrossRefGoogle Scholar
  85. 85.
    Lim H-K, Chen J, Sensenhauser C, Cook K, Preston R, Thomas T, Shook B, Jackson PF, Rassnick S, Rhodes K, Gopaul V, Salter R, Silva J, Evans DC (2011) Overcoming the genotoxicity of a pyrrolidine substituted arylindenopyrimidine as a potent dual adenosine A2A/A1 antagonist by minimizing bioactivation to an iminium ion reactive intermediate. Chem Res Toxicol 24:1012–1030CrossRefGoogle Scholar
  86. 86.
    Shook BC, Rassnick S, Wallace N, Crooke J, Ault M, Chakravarty D, Barbay JK, Wang A, Leonard K, Alford V, Powell MT, Scannevin RH, Carroll K, Lampron L, Westover L, Russell R, Branum S, Wells K, Damon S, Youells S, Li X, Beauchamp DA, Rhodes K, Jackson PF (2012) Design and characterization of optimized adenosine A2A/A1 receptor antagonists for the treatment of Parkinson’s disease. J Med Chem 55:1402–1417CrossRefGoogle Scholar
  87. 87.
    Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, Coll MG (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2A selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102CrossRefGoogle Scholar
  88. 88.
    Jaakola V-P, Griffith M, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217CrossRefGoogle Scholar
  89. 89.
    Vu CB, Shields P, Peng B, Kumaravel G, Jin X, Phadke D, Wang J, Engber T, Ayyub E, Petter RC (2004) Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 14:4835–4838CrossRefGoogle Scholar
  90. 90.
    Neustadt BR, Liu H, Hao J, Greenlee WJ, Stamford AW, Foster C, Arik L, Lachowicz J, Zhang H, Bertorelli R, Fredduzzi S, Varty G, Cohen-Williams M, Ng K (2009) Potent and selective adenosine A2A receptor antagonists: 1,2,4-triazolo[1,5-c]pyrimidines. Bioorg Med Chem Lett 19:967–971CrossRefGoogle Scholar
  91. 91.
    Matasi JJ, Caldwell JP, Zhang H, Fawzi A, Higgins GA, Cohen-Williams ME, Varty GB, Tulshian DB (2005) 2-(2-Furanyl)-7-phenyl[1,2,4]triazolo[1,5-c]pyrimidin-5-amine analogs as adenosine A2A antagonists: the successful reduction of hERG activity. Bioorg Med Chem Lett 15:3675–3678CrossRefGoogle Scholar
  92. 92.
    Peng H, Kumaravel G, Yao G, Sha L, Wang J, Van Vlijmen H, Bohnert T, Huang C, Vu CB, Ensinger CL, Chang H, Engber TM, Whalley ET, Petter RC (2004) Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J Med Chem 47:6218–6229CrossRefGoogle Scholar
  93. 93.
    Dowling JE, Vessels JT, Haque S, Chang HX, van Vloten K, Kumaravel G, Engber T, Jin X, Phadke D, Wang J, Ayyub E, Petter RC (2005) Synthesis of [1,2,4]triazolo[1,5-a]pyrazines as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 15:4809–4813CrossRefGoogle Scholar
  94. 94.
    Yao G, Haque S, Sha L, Kumaravel G, Wang J, Engber TM, Whalley ET, Onlon PR, Chang H, Kiesman WF, Petter RC (2005) Synthesis of alkyne derivatives of a novel triazolopyrazine as A2A adenosine receptor antagonists. Bioorg Med Chem Lett 15:511–515CrossRefGoogle Scholar
  95. 95.
    Holschbach MH, Bier D, Stusgen S, Wutz W, Sihver W, Coenen HH, Olsson RA (2006) Synthesis and evaluation of 7-amino-2-(2(3)-furyl)-5-phenethylamino-oxazolo[5,4-d]pyrimidines as potential A2A adenosine receptor antagonists for positron emission tomography (PET). Eur J Med Chem 41:7–15CrossRefGoogle Scholar
  96. 96.
    Shao Y, Cole AG, Brescia M-R, Qin L-Y, Duo J, Stauffer TM, Rokosz LL, McGuinness BF, Henderson I (2009) Synthesis and SAR studies of trisubstituted purinones as potent and selective adenosine A2A receptor antagonists. Bioorg Med Chem Lett 19:1399–1402CrossRefGoogle Scholar
  97. 97.
    Weiss SM, Benwell K, Cliffe IA, Gillespie RJ, Knight AR, Lepiniere J, Misra A, Pratt RM, Revell D, Upton R, Dourish CT (2003) Discovery of nonxanthine adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Neurology 61:S101–S106CrossRefGoogle Scholar
  98. 98.
    Gillespie RJ, Adams DR, Bebbington D, Benwell K, Cliffe IA, Dawson CE, Dourish CT, Fletcher A, Gaur S, Giles PR, Jordan AM, Knight AR, Knutsen LJS, Lawrence A, Lerpiniere J, Misra A, Porter RHP, Pratt RM, Shepherd R, Upton R, Ward SE, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 1: discovery and synthesis of thieno[3,2-d]pyrimidine-4-methanone derivatives. Bioorg Med Chem Lett 18:2916–2919CrossRefGoogle Scholar
  99. 99.
    Gillespie RJ, Cliffe IA, Sawson CE, Dourish CT, Gaur S, Giles PR, Jordan AM, Knight AR, Lawrence A, Lerpiniere J, Misra A, Pratt RM, Todd RS, Upton R, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 2: design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives. Bioorg Med Chem Lett 18:2920–2923CrossRefGoogle Scholar
  100. 100.
    Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Jordan AM, Knight AR, Lerpiniere J, Misra A, Pratt RM, Roffey J, Stratton GC, Upton R, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 3: design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorg Med Chem Lett 18:2924–2929CrossRefGoogle Scholar
  101. 101.
    Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J, Leonardi S, Lightowler S, McAteer S, Merrett A, Misra A, Padfield A, Reece M, Saadi M, Selwood DL, Stratton GC, Surry D, Todd R, Tong X, Ruston V, Upton R, Weiss SM (2009) Antagonists of the human A2A adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 52:33–47CrossRefGoogle Scholar
  102. 102.
    Vernalis (2004) Vernalis and Biogen Idec to collaborate on research for Parkinson’s disease. Press Release, June 24Google Scholar
  103. 103.
    Vernalis (2010) Vernalis announces A2A receptor antagonist programme for Parkinson’s disease with next generation compound. Press Release, July 16Google Scholar
  104. 104.
    Vernalis (2012) Positive results achieved in Vernalis’ receptor occupancy study of V81444 for Parkinson’s disease and other CNS indications. Press Release, December 12Google Scholar
  105. 105.
    Minetti P, Tinti MO, Carminati P, Castorina M, Di Cesare MA, Di Serio S, Gallo G, Ghirardi O, Giorgi F, Giorgi L, Piersanti G, Bartoccini F, Tarzia G (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J Med Chem 48:6887–6896CrossRefGoogle Scholar
  106. 106.
    Stasi MA, Borsini F, Varani K, Vincenzi F, Di Cesare MA, Minetti P, Ghirardi O, Carminati P (2006) ST 1535: a preferential A2A adenosine receptor antagonist. Int J Neuropsychopharmacol 9:575–584CrossRefGoogle Scholar
  107. 107.
    Rose S, Ramsay Croft N, Jenner P (2007) The novel adenosine A2a antagonist ST1535 potentiates the effects of a threshold dose of L-dopa in unilaterally 6-OHDA-lesioned rats. Brain Res 1133:110–114CrossRefGoogle Scholar
  108. 108.
    Tronci E, Simola N, Borsini F, Schintu N, Frau L, Carminati P, Morelli M (2007) Characterization of the antiparkinsonian effects of the new adenosine A2A receptor antagonist ST1535: acute and subchronic studies in rats. Eur J Pharmacol 566:94–102CrossRefGoogle Scholar
  109. 109.
    Rose S, Jackson MJ, Smith LA, Stockwell K, Johnson L, Carminati P, Jenner P (2006) The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 546:82–87CrossRefGoogle Scholar
  110. 110.
    Cabri W, Minetti P, Piersanti G, Tarsia G (2010) Oxidated derivatives of triazolylpurines useful as ligands of the adenosine A2A receptor and their use as medicaments. PCT Int. Appl. WO 2010106145Google Scholar
  111. 111.
    Shook BC, Chakravarty D, Barbay JK, Wang W, Leonard K, Alford V, Powell M, Beauchamp DA, Rassnick S, Scannevin R, Carroll K, Wallace N, Crooke J, Ault M, Lampron L, Westover L, Rhodes K, Jackson PF (2011) Aminomethyl substituted thieno[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Med Chem Commun. doi: 10.1039/C1MD00082A Google Scholar
  112. 112.
    Shook BC, Chakravarty D, Barbay JK, Wang A, Leonard K, Alford V, Powell MT, Rassnick S, Scannevin RH, Carroll K, Wallace N, Crooke J, Ault M, Lampron L, Westover L, Rhodes K, Jackson PF (2013) Substituted thiean[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 23:2688–2691CrossRefGoogle Scholar
  113. 113.
    McGuinness BF, Cole AG, Dong G, Brescia M-R, Shao Y, Henderson I, Rokosz LL, Stauffer TM, Mannava N, Kimble EF, Hicks C, White N, Wines PG, Quadros E (2010) Discovery of 2-aminoimidazopyridine adenosine A2A receptor antagonists. Bioorg Med Chem Lett 20:6845–6849CrossRefGoogle Scholar
  114. 114.
    Flohr A, Moreau JL, Poli SM, Riemer C, Steward L (2005) 4-Hydroxy-4-methyl-piperidine-1-carboxylic acid (4-methoxy-7-morpholin-4-yl-benzothiazol-2-yl)-amide. US 20050261289Google Scholar
  115. 115.
    Flohr A, Riemer C (2006) Benzothiazole derivatives. WO 2006008041Google Scholar
  116. 116.
    Flohr A, Riemer C (2006) Substituted benzothiazoles. WO 2006008040Google Scholar
  117. 117.
    Norcross RD (2004) Benzoxazole derivatives and their use as adenosine receptor ligands. PCT int. Appl. WO 2004063177Google Scholar
  118. 118.
    Norcross RD (2005) Thiazolopyridine. U.S. Pat. Appl. Publ. US 20050261289Google Scholar
  119. 119.
    Woiwode T, Noran M (2000) 4-Hydroxy-4-methyl-piperidine-1-carboxylic acid (4-methoxy-7-morpholin-4-yl-benzothiazol-2-yl)-amide for the treatment of post-traumatic stress disorder. PCT Int. Appl. WO 2009015236Google Scholar
  120. 120.
    Therapeutics S (2007) Roche and Synosis Therapeutics announce partnership to explore potential of five compounds targeting the central nervous system. Press Release, January, 4Google Scholar
  121. 121.
    Therapies B (2012) Biotie’s tozadenant (SYN115) meets primary and multiple secondary endpoints in phase 2b study in Parkinson’s disease. Press Release, December, 11Google Scholar
  122. 122.
    Mayer S, Schann S (2010) New adenosine receptor ligands and uses thereof. PCT Int. Appl. WO 2010084425Google Scholar
  123. 123.
    Shiohara H, Nakamura T, Kobayashi S (2006) Novel benzofuran derivative, pharmaceutical composition comprising the same, and use of the derivative or composition. PCT Int. Appl. WO 2006115134Google Scholar
  124. 124.
    Saku O, Saki M, Kurokawa M, Ikeda K, Takizawa T, Uesaka N (2010) Synthetic studies on selective adenosine A2A receptor antagonists: synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 20:1090–1093CrossRefGoogle Scholar
  125. 125.
    Saku O, Saki M, Kurokawa M, Ikeda K, Uchida S-I, Takizawa T, Uesaka N (2010) Synthetic studies on selective adenosine A2A receptor antagonists. Part II: synthesis and structure-activity relationships of novel benzofuran derivatives. Bioorg Med Chem Lett 20:3768–3771CrossRefGoogle Scholar
  126. 126.
    Yonishi S, Aoki S, Matsushima Y, Akahane A (2005) Preparation of pyrazines as adenosine A1 and A2A receptor antagonists and their pharmaceutical compositions. PCT Int. Appl. WO 2005040151Google Scholar
  127. 127.
    Mihara T, Mihara K, Yarimizu J, Mitani Y, Matsuda R, Yamamoto H, Aoki S, Akahane A, Iwashita A, Matsuoka N (2007) Pharmacological characterization of a novel, potent adenosine A1 and A2A receptor dual antagonist, 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one (ASP5854), in models of Parkinson’s disease and cognition. J Pharmacol Exp Ther 323:708–719CrossRefGoogle Scholar
  128. 128.
    Mihara T, Noda A, Arai H, Mihara K, Iwashita A, Murakami Y, Matsuya T, Miyoshi S, Nishimura S, Matsuoka N (2008) Brain adenosine A2A receptor occupancy by a novel A1/A2A receptor antagonist, ASP5854, in rhesus monkeys: relationship to anticataleptic effect. J Nucl Med 49:1183–1188CrossRefGoogle Scholar
  129. 129.
    Mihara T, Iwashita A, Matsuoka N (2008) A novel adenosine A1 and A2A receptor antagonist ASP5854 ameliorates motor impairment in MPTP-treated marmosets: comparison with existing anti-Parkinson’s disease drugs. Behav Brain Res 194:152–161CrossRefGoogle Scholar
  130. 130.
    Sams AG, Mikkelsen GK, Larsen M, Torup L, Brennum LT, Schroder TJ, Bang-Andersen B (2010) Hit-to-lead optimization of a series of carboxamides of ethyl 2-amino-4-phenylthiazole-5-carboxylates as novel adenosine A2A receptor antagonists. Bioorg Med Chem Lett 20:5241–5244CrossRefGoogle Scholar
  131. 131.
    Cole AG, Stauffer TM, Rokosz LL, Metzger A, Dillard LW, Zeng W, Henderson I (2009) Synthesis of 2-amino-5-benzoyl-4-(2-furyl)thiazoles as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 19:378–381CrossRefGoogle Scholar
  132. 132.
    Langmead CJ, Andrews SP, Congreve M, Errey JC, Hurrell E, Marshall FH, Mason JS, Richardson CM, Robertson N, Zhukov A, Weir M (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55:1904–1909CrossRefGoogle Scholar
  133. 133.
    Congreve MS, Andrews SP, Mason JS, Richardson CM, Brown GA (2011) 1,2,4-triazine-4-amine derivatives. PCT Int. Appl. WO 2011095625Google Scholar
  134. 134.
    Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903CrossRefGoogle Scholar
  135. 135.
    Camacho Gomez JA, Castro-Palomino Laria JC (2011) 4-Aminopyrimidine derivatives and their use as adenosine A2A receptor antagonists. PCT Int. Appl. WO 2011121418Google Scholar
  136. 136.
    Zhang X, Rueter JK, Chen Y, Moorjani M, Lanier MC, Lin E, Gross RS, Tellew JE, Williams JP, Lechner SM, Markison S, Joswig T, Malany S, Santos M, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz J-L, Saunders J, Slee DH (2008) Synthesis of N-pyrimidinyl-2-phenoxyacetamides as adenosine A2A receptor antagonists. Bioorg Med Chem Lett 18:1778–1783CrossRefGoogle Scholar
  137. 137.
    Zhang X, Tellew JE, Luo Z, Moorjani M, Lin E, Lanier MC, Chen Y, Williams JP, Saunders J, Lechner SM, Markison S, Joswig T, Petroski R, Piercey J, Kargo W, Malany S, Santos M, Gross RS, Wen J, Jalalil K, O’Brien Z, Stotz CE, Crespo MI, Diaz J-L, Slee DH (2008) Lead optimization of 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-pyridylpyrimidines as A2A adenosine receptor antagonists for the treatment of Parkinson’s disease. J Med Chem 51:7099–7110CrossRefGoogle Scholar
  138. 138.
    Lanier MC, Moorjani M, Luo Z, Chen Y, Lin E, Tellew JE, Zhang X, Williams JP, Gross RS, Lechner SM, Markison S, Joswig T, Kargo W, Piercey J, Santos M, Malany S, Zhao M, Petroski R, Crespo MI, Diaz J-L, Saunders J, Wen J, O’Brien Z, Jalali K, Madan A, Slee DH (2009) N-[6-Amino-2-(heteroaryl)-pyrimidine-4-yl]acetamides as A2A receptor antagonists with improved druglike properties and in vivo efficacy. J Med Chem 52:709–717CrossRefGoogle Scholar
  139. 139.
    Slee DH, Zhang X, Moorjani M, Lin E, Lanier MC, Chen Y, Rueter JK, Lechner SM, Markison S, Malany S, Joswig T, Santos M, Gross RS, Williams JP, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz J-L, Wen J, O’Brien Z, Saunders J (2008) Identification of novel, water-soluble, 2-amino-N-pyrimidin-4-yl acetamides as A2A receptor antagonists with in vivo efficacy. J Med Chem 51:400–406CrossRefGoogle Scholar
  140. 140.
    Slee DH, Chen Y, Zhang X, Moorjani M, Lanier MC, Lin E, Rueter JK, Williams JP, Lechner SM, Markison S, Malany S, Santos M, Gross RS, Jalali K, Sai Y, Zuo Z, Yang C, Castro-Palomino JC, Crespo MI, Prat M, Gual S, Diaz J-L, Saunders J (2008) 2-Amino-N-pyrimidin-4-ylacetamides as A2A receptor antagonists: 1. Structure-activity relationships and optimization of heterocyclic substituents. J Med Chem 51:1719–1729CrossRefGoogle Scholar
  141. 141.
    Moorjani M, Luo Z, Lin E, Vong BG, Chen Y, Zhang X, Rueter JK, Gross RS, Lanier MC, Tellew JE, Williams JP, Lechner SM, Malany S, Santos M, Crespo MI, Diaz J-L, Saunders J, Slee DH (2008) 2,6-Diaryl-4-acylaminopyrimidines as potent and selective adenosine A2A antagonists with improved solubility and metabolic stability. Bioorg Med Chem Lett 18:5402–5405CrossRefGoogle Scholar
  142. 142.
    Gillespie RJ, Bamford SJ, Gaur S, Jordan AM, Lerpiniere J, Mansell HL, Stratton GC (2009) Antagonists of the human A2A receptor. Part 5: highly bio-available pyrimidine-4-carboxamides. Bioorg Med Chem Lett 19:2664–2667CrossRefGoogle Scholar
  143. 143.
    Gillespie RJ, Bamford SJ, Clay A, Gaur S, Haymes T, Jackson PS, Jordan AM, Klenke B, Leonardi S, Liu J, Mansell HL, Ng S, Saadi M, Simmonite H, Stratton GC, Todd RS, Williamson DS, Yule IA (2009) Antagonists of the human A2A receptor. Part 6: further optimization of pyrimidine-4-carboxamides. Bioorg Med Chem 17:6590–6605CrossRefGoogle Scholar
  144. 144.
    Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]-TMSX PET. Synapse 61:778–784CrossRefGoogle Scholar
  145. 145.
    Mishina M, Ishiwata K, Kimura Y, Naganawa M, Kitamura S, Suzuki M, Hashimoto M, Ishibashi K, Oda K, Sakata M, Hamamoto M, Kobayashi S, Katayama Y, Ishii K (2011) Adenosine A2A receptors measured with [11C]-TMSX PET in the striata of Parkinson’s disease patients. PLoS One 6:e17338CrossRefGoogle Scholar
  146. 146.
    Zocchi C, Ongini E, Ferrara S, Baraldi PG, Dionisotti S (1996) Binding of the radioligand [3H]-SCH58261, a new non-xanthine A2A adenosine receptor antagonist, to rat striatal membranes. Br J Pharmacol 117:1381–1386CrossRefGoogle Scholar
  147. 147.
    Belardinelli L, Shryok JC, Ruble J, Monopoli A, Dionisotti S, Ongini E, Dennis DM, Baker SP (1996) Binding of the novel nonxanthine A2A adenosine receptor antagonist [3H]-SCH58261 to coronary artery membranes. Circ Res 79:1153–1160CrossRefGoogle Scholar
  148. 148.
    Dionisotti S, Ferrara S, Molta C, Zocchi C, Ongini E (1996) Labeling of A2A adenosine receptors in human platelets by use of the new nonxanthine antagonist radioligand [3H]-SCH58261. J Pharmacol Exp Ther 278:1209–1214Google Scholar
  149. 149.
    Varani K, Gessi S, Dionisotti S, Ongini E, Borea PA (1998) [3H]-SCH58261 labeling of functional A2A adenosine receptors in human neutrophil membranes. Br J Pharmacol 123:1723–1731CrossRefGoogle Scholar
  150. 150.
    Fredholm BB, Lindstrom K, Dionisotti S, Ongini E (1998) [3H]-SCH58261, a selective adenosine A2A receptor antagonist, is a useful ligand in autoradiographic studies. J Neurochem 70:1210–1216CrossRefGoogle Scholar
  151. 151.
    Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, Varani K, Monopoli A, Matarrese M, Carpinelli A, Magni F, Kienle MG, Fazio F (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A2A receptor system using positron emission tomography. J Med Chem 43:4359–4362CrossRefGoogle Scholar
  152. 152.
    Brooks DJ, Papapetropoulos S, Vandenhende F, Tomic D, Coppell A, O’Neill G (2010) An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 33:55–60CrossRefGoogle Scholar
  153. 153.
    Niswender CM, Johnson KA, Weaver CD, Jones CK, Xiang Z, Luo Q, Rodriguez AL, Marlo JE, de Paulis T, Thompson AD, Days EL, Nalywajko T, Austin CA, Baxter Williams M, Ayala JE, Williams R, Lindsley CW, Conn PJ (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74:1345–1358CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Janssen Research and DevelopmentSpring HouseUSA

Personalised recommendations