Skip to main content

The Use of PDE10A and PDE9 Inhibitors for Treating Schizophrenia

  • Chapter
  • First Online:
Small Molecule Therapeutics for Schizophrenia

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 13))

Abstract

Schizophrenia (Scz) is a chronic and debilitating neurological disorder that afflicts approximately 1% of the general population with an increased incidence within families. Signs of this disorder typically appear between the ages of 16–30 although rare cases of childhood (<13) onset exist. Diagnosis of scz requires symptoms that persist for a duration of 1 month over a 6-month time period. The broad spectrum of symptoms are typically split into three categories: positive, negative, and cognitive. Implicit within these categories is the difficulty for stand-alone treatment methods, suggesting a combination of pharmacological and psychological treatment strategies is needed to manage this disease. Furthermore, while current pharmaceuticals are moderately effective at managing positive symptoms, the severe side effects lower patient compliance. Additionally, drugs used to treat negative and cognitive symptoms only have modest benefits, at best. Due to these limitations, there is a clear need for novel pharmaceuticals that modulate dysfunctional neurological pathways in scz patients. As such, both academic and pharmaceutical researchers are focused on identifying enzymes that can attenuate neurological signaling in disease-relevant brain regions. Specifically, this chapter will provide an in-depth review of current drug discovery efforts focused on inhibiting phosphodiesterase 10 and 9 (PDE10A, PDE9A, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5′ AMP:

5′ Adenosine monophosphate

5′ GMP:

5′ Guanosine monophosphate

AC:

Adenylate cyclase

AKAP:

A-kinase anchoring protein

ATP:

Adenosine triphosphate

BID:

Bis in die (twice a day)

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CNGA2:

Cyclic nucleotide-gated channel alpha 2

CNS:

Central nervous system

CSF:

Cerebral spinal fluid

DG:

2-Deoxy-d-glucose

D1:

Dopamine 1

D2:

Dopamine 2

eNOS:

Endothelial NOS

EPS:

Extrapyramidal side effects

ERK:

Extracellular receptor kinase

FDG-PET:

Fluorodeoxyglucose positron emission tomography

GAF:

cGMP phosphodiesterases Anabaena adenylyl cyclases, and Escherichia coli Fh1A

GC:

Guanylate cyclase

GP:

Globus pallidus

GPCR:

G-protein coupled receptors

h:

Hour

HB:

Hydrogen bond

IP:

Intraperitoneal

KO:

Knock-out

LH:

Lateral habenula

LipE:

Lipophilic binding efficiency

LTP:

Long-term potentiation

mRNA:

Messenger ribonucleic acid

NHP:

Nonhuman primate

nM:

Nanomolar

NMDA:

N-methyl-d-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOR:

Novel object recognition

NOS:

Nitric oxide synthase

NR:

Not reported

NT:

Neurotensin

ORD:

Object retrieval detour

PDE:

Phosphodiesterase

PET:

Positron emission tomography

PK:

Pharmacokinetic

PKA:

Protein kinase A

PKG:

Protein kinase G

PO:

Per os

PPI:

Pre-pulse inhibition

QD:

Quaque die (once a day)

SAR:

Structure–activity relationship

scz:

Schizophrenia

sGC:

Soluble guanylate cyclase

SNpr:

Substantia Nigra pars reticulata

THP:

Tetrahydropyran

THPP-1:

Tetrahydropyridopyrimidine

VDW:

Van der Waals

VTA:

Ventral tegmented area

References

  1. Beck AT, Rector NA, Stolar N, Grant P (2009) Schizophrenia cognitive theory, research, and therapy, vol 1. Guilford, New York

    Google Scholar 

  2. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Association, Washington, DC

    Google Scholar 

  3. Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188(4194):1217–1219

    CAS  Google Scholar 

  4. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261(5562):717–719

    CAS  Google Scholar 

  5. Rao NP, Remington G (2013) Investigational drugs for schizophrenia targeting the dopamine receptor: Phase II trials. Expet Opin Investig Drugs 22(7):881–894. doi:10.1517/13543784.2013.795945

    CAS  Google Scholar 

  6. Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M, Aggarwal J (2005) The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatr 66(9):1122–1129

    Google Scholar 

  7. Bray NJ, Leweke FM, Kapur S, Meyer-Lindenberg A (2010) The neurobiology of schizophrenia: new leads and avenues for treatment. Curr Opin Neurobiol 20(6):810–815. doi:10.1016/j.conb.2010.09.008

    CAS  Google Scholar 

  8. Francis SH, Blount MA, Corbin JD (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91(2):651–690. doi:10.1152/physrev.00030.2010

    CAS  Google Scholar 

  9. Chappie T, Humphrey J, Menniti F, Schmidt C (2009) PDE10A inhibitors: an assessment of the current CNS drug discovery landscape. Curr Opin Drug Discov Dev 12(4):458–467

    CAS  Google Scholar 

  10. Jeon YH, Heo YS, Kim CM, Hyun YL, Lee TG, Ro S, Cho JM (2005) Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell Mol Life Sci 62(11):1198–1220. doi:10.1007/s00018-005-4533-5

    CAS  Google Scholar 

  11. Baillie GS (2009) Compartmentalized signalling: spatial regulation of cAMP by the action of compartmentalized phosphodiesterases. FEBS J 276(7):1790–1799. doi:10.1111/j.1742-4658.2009.06926.x

    CAS  Google Scholar 

  12. Houslay MD (2010) Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem Sci 35(2):91–100. doi:10.1016/j.tibs.2009.09.007

    CAS  Google Scholar 

  13. Aye-Han NN, Zhang J (2014) A multiparameter live cell imaging approach to monitor cyclic AMP and protein kinase A dynamics in parallel. Meth Mol Biol 1071:207–215. doi:10.1007/978-1-62703-622-1_16

    Google Scholar 

  14. Klarenbeek J, Jalink K (2014) Detecting cAMP with an EPAC-based FRET sensor in single living cells. Meth Mol Biol 1071:49–58. doi:10.1007/978-1-62703-622-1_4

    CAS  Google Scholar 

  15. Stangherlin A, Koschinski A, Terrin A, Zoccarato A, Jiang H, Fields LA, Zaccolo M (2014) Analysis of compartmentalized cAMP: a method to compare signals from differently targeted FRET reporters. Meth Mol Biol 1071:59–71. doi:10.1007/978-1-62703-622-1_5

    Google Scholar 

  16. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. doi:10.1146/annurev.biochem.76.060305.150444

    CAS  Google Scholar 

  17. Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59(6):367–374. doi:10.1016/j.neuropharm.2010.05.004

    CAS  Google Scholar 

  18. DeNinno MP (2012) Future directions in phosphodiesterase drug discovery. Bioorg Med Chem Lett 22(22):6794–6800.

    Google Scholar 

  19. Fujishige K, Kotera J, Michibata H, Yuasa K, Takebayashi S-I, Okumura K, Omori K (1999) Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 274(26):18438–18445. doi:10.1074/jbc.274.26.18438

    CAS  Google Scholar 

  20. Fujishige K, Kotera J, Omori K (1999) Striatum- and testis-specific phosphodiesterase PDE10A: isolation and characterization of a rat PDE10A. Eur J Biochem 266(3):1118–1127. doi:10.1046/j.1432-1327.1999.00963.x

    CAS  Google Scholar 

  21. Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K, Florio VA (1999) Isolation and characterization of PDE10A, a novel human 3', 5'-cyclic nucleotide phosphodiesterase. Gene 234(1):109–117. doi:10.1016/S0378-1119(99)00171-7

    CAS  Google Scholar 

  22. Soderling SH, Bayuga SJ, Beavo JA (1999) Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A 96(12):7071–7076. doi:10.1073/pnas.96.12.7071

    CAS  Google Scholar 

  23. Coskran TM, Morton D, Menniti FS, Adamowicz WO, Kleiman RJ, Ryan AM, Strick CA, Schmidt CJ, Stephenson DT (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 54(11):1205–1213. doi:10.1369/jhc.6A6930.2006

    CAS  Google Scholar 

  24. Sorg C, Manoliu A, Neufang S, Myers N, Peters H, Schwerthoffer D, Scherr M, Muhlau M, Zimmer C, Drzezga A, Forstl H, Bauml J, Eichele T, Wohlschlager AM, Riedl V (2013) Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 39(2):387–395. doi:10.1093/schbul/sbr184

    Google Scholar 

  25. Kotera J, Fujishige K, Yuasa K, Omori K (1999) Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochem Biophys Res Comm 261(3):551–557. doi:10.1006/bbrc.1999.1013

    CAS  Google Scholar 

  26. Kotera J, Sasaki T, Kobayashi T, Fujishige K, Yamashita Y, Omori K (2004) Subcellular localization of cyclic nucleotide phosphodiesterase type 10A variants, and alteration of the localization by cAMP-dependent protein kinase-dependent phosphorylation. J Biol Chem 279(6):4366–4375. doi:10.1074/jbc.M308471200

    CAS  Google Scholar 

  27. Charych EI, Jiang LX, Lo F, Sullivan K, Brandon NJ (2010) Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci 30(27):9027–9037. doi:10.1523/JNEUROSCI.1635-10.2010

    CAS  Google Scholar 

  28. Handa N, Mizohata E, Kishishita S, Toyama M, Morita S, Uchikubo-Kamo T, Akasaka R, Omori K, Kotera J, Terada T, Shirouzu M, Yokoyama S (2008) Crystal structure of the GAF-B domain from human phosphodiesterase 10A complexed with its ligand, cAMP. J Biol Chem 283(28):19657–19664. doi:10.1074/jbc.M800595200

    CAS  Google Scholar 

  29. Heikaus CC, Pandit J, Klevit RE (2009) Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 17(12):1551–1557. doi:10.1016/j.str.2009.07.019

    CAS  Google Scholar 

  30. Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE (2006) cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem 281(5):2841–2846. doi:10.1074/jbc.M511468200

    CAS  Google Scholar 

  31. Matthiesen K, Nielsen J (2009) Binding of cyclic nucleotides to phosphodiesterase 10A and 11A GAF domains does not stimulate catalytic activity. Biochem J 423(3):401–409. doi:10.1042/BJ20090982

    CAS  Google Scholar 

  32. Jager R, Russwurm C, Schwede F, Genieser HG, Koesling D, Russwurm M (2012) Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem 287(2):1210–1219. doi:10.1074/jbc.M111.263806

    Google Scholar 

  33. Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci U S A 104(14):5782–5787. doi:10.1073/pnas.0700279104

    CAS  Google Scholar 

  34. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim S-H, Schlessinger J, Zhang KYJ (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12(12):2233–2247

    Google Scholar 

  35. Verhoest PR, Chapin DS, Corman M, Fonseca K, Harms JF, Hou X, Marr ES, Menniti FS, Nelson F, O’Connor R, Pandit J, Proulx-LaFrance C, Schmidt AW, Schmidt CJ, Suiciak JA, Liras S (2009) Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-Methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920)(I) for the treatment of schizophrenia. J Med Chem 52(16):5188–5196. doi:10.1021/jm900521k

    CAS  Google Scholar 

  36. Buot A, Yelnik J (2012) Functional anatomy of the basal ganglia: limbic aspects. Rev Neurol 168(8–9):569–575. doi:10.1016/j.neurol.2012.06.015

    CAS  Google Scholar 

  37. Da Cunha C, Gomez AA, Blaha CD (2012) The role of the basal ganglia in motivated behavior. Rev Neurosci 23(5–6):747–767. doi:10.1515/revneuro-2012-0063

    Google Scholar 

  38. Liljeholm M, O'Doherty JP (2012) Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cognit Sci 16(9):467–475. doi:10.1016/j.tics.2012.07.007

    Google Scholar 

  39. Leisman G, Melillo R (2013) The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci 24(1):9–25. doi:10.1515/revneuro-2012-0067

    Google Scholar 

  40. Shepherd GM (2013) Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14(4):278–291. doi:10.1038/nrn3469

    CAS  Google Scholar 

  41. Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494(7436):238–242

    Google Scholar 

  42. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466. doi:10.1146/annurev-neuro-061010-113641

    CAS  Google Scholar 

  43. Dedeurwaerdere S, Wintmolders C, Vanhoof G, Langlois X (2011) Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse: a potential translational biomarker. J Pharmacol Exp Ther 339(1):210–217. doi:10.1124/jpet.111.182766

    CAS  Google Scholar 

  44. Robertson GS, Jian M (1995) D1 and D2 dopamine receptors differentially increase Fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience 64(4):1019–1034

    CAS  Google Scholar 

  45. Mango D, Bonito-Oliva A, Ledonne A, Nistico R, Castelli V, Giorgi M, Sancesario G, Fisone G, Berretta N, Mercuri NB (2014) Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology 76(Part A):127–136

    Google Scholar 

  46. Conti G, Blandini F, Tassorelli C, Giubilei F, Fornai F, Zocchi A, Orzi F (2001) Intrastriatal injection of D1 or D2 dopamine agonists affects glucose utilization in both the direct and indirect pathways of the rat basal ganglia. Neurosci Lett 309(3):161–164

    CAS  Google Scholar 

  47. Dedeurwaerdere S, Wintmolders C, Vanhoof G, Langlois X (2011) Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse: a potential translational biomarker. J Pharmacol Exp Therapeut 339(1):210–217. doi:10.1124/jpet.111.182766

    CAS  Google Scholar 

  48. Kita H (2007) Globus pallidus external segment. Progr Brain Res 160:111–133. doi:10.1016/S0079-6123(06)60007-1

    CAS  Google Scholar 

  49. Kimura M, Satoh T, Matsumoto N (2007) What does the habenula tell dopamine neurons? Nat Neurosci 10(6):677–678. doi:10.1038/nn0607-677

    CAS  Google Scholar 

  50. Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11(7):503–513. doi:10.1038/nrn2866

    CAS  Google Scholar 

  51. Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, Charych E, Egerland U, Liu F, Marquis KL, Malamas M, Hage T, Comery TA, Brandon NJ (2009) Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Therapeut 331(2):574–590. doi:10.1124/jpet.109.155994

    CAS  Google Scholar 

  52. Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ (2010) Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology 58(2):444–451. doi:10.1016/j.neuropharm.2009.09.008

    CAS  Google Scholar 

  53. Threlfell S, Sammut S, Menniti FS, Schmidt CJ, West AR (2009) Inhibition of Phosphodiesterase 10A Increases the Responsiveness of Striatal Projection Neurons to Cortical Stimulation. J Pharmacol Exp Therapeut 328(3):785–795

    CAS  Google Scholar 

  54. Sotty F, Montezinho LP, Steiniger-Brach B, Nielsen J (2009) Phosphodiesterase 10A inhibition modulates the sensitivity of the mesolimbic dopaminergic system to D-amphetamine: involvement of the D1-regulated feedback control of midbrain dopamine neurons. J Neurochem 109(3):766–775. doi:10.1111/j.1471-4159.2009.06004.x

    CAS  Google Scholar 

  55. Arnt J (1982) Pharmacological specificity of conditioned avoidance response inhibition in rats: inhibition by neuroleptics and correlation to dopamine receptor blockade. Acta Pharmacol Toxicol 51(4):321–329. doi:10.1111/j.1600-0773.1982.tb01032.x

    CAS  Google Scholar 

  56. Langen B, Dost R, Egerland U, Stange H, Hoefgen N (2012) Effect of PDE10A inhibitors on MK-801-induced immobility in the forced swim test. Psychopharmacology 221(2):249–259. doi:10.1007/s00213-011-2567-y

    CAS  Google Scholar 

  57. Bleickardt CJ, Kazdoba TM, Jones NT, Hunter JC, Hodgson RA Antagonism of the adenosine A2A receptor attenuates akathisia-like behavior induced with MP-10 or aripiprazole in a novel non-human primate model. Pharmacol Biochem Behav doi:10.1016/j.pbb.2013.10.030

  58. Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, Proulx-LaFrance C, Majchrzak MJ, Ramirez AD, Schmidt K, Seymour PA, Siuciak JA, Tingley FD 3rd, Williams RD, Verhoest PR, Menniti FS (2008) Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Therapeut 325(2):681–690. doi:10.1124/jpet.107.132910

    CAS  Google Scholar 

  59. Raheem IT, Breslin MJ, Fandozzi C, Fuerst J, Hill N, Huszar S, Kandebo M, Kim SH, Ma B, McGaughey G, Renger JJ, Schreier JD, Sharma S, Smith S, Uslaner J, Yan Y, Coleman PJ, Cox CD (2012) Discovery of tetrahydropyridopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorg Med Chem Lett 22(18):5903–5908. doi:10.1016/j.bmcl.2012.07.072

  60. Girault JA (2012) Signaling in striatal neurons: the phosphoproteins of reward, addiction, and dyskinesia. Progr Mol Biol Translat Sci 106:33–62. doi:10.1016/b978-0-12-396456-4.00006-7

    CAS  Google Scholar 

  61. Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatr 59(12):1151–1159. doi:10.1016/j.biopsych.2005.09.018

    CAS  Google Scholar 

  62. Pozzi L, Hakansson K, Usiello A, Borgkvist A, Lindskog M, Greengard P, Fisone G (2003) Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. J Neurochem 86(2):451–459

    CAS  Google Scholar 

  63. Tu Z, Xu J, Jones LA, Li S, Mach RH (2010) Carbon-11 labeled papaverine as a PET tracer for imaging PDE10A: radiosynthesis, in vitro and in vivo evaluation. Nucl Med Biol 37(4):509–516. doi:10.1016/j.nucmedbio.2009.12.012

    CAS  Google Scholar 

  64. Celen S, Koole M, De AM, Sannen I, Chitneni SK, Alcazar J, Dedeurwaerdere S, Moechars D, Schmidt M, Verbruggen A, Langlois X, Van LK, Andres JI, Bormans G (2010) Preclinical evaluation of 18F-JNJ41510417 as a radioligand for PET imaging of phosphodiesterase-10A in the brain. J Nucl Med 51(10):1584–1591. doi:10.2967/jnumed.110.077040

    CAS  Google Scholar 

  65. Tu Z, Fan J, Li S, Jones LA, Cui J, Padakanti PK, Xu J, Zeng D, Shoghi KI, Perlmutter JS, Mach RH (2011) Radiosynthesis and in vivo evaluation of [11C]MP-10 as a PET probe for imaging PDE10A in rodent and non-human primate brain. Bioorg Med Chem 19(5):1666–1673. doi:10.1016/j.bmc.2011.01.032

    CAS  Google Scholar 

  66. Celen S, Koole M, Ooms M, De AM, Sannen I, Cornelis J, Alcazar J, Schmidt M, Verbruggen A, Langlois X, Van LK, Andres JI, Bormans G (2013) Preclinical evaluation of [(18)F]JNJ42259152 as a PET tracer for PDE10A. Neuroimage 82:13–22

    CAS  Google Scholar 

  67. Laere K, Ahmad RU, Hudyana H, Celen S, Dubois K, Schmidt ME, Bormans G, Koole M (2013) Human biodistribution and dosimetry of 18F-JNJ42259152, a radioligand for phosphodiesterase 10A imaging. Eur J Nucl Med Mol Imag 40(2):254–261. doi:10.1007/s00259-012-2270-1

    CAS  Google Scholar 

  68. Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, Lanfear J, Ryan AM, Schmidt CJ, Strick CA, Varghese AH, Williams RD, Wylie PG, Menniti FS (2003) Immunohistochemical localization of PDE10A in the rat brain. Brain Res 985(2):113–126. doi:10.1016/S0006-8993(03)02754-9

    CAS  Google Scholar 

  69. Barret O, Thomae D, Alagille D, Lee H, Papin C, Baldwin R, Jennings D, Marek K, Seibyl J, Tamagnan G (2012) First in vivo assessment of two PDE10 tracers [18F]MNI654 and [18F]MNI659. J Nucl Med Meet Abstr 53(1):361

    Google Scholar 

  70. Marek K, Tamagnan G (2013) In vivo assessment of a novel PDE10 tracer: [18F]MNI659. In: NIMH. http://mli.nih.gov/mli/download/1360. Accessed 25 Jan 2013

  71. Tamagnan G (2012) Use of exploratory IND for early phase clinical trials using PET or SPECT imaging. In: University of British Columbia, TRIUMF. http://7isr.triumf.ca/talks/Sunday/Session II/Tamagnan.pdf. Accessed 16 Sept 2012

  72. Rabiner EA (2013) Imaging the PDE-10 enzyme. In: NIH. http://mli.nih.gov/mli/download/1356. Accessed 25 Jan 2013

  73. Geneste H, Ochse M, Drescher K, Turner S, Behl B, Laplanche L, Dinges J, Jakob C, Black L (2013) Heterocyclic fused pyridines and related compounds as inhibitor compounds of phosphodiesterase type 10A and their preparation and use in the treatment of neurological and psychiatric disorders. US20130116233 A1

    Google Scholar 

  74. Geneste H, Ochse M, Drescher K, Dinges J, Jakob C (2013) Dihydroisoquinolines and related as phosphodiesterase type 10a and their preparation and use in the treatment of neurological and psychiatric disorders. US20130116229 A1

    Google Scholar 

  75. Geneste H, Ochse M, Drescher K, Behl B, Laplanche L, Dinges J, Jakob C (2013) Preparation of isoindole carboxamides, pyrrolopyridine carboxamides, and similar compounds as inhibitors of phosphodiesterase type 10A for treating neurological and psychiatric disorders. WO2013000994 A1

    Google Scholar 

  76. Donello JE, Yang R, Viswanath V, Leblond B, Beausoleil E, Pando MP, Desire LJR, Casagrande A-S (2012) Methods using phosphodiesterase-10 inhibitors (PDE10) inhibitors for treatment of retina diseases. WO2012112918 A1

    Google Scholar 

  77. Donello JE, Yang R, Leblond B, Beausoleil E, Casagrande A-S, Desire LJR, Pando MP, Chauvignac C, Taverne T (2012) Substituted 6,7-dialkoxy-3-isoquinolinol derivatives as inhibitors of phosphodiesterase 10 (PDE10A) and their preparation. WO2012112946 A1

    Google Scholar 

  78. Vennemann M, Baer T, Braunger J, Ciapetti P, Contreras J-M, Wermuth CG (2006) Preparation of pyrrolodihydroisoquinolines as phosphodiesterase 10 (PDE10) inhibitors. WO2006089815 A1

    Google Scholar 

  79. Maier T, Graedler U, Gimmnich P, Quintini G, Ciapetti P, Contreras J-M, Wermuth CG, Vennemann M, Baer T, Braunger J (2005) Preparation of pyrrolodihydroisoquinolines as cyclic 3',5'-nucleotide phosphodiesterase (PDE10) inhibitors. WO2005003129 A1

    Google Scholar 

  80. Allen J, Horne DB, Hu E, Kaller MR, Monenschein H, Nguyen TT, Reichelt A, Rzasa RM (2011) Preparation of heteroaryloxyheterocyclyl and heteroarylaminoheterocyclyl compounds as phosphodiesterase 10 (PDE10) inhibitors. WO2011143495 A1

    Google Scholar 

  81. Allen JR, Amegadzie A, Andrews KL, Brown J, Chen JJ, Chen N, Harrington EH, Liu Q, Nguyen TT, Pickrell AJ, Qian W, Rumfelt S, Rzasa RM, Yuan CC, Zhong W (2013) Heterobicyclic compounds as PDE10 inhibitors and their preparation. US20130225552 A1

    Google Scholar 

  82. Hitchcock SA, Liu R, Arrington MP, Hopper AT, Conticello RD, Nguyen TM, Danca MD (2007) Preparation of cinnoline derivatives as phosphodiesterase 10 inhibitors. WO2007098214 A1

    Google Scholar 

  83. Hu E, Kunz R, Chen N, Nixey T, Hitchcock S (2009) Preparation of quinoline derivatives and their aza analogs as phosphodiesterase 10 inhibitors. WO2009025823 A1

    Google Scholar 

  84. Masuda N, Miyamoto S, Kikuchi S, Samizu K, Sato F, Shiina Y, Hamaguchi W, Seo R, Mihara T (2012) Preparation of pyrazole compounds as inhibitors of phosphodiesterase 10A. WO2012133607 A1

    Google Scholar 

  85. Niewoehner U, Bauser M, Ergueden J-K, Flubacher D, Naab P, Repp T-O, Stoltefuss J, Burkhardt N, Sewing A, Schauer M, Schlemmer K-H, Weber O, Boyer SJ, Miglarese M (2002) Preparation of pyrrolo[2,1-a]isoquinolines as phosphodiesterase 10a inhibitors. WO2002048144 A1

    Google Scholar 

  86. Niewoehner U, Bauser M, Ergueden J-K, Flubacher D, Naab P, Repp T-O, Stoltefuss J, Burkhardt N, Sewing A, Schauer M, Schlemmer K-H, Weber O, Boyer SJ, Miglarese M, Ying S (2003) Preparation of pyrrolo[2,1-a]isoquinoline-1-carboxylates as phosphodiesterase 10a inhibitors for treatment of cancer. WO2003014117 A1

    Google Scholar 

  87. Niewoehner U, Bauser M, Ergueden J-K, Flubacher D, Naab P, Repp T-O, Stoltefuss J, Burkhardt N, Sewing A, Schauer M, Weber O, Schlemmer K-H, Boyer JS, Miglarese M (2003) Preparation of pyrrolo[2,1-a]isoquinolinecarboxylates as phosphodiesterase 10a inhibitors for treating cancer. WO2003014115 A1

    Google Scholar 

  88. Niewohner U, Bauser M, Ergueden J-K, Flubacher D, Naab P, Repp T-O, Stoltefuss J, Burkhardt N, Sewing A, Schauer M, Schlemmer K-H, Weber O, Boyer SJ, Miglarese M, Fan J, Phillips B, Raudenbush BC, Wang Y (2003) Preparation of pyrrolo[2,1-a]isoquinoline-1-carboxylates as phosphodiesterase 10a inhibitors. WO2003014116 A1

    Google Scholar 

  89. Sweet L (2005) PDE10a inhibitors for treating diabetes and related disorders. WO2005012485 A2

    Google Scholar 

  90. Niewoehner U, Hendrix M, Brueckner D, Friedl A, Gerlach I, Hinz V, Keldenich J, Mauler F, Schauss D, Schlemmer K-h, Tersteegen A, Yalkinoglu O (2004) Preparation of imidazotriazines as selective phosphodiesterase-10a inhibitors for the treatment of cancer and neurodegenerative diseases. WO2004005291 A1

    Google Scholar 

  91. Niewohner U, Erguden J-K, Bauser M, Burkhardt N, Flubacher D, Friedl A, Gerlach I, Hinz V, Jork R, Naab P, Repp T-O, Schlemmer K-H, Stoltefuss J (2003) Phosphodiesterase (PDE) 10A inhibitor use for the treatment and/or prophylaxis of neurodegenerative disease. WO2003000269 A2

    Google Scholar 

  92. Hoefgen N, Stange H, Langen B, Egerland U, Schindler R, Pfeifer T, Rundfeldt C (2007) Preparation of imidazo[1,5-a]pyrido[3,2-e]pyrazines as inhibitors of phosphodiesterase 10. WO2007137820 A1

    Google Scholar 

  93. Malamas MS, Ni Y, Erdei JJ, Stange H, Schindler R, Hoefgen N, Egerland U, Langen B (2009) Pyrido[3,2-e]pyrazines, process for preparing the same, and their use as inhibitors of phosphodiesterase 10 for treating nervous system disorders, obesity, and metabolic disorders. WO2009070583 A1

    Google Scholar 

  94. Stange H, Langen B, Egerland U, Hoefgen N, Priebs M, Malamas MS, Erdei JJ, Ni Y (2010) Preparation of triazine derivatives as inhibitors of phosphodiesterases for treating CNS disorders, metabolic disorders, and other diseases. WO2010054253 A1

    Google Scholar 

  95. Chaturvedula PV, Kimura SR (2012) Preparation of phenylimidazolylcycloproylheteroaryl derivatives for use as PDE10 inhibitors. WO2012177738 A1

    Google Scholar 

  96. Schmitz WD, Debenedetto MV, Kimura SR (2013) Preparation of substituted 2-(imidazo[1,2-a]pyridin-7-yl)-[1,2,4]triazolo[1,5-a]pyrazines as inhibitors of PDE10. WO2013003298 A2

    Google Scholar 

  97. Chesworth R, Shapiro G, Ripka A (2009) Di-substituted phenyl compounds as phosphodiesterase 10 inhibitors and their preparation useful in the treatment of CNS disorders and disorders affected by CNS function. WO2009158467 A2

    Google Scholar 

  98. Ripka A, Shapiro G, Chesworth R (2010) Preparation of vicinal substituted cyclopropyl compounds as Pde-10 inhibitors. WO2010006130 A2

    Google Scholar 

  99. Davenport T, Vile J, Pal S (2012) Pyrazolopyridine compounds as PDE10a inhibitors. WO2012019954 A1

    Google Scholar 

  100. Gharat LA, Gajera JM, Khairatkar-Joshi N, Bajpai M (2011) Tricycle compounds as phosphodiesterase-10 inhibitors and their preparation. WO2011132051 A2

    Google Scholar 

  101. Gharat LA, Narayana L, Yadav PS, Khairatkar-Joshi N, Bajpai M (2011) Preparation of heteroaryl compounds as PDE10A inhibitors. WO2011132048 A1

    Google Scholar 

  102. Lingam PRVS, Thomas A, Khairatkar-Joshi N, Bajpai M, Gullapalli S, Dahale DH, Mindhe AS, Rathi VE (2011) Preparation of aryl substituted olefinic compounds as phosphodiesterase 10A (PDE10A) inhibitors. WO2011138657 A1

    Google Scholar 

  103. Nieber K, Erdmann S, Briel D, Schwan G, Kubicova L, Barbar AG, Straeter N, Zahn M, Funke U, Scheunemann M, Fischer S, Brust P (2012) Novel alkoxyquinazolines as PDE10A modulators, and their preparation and use in the treatment of neurological and neuropsychiatric diseases. WO2012052556 A1

    Google Scholar 

  104. Bachmann S, Flohr A, Zbinden KG, Koerner M, Kuhn B, Peters J-U, Rudolph M (2013) Preparation of substituted pyrazolecarboxamides as PDE10 modulators. US20130059833 A1

    Google Scholar 

  105. Bleicher K, Flohr A, Groebke ZK, Gruber F, Koerner M, Kuhn B, Peters J-U, Rodriguez SRM (2011) Nitrogen containing heteroaryl compounds as PDE10A inhibitors and their preparation and use in the treatment of diseases. WO2011154327 A1

    Google Scholar 

  106. Flohr A, Groebke ZK, Kuhn B, Lerner C, Rudolph M, Schaffhauser H (2013) Triazolo compounds as pde10 inhibitors. WO2013178572 A1

    Google Scholar 

  107. Bartolome-Nebreda JM, Conde-Ceide S, MacDonald GJ, Pastor-Fernandez J, Van GMLM, Martin-Martin ML, Vanhoof GCP (2011) Preparation of imidazo[1,2-a]pyrazine derivatives and their use for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases. WO2011110545 A1

    Google Scholar 

  108. Pastor-Fernandez J, Bartolome-Nebreda JM, MacDonald GJ, Conde-Ceide S, Delgado-Gonzalez O, Vanhoof GCP, Van GMLM, Martin-Martin ML, Alonso-De DS-A (2011) Imidazo[1,2-b]pyridazine derivatives as PDE10 inhibitors and their preparation, pharmaceutical compositions and use in the treatment of CNS diseases. WO2011051342 A1

    Google Scholar 

  109. Swinney KA, Wuyts S (2012) Salts of an imidazo[1,2-b]pyridazine derivative as PDE10 inhibitors for treatment of CNS and metabolic disorders. WO2012146644 A1

    Google Scholar 

  110. Andres-Gil JI, Bormans GMR, De AM, Celen SJL (2010) Radiolabelled PDE10 ligands. WO2010097367 A1

    Google Scholar 

  111. Andres-Gil JI, De AM, Bormans GMR, Celen SJL (2011) Radiolabelled pde10 ligands. WO2011051324 A1

    Google Scholar 

  112. Kohno Y, Adams DR, Ando N (2006) Preparation of 6-(pyrazolo[1,5-a]pyridin-4-yl)-3(2H)-pyridazinone derivatives and addition salts thereof as phosphodiesterase inhibitors. WO2006095666 A1

    Google Scholar 

  113. Osakada N, Haruoka M, Ikeda K, Toki S, Miyaji H, Shimada J (2004) Preparation of quinoline derivatives as phosphodiesterase 10A inhibitors. WO2004002484 A1

    Google Scholar 

  114. Kehler J, Kilburn JP, Nielsen J, Pueschl A, Langgaard M, Jessing M, Marigo M (2013) Preparation of quinazoline derivatives for use as PDE10A enzyme inhibitors. WO2013050527 A1

    Google Scholar 

  115. Ritzen A, Kehler J, Langgaard M, Nielsen J, Kilburn JP, Farah MM (2009) Novel phenylimidazole derivatives as PDE10A enzyme inhibitors for treating neurodegenerative disorder, psychiatric disorder, or drug addiction. WO2009152825 A1

    Google Scholar 

  116. Marigo M, Kilburn JP, Nielsen J, Pueschl A, Langgaard M, Jessing M, Kehler J (2013) Preparation of quinazoline linked heteroaromatic tricycle derivatives as PDE10A enzyme inhibitors. WO2013045607 A1

    Google Scholar 

  117. Breslin MJ, Cox CD, Hartingh TJ, Pero J, Raheem IT, Rossi M, Vassallo L (2012) Preparation of aryloxymethylcyclopropane derivatives as PDE10 inhibitors. WO2012162213 A1

    Google Scholar 

  118. Barrow JC, Cox CD, Nolt MB, Shipe WD (2013) Triazolopyridinones as PDE10 inhibitors. WO2013074390 A1

    Google Scholar 

  119. Cox CD, Beshore DC, Kim JJ, Kuduk SD, McVean C, Reger T, Sheen J (2013) Preparation of 1,3-substituted azetidine PDE10 inhibitors for treatment of CNS disorders. WO2013052395 A1

    Google Scholar 

  120. Hostetler E, Cox CD, Fan H (2010) Radiolabeled pde10 inhibitors. WO2010138577 A1

    Google Scholar 

  121. Kawanishi E, Matsumura T (2010) Preparation of trisubstituted pyrimidines as phosphodiesterase PDE10 inhibitors. WO2010027097 A1

    Google Scholar 

  122. Kawanishi E, Tanaka Y, Matsumura T, Kado Y, Taniuchi H (2013) Fused heterocyclic compounds, method for inhibiting PDE10 by them, and pharmaceutical compositions containing them. WO2013027794 A1

    Google Scholar 

  123. Ishikawa M, Haitani S, Kosuga N (2012) Preparation of novel azole derivatives as inhibitors of phosphodiesterase 10 (PDE 10). WO2012147890 A1

    Google Scholar 

  124. Miyazaki Y, Haitani S, Kudo T, Ishikawa M (2013) Preparation of nitrogenated heterocyclic compounds as PDE10 inhibitors. WO2013005798 A1

    Google Scholar 

  125. Cutshall NS, Gage JL (2009) Hydrazides as PDE10 inhibitors and related compositions, preparation and use in the treatment of diseases. WO2009143178 A2

    Google Scholar 

  126. Cutshall NS, Gage JL, Wheeler NT (2010) Preparation of (hetero)arylacetohydrazides as PDE10 phosphodiesterase inhibitors. WO2010017236 A1

    Google Scholar 

  127. Chappie TA, Humphrey JM (2006) Heteroaryl pyrrolidine derivatives as phosphodiesterase inhibitors, their preparation, pharmaceutical compositions, and use in therapy. WO2006070284 A1

    Google Scholar 

  128. Verhoes PR (2008) Tricyclic heteroaryl compounds as selective PDE10 inhibitors, their preparation, pharmaceutical compositions, and use in therapy. WO2008001182 A1

    Google Scholar 

  129. Verhoest PR, Helal CJ, Hoover DJ, Humphrey JM (2006) Heteroaromatic quinoline compounds as phosphodiesterase inhibitors, their preparation, pharmaceutical compositions, and use in therapy. WO2006072828 A2

    Google Scholar 

  130. Ho GD, Smith EM, Kiselgof EY, Basu K, Tan Z, McKittrick B, Tulshian D (2010) Preparation of substituted triazolopyridines and analogs as phosphodiesterase 10 (PDE10) inhibitors. WO2010117926 A1

    Google Scholar 

  131. Ho GD, Yang S-W, Smith EM, McElroy WT, Basu K, Smotryski J, Tan Z, McKittrick BA, Tulshian DB (2010) Preparation of substituted pyrazoloquinolines and derivatives thereof. WO2010062559 A1

    Google Scholar 

  132. Ho GD, Seganish WM, Tulshian DB, Timmers CM, Rijn RDV, Loozen HJJ (2011) 5,6-Dihydroimidazo[5,1-a]isoquinoline derivatives as PDE10 inhibitors and their preparation and use for the treatment of PDE10-modulated diseases. WO2011008597 A1

    Google Scholar 

  133. Kanuma K, Amada H, Miyakoshi N, Tamita T, Kashiwa S (2012) Preparation of 3-pyrazolyl-2-pyridone derivatives as PDE10A inhibitors. WO2012029326 A1

    Google Scholar 

  134. Taniguchi T, Miura S, Hasui T, Halldin C, Stepanov V, Takano A (2013) Preparation of radiolabeled (3-pyrazol-5-yl)pyridazin-4(1H)-one derivatives as radiotracers useful for quantitative imaging of phosphodiesterase (PDE10A) in mammals. WO2013027845 A1

    Google Scholar 

  135. Taniguchi T, Yoshikawa M, Miura K, Hasui T, Honda E, Imamura K, Kamata M, Kamisaki H, Quinn JF, Raker J, Camara F, Wang Y (2011) Preparation of fused heterocyclic compounds as phosphodiesterase 10A inhibitors for preventing and treating schizophrenia. WO2011163355 A1

    Google Scholar 

  136. Fukushi H, Taniguchi T (2013) Preparation of fused heterocyclic compounds as antipsychotic drugs. WO2013035826 A1

    Google Scholar 

  137. clinicaltrials.gov. (2006) ClinicalTrials.gov [Internet]. National Library of Medicine, Bathesda. http://clinicaltrials.gov/

  138. DeMartinis N, Banerjee A, Kumar V, Boyer S, Schmidt C, Arroyo S (2012) Results of a Phase 2A Proof-Of-Concept Trial with a PDE10A Inhibitor in the Treatment of Acute Exacerbation of Schizophrenia. Paper presented at the 3rd Biennieal Schizophrenia international research conference. http://mli.nih.gov/mli/download/1355. Florence, Italy

  139. Schmidt C (2013) Inhibition of PDE10A for the treatment of schizophrenia: preclinical rationale (what we think we know). In: NIMH. http://mli.nih.gov/mli/download/1355. Accessed 25 Jan 2013

  140. Brandon N (2013) What are some of the unknowns around PDE10A biology? In: NIMH. http://mli.nih.gov/mli/download/1354. Accessed 25 Jan 2013

  141. Lilly E (2013) Effects of MP-10 in preclinical assays-the lilly experience. In: NIMH. http://mli.nih.gov/mli/download/1357. Accessed 25 Jan 2013

  142. Omeros (2014) http://investor.omeros.com/phoenix.zhtml?c=219263&p=irol-newsArticle_Print&ID=1906687&highlight=;http://investor.omeros.com/phoenix.zhtml?c=219263&p=irol-newsArticle_Print&ID=1894589&highlight

  143. Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273(25):15553–15558

    CAS  Google Scholar 

  144. Fisher DA, Smith JF, Pillar JS, Denis SHS, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cgmp-specific phosphodiesterase. J Biol Chem 273(25):15559–15564

    CAS  Google Scholar 

  145. Gattaz WF, Cramer H, Beckmann H (1983) Low CSF concentrations of cyclic GMP in schizophrenia. Br J Psychiatr 142(3):288–291

    CAS  Google Scholar 

  146. Beckmann H, Gattaz WF (2002) Multidimensional analysis of the concentrations of 17 substances in the CSF of schizophrenics and controls. J Neural Transm 109(5–6):931–938. doi:10.1007/s007020200076

    CAS  Google Scholar 

  147. Guipponi M, Scott HS, Kudoh J, Kawasaki K, Shibuya K, Shintani A, Asakawa S, Chen H, Lalioti MD, Rossier C, Minoshima S, Shimizu N, Antonarakis SE (1998) Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence. Hum Genet 103(4):386–392. doi:10.1007/s004390050838

    CAS  Google Scholar 

  148. Rentero C, Monfort A, Puigdomènech P (2003) Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem Biophys Res Commun 301(3):686–692. doi:10.1016/S0006-291X(03)00021-4

  149. Wang P, Wu P, Egan RW, Billah MM (2003) Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5): Differential tissue distribution and subcellular localization of PDE9A variants. Gene 314:15–27. doi:10.1016/S0378-1119(03)00733-9

  150. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520. doi:10.1124/pr.58.3.5

    CAS  Google Scholar 

  151. van Staveren WCG, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HWM, de Vente J (2003) Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 31(8/9):729–741

    Google Scholar 

  152. Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA (2001) Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21(22):9068–9076

    CAS  Google Scholar 

  153. van Staveren WCG, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HWM, de Vente J (2002) Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 31(8–9):729–741. doi:10.1023/A:1025704031210

    Google Scholar 

  154. Van Staveren WCG, Steinbusch HWM, Markerink-Van Ittersum M, Repaske DR, Goy MF, Kotera J, Omori K, Beavo JA, De Vente J (2003) mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 467(4):566–580. doi:10.1002/cne.10955

    Google Scholar 

  155. Van Staveren WCG, Steinbusch HWM, Markerink-van Ittersum M, Behrends S, De Vente J (2004) Species differences in the localization of cGMP-producing and NO-responsive elements in the mouse and rat hippocampus using cGMP immunocytochemistry. Eur J Neurosci 19(8):2155–2168. doi:10.1111/j.0953-816X.2004.03327.x

    Google Scholar 

  156. Reyes-Irisarri E, Markerink-Van Ittersum M, Mengod G, de Vente J (2007) Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer's disease human brains. Eur J Neurosci 25(11):3332–3338

    Google Scholar 

  157. Bear MF, Kirkwood A (1993) Neocortical long-term potentiation. Curr Opin Neurobiol 3(2):197–202. doi:10.1016/0959-4388(93)90210-P

  158. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    CAS  Google Scholar 

  159. Domek-Lopacinska KU, Strosznajder JB (2010) Cyclic GMP and nitric oxide synthase in aging and Alzheimer's Disease. Mol Neurobiol 41(2–3):129–137. doi:10.1007/s12035-010-8104-x

    CAS  Google Scholar 

  160. Kleppisch T, Feil R (2009) cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handbook Exp Pharmacol 191:549–579

    Google Scholar 

  161. Otani S, Daniel H, Roisin M-P, Crepel F (2003) Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons. Cerebr Cortex 13(11):1251–1256

    Google Scholar 

  162. Sanderson TM, Sher E (2013) The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology 74:86–95. doi:10.1016/j.neuropharm.2013.01.011

    CAS  Google Scholar 

  163. Liu S, Mansour MN, Dillman KS, Perez JR, Danley DE, Aeed PA, Simons SP, LeMotte PK, Menniti FS (2008) Structural basis for the catalytic mechanism of human phosphodiesterase 9. Proc Natl Acad Sci U S A 105(36):13309–13314. doi:10.1073/pnas.0708850105, S13309/13301-S13309/13314

    CAS  Google Scholar 

  164. Wang H, Luo X, Ye M, Hou J, Robinson H, Ke H (2010) Insight into binding of phosphodiesterase-9A selective inhibitors by crystal structures and mutagenesis. J Med Chem 53(4):1726–1731. doi:10.1021/jm901519f

    CAS  Google Scholar 

  165. Hou J, Xu J, Liu M, Zhao R, Luo H-B, Ke H (2011) Structural asymmetry of phosphodiesterase-9, potential protonation of a glutamic acid, and role of the invariant glutamine. PLoS One 6(3):e18092. doi:10.1371/journal.pone.0018092

    CAS  Google Scholar 

  166. Claffey MM, Helal CJ, Verhoest PR, Kang Z, Bundesmann MW, Hou X, Lui S, Kleiman RJ, Vanase-Frawley M, Schmidt AW, Menniti F, Schmidt CJ, Hoffman WE, Hajos M, McDowell L, O'Connor RE, MacDougall-Murphy M, Fonseca KR, Becker SL, Nelson FR, Liras S (2012) Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors. J Med Chem 55(21):9055–9068. doi:10.1021/jm3009635

    CAS  Google Scholar 

  167. Verhoest PR, Fonseca KR, Hou X, Proulx-LaFrance C, Corman M, Helal CJ, Claffey MM, Tuttle JB, Coffman KJ, Liu S, Nelson F, Kleiman RJ, Menniti FS, Schmidt CJ, Vanase-Frawley M, Liras S (2012) Design and discovery of 6-[(3S,4S)-4-Methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943), a selective brain penetrant pde9a inhibitor for the treatment of cognitive disorders. J Med Chem 55(21):9045–9054. doi:10.1021/jm3007799

    CAS  Google Scholar 

  168. Meng F, Hou J, Shao Y-X, Wu P-Y, Huang M, Zhu X, Cai Y, Li Z, Xu J, Liu P, Luo H-B, Wan Y, Ke H (2012) Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J Med Chem 55(19):8549–8558. doi:10.1021/jm301189c

    CAS  Google Scholar 

  169. Verhoest PR, Proulx-Lafrance C, Corman M, Chenard L, Helal CJ, Hou X, Kleiman R, Liu S, Marr E, Menniti FS, Schmidt CJ, Vanase-Frawley M, Schmidt AW, Williams RD, Nelson FR, Fonseca KR, Liras S (2009) identification of a brain penetrant PDE9A inhibitor utilizing prospective design and chemical enablement as a rapid lead optimization strategy. J Med Chem 52(24):7946–7949. doi:10.1021/jm9015334

    CAS  Google Scholar 

  170. Jorgensen M, Kehler J, Langgard M, Svenstrup N, Tagmose L (2013) Selective Inhibitors of PDE2, PDE9, and PDE10: modulators of activity of the central nervous system. Annu Rep Med Chem 48:37–55

    Google Scholar 

  171. Lu Y-F, Kandel ER, Hawkins RD (1999) Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 19(23):10250–10261

    CAS  Google Scholar 

  172. Weitzdoerfer R, Hoeger H, Engidawork E, Engelmann M, Singewald N, Lubec G, Lubec B (2004) Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance. Nitric Oxide 10(3):130–140. doi:10.1016/j.niox.2004.03.007

  173. Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87(6):1015–1023

    CAS  Google Scholar 

  174. Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26(45):11513–11521

    CAS  Google Scholar 

  175. Chetkovich DM, Klann E, Sweatt JD (1993) Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. NeuroReport 4(7):919–922

    CAS  Google Scholar 

  176. Bon CLM, Garthwaite J (2003) On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 23(5):1941–1948

    CAS  Google Scholar 

  177. Yamada K, Hiramatsu M, Noda Y, Mamiya T, Murai M, Kameyama T, Komori Y, Nikai T, Sugihara H, Nabeshima T (1996) Role of nitric oxide and cyclic GMP in the dizocilpine-induced impairment of spontaneous alternation behavior in mice. Neuroscience 74(2):365–374. doi:10.1016/0306-4522(96)00161-3

  178. Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T (2009) More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci 29(29):9344–9350

    CAS  Google Scholar 

  179. Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    CAS  Google Scholar 

  180. Arancio O, Kandel ER, Hawkins RD (1995) Activity-dependent long-term enhancement of transmitter release by presynaptic 3′,5′-cyclic GMP in cultured hippocampal neurons. Nature 376:74–80

    CAS  Google Scholar 

  181. Boulton CL, Southam E, Garthwaite J (1995) Nitric oxide-dependent long-term potentiation is blocked by a specific inhibitor of soluble guanylyl cyclase. Neuroscience 69(3):699–703. doi:10.1016/0306-4522(95)00349-N

  182. Monfort P, Muñoz Ma-D, Kosenko E, Llansola M, Sánchez-Pérez A, Cauli O, Felipo V (2004) Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus: Alterations in hyperammonemia. Neurochem Int 45(6):895–901. doi:10.1016/j.neuint.2004.03.020

  183. Bernabeu R, Schmitz P, Faillace MP, Izquierdo I, Medina JH (1996) Hippocampal cGMP and cAMP are differentially involved in memory processing of inhibitory avoidance learning. NeuroReport 7(2):585–588

    CAS  Google Scholar 

  184. Bernabeu R, Schroder N, Quevedo J, Cammarota M, Izquierdo I, Medina JH (1997) Further evidence for the involvement of a hippocampal cGMP/cGMP-dependent protein kinase cascade in memory consolidation. NeuroReport 8(9):2221–2224

    CAS  Google Scholar 

  185. Prickaerts J, de Vente J, Honig W, Steinbusch HWM, Blokland A (2002) cGMP, but not cAMP, in rat hippocampus is involved in early stages of object memory consolidation. Eur J Pharmacol 436(1–2):83–87. doi:10.1016/S0014-2999(01)01614-4

  186. Rubin MA, Jurach A, da Costa Júnior EM, Lima TT, Jiménez-Bernal RE, Begnini J, Souza DO, de Mello CF (1996) GMP reverses the facilitatory effect of glutamate on inhibitory avoidance task in rats. NeuroReport 7(13):2078–2080

    CAS  Google Scholar 

  187. Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12(20):2511–2523. doi:10.2174/138161206777698855

    CAS  Google Scholar 

  188. Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5(8):660–670. doi:10.1038/nrd2058

    CAS  Google Scholar 

  189. Halene TB, Siegel SJ (2007) PDE inhibitors in psychiatry-future options for dementia, depression and schizophrenia? Drug Discov Today 12(19&20):870–878. doi:10.1016/j.drudis.2007.07.023

    CAS  Google Scholar 

  190. Reneerkens OAH, Rutten K, Steinbusch HWM, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berlin, Ger) 202(1–3):419–443. doi:10.1007/s00213-008-1273-x

    CAS  Google Scholar 

  191. Bales K, Plath N, Svenstrup N, Menniti F (2010) Phosphodiesterase inhibition to target the synaptic dysfunction in Alzheimer’s disease. In: Dominguez C (ed) Neurodegenerative diseases, vol 6. Topics in Medicinal Chemistry. Springer, Berlin Heidelberg, pp 57–90. doi:10.1007/7355_2010_8

  192. Schmidt CJ (2010) Phosphodiesterase inhibitors as potential cognition enhancing agents. Curr Top Med Chem (Sharjah, UAE) 10(2):222–230. doi:10.2174/156802610790411009

    CAS  Google Scholar 

  193. Xu Y, Zhang H-T, O’Donnell JM (2011) Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. Handb Exp Pharmacol 204:447–485. doi:10.1007/978-3-642-17969-3_19

  194. Rodefer JS, Saland SK, Eckrich SJ (2012) Selective phosphodiesterase inhibitors improve performance on the ED/ID cognitive task in rats. Neuropharmacology 62(3):1182–1190. doi:10.1016/j.neuropharm.2011.08.008

  195. Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M (2005) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68(6):1775–1781. doi:10.1124/mol.105.017608

    CAS  Google Scholar 

  196. Liddie S, Anderson Karen L, Paz A, Itzhak Y (2012) The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol 26(10):1375–1382

    CAS  Google Scholar 

  197. van der Staay FJ, Rutten K, Baerfacker L, DeVry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schroeder UH, Hendrix M (2008) The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 55(5):908–918. doi:10.1016/j.neuropharm.2008.07.005

    Google Scholar 

  198. Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H (2012) Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 62(5–6):1964–1974. doi:10.1016/j.neuropharm.2011.12.021

    CAS  Google Scholar 

  199. Hutson PH, Finger EN, Magliaro BC, Smith SM, Converso A, Sanderson PE, Mullins D, Hyde LA, Eschle BK, Turnbull Z, Sloan H, Guzzi M, Zhang X, Wang A, Rindgen D, Mazzola R, Vivian JA, Eddins D, Uslaner JM, Bednar R, Gambone C, Le-Mair W, Marino MJ, Sachs N, Xu G, Parmentier-Batteur S (2011) The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 61(4):665–676. doi:10.1016/j.neuropharm.2011.05.009

    CAS  Google Scholar 

  200. Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajos M, Harms JF, Helal CJ, Hoffmann WE, Kocan GP, Majchrzak MJ, McGinnis D, McLean S, Menniti FS, Nelson F, Roof R, Schmidt AW, Seymour PA, Stephenson DT, Tingley FD, Vanase-Frawley M, Verhoest PR, Schmidt CJ (2012) Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther 341(2):396–409. doi:10.1124/jpet.111.191353

    CAS  Google Scholar 

  201. Vardigan JD, Converso A, Hutson PH, Uslaner JM (2011) The Selective Phosphodiesterase 9 (PDE9) Inhibitor PF-04447943 Attenuates a Scopolamine-Induced Deficit in a Novel Rodent Attention Task. J Neurogenet 25(4):120–126. doi:10.3109/01677063.2011.630494

    CAS  Google Scholar 

  202. Schmidt CJ, Harms JF, Tingley FD, Schmidt K, Adamowicz WO, Romegialli A, Kleiman RJ, Barry CJ, Coskran TM, O'Neill SM, Stephenson DT, Menniti FS (2009) PDE9A-mediated regulation of cGMP: developing a biomarker for a novel therapy for Alzheimer’s disease. Alzheimers Dement 5(4):P331

    Google Scholar 

  203. Nicholas T, Evans R, Styren S, Qiu R, Wang EQ, Nelson F, Le V, Grimwood S, Christoffersen C, Banerjee S, Corrigan B, Kocan G, Geoghegan K, Carrieri C, Raha N, Verhoest P, Soares H (2009) PF-04447943, a novel PDE9A inhibitor, increases cGMP levels in cerebrospinal fluid: translation from non-clinical species to healthy human volunteers. Alzheimers Dement 5(4):P330–P331

    Google Scholar 

  204. Aleman A, Hijman R, de Haan EHF, Kahn RS (1999) Memory Impairment in Schizophrenia: A Meta-Analysis. Am J Psych 156(9):1358–1366

    CAS  Google Scholar 

  205. Brown C, Cromwell RL, Filion D, Dunn W, Tollefson N (2002) Sensory processing in schizophrenia: missing and avoiding information. Schizophr Res 55(1–2):187–195. doi:10.1016/S0920-9964(01)00255-9

  206. Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35(6):1059–1064

    Google Scholar 

  207. Siegel C, Waldo M, Mizner G, Adler LE, Freedman R (1984) Deficits in sensory gating in schizophrenic patients and their relatives: evidence obtained with auditory evoked responses. Arch Gen Psychiatr 41(6):607–612. doi:10.1001/archpsyc.1984.01790170081009

    CAS  Google Scholar 

  208. Patterson JV, Hetrick WP, Boutros NN, Jin Y, Sandman C, Stern H, Potkin S, Bunney WE (2008) P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatr Res 158(2):226–247

    Google Scholar 

  209. Sánchez-Morla EM, García-Jiménez MA, Barabash A, Martínez-Vizcaíno V, Mena J, Cabranes-Díaz JA, Baca-Baldomero E, Santos JL (2008) P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia. Acta Psychiatr Scand 117(4):313–318. doi:10.1111/j.1600-0447.2007.01141.x

    Google Scholar 

  210. O'Carroll R (2000) Cognitive impairment in schizophrenia. Adv Psychiatr Treat 6(3):161–168

    Google Scholar 

  211. Kuperberg G, Heckers S (2000) Schizophrenia and cognitive function. Curr Opin Neurobiol 10(2):205–210. doi:10.1016/S0959-4388(00)00068-4

  212. Keefe RE, Harvey P (2012) Cognitive impairment in schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments, vol 213. Handbook of experimental pharmacology. Springer, Berlin Heidelberg, pp 11–37. doi:10.1007/978-3-642-25758-2_2

  213. Boss F-G, Erb C, Hendrix M, Van KM, Wunder F (2004) Selective phosphodiesterase 9A inhibitors for the improvement of cognitive processes. DE10238722 A1

    Google Scholar 

  214. Hendrix M, Boess F-G, Burkhardt N, Erb C, Tersteegen A, Van KM (2004) Preparation of pyrazolopyrimidines as phosphodiesterase PDE9A inhibitors. DE10238724 A1

    Google Scholar 

  215. Hendrix M, Boess F-G, Burkhardt N, Erb C, Tersteegen A, Van KM (2004) Preparation of 6-benzylpyrazolo[3,4-d]pyrimidin-4-ones as phosphodiesterase-9A (PDE9A) inhibitors. WO2004018474 A1

    Google Scholar 

  216. Hendrix M, Baerfacker L, Erb C, Hafner F-T, Heckroth H, Schauss D, Tersteegen A, Van DSF-J, Van KM (2004) Preparation of 6-arylmethylpyrazolopyrimidines as PDE9A inhibitors for the treatment of Alzheimer's disease. WO2004099210 A1

    Google Scholar 

  217. Hendrix M, Baerfacker L, Erb C, Hafner F-T, Heckroth H, Schauss D, Tersteegen A, Van DSF-J, Van KM (2004) Preparation of pyrazolopyrimidinones as phosphodiesterase 9A inhibitors useful as nootropics. WO2004099211 A1

    Google Scholar 

  218. Hendrix M, Baerfacker L, Beyreuther B, Ebert U, Erb C, Hafner F-T, Heckroth H, Liu Y-H, Schauss D, Tersteegen A, Van DSF-J, Van KM (2004) Preparation of 6-arylamino-5-cyano-4-pyrimidinones as PDE9A inhibitors for the treatment of Alzheimer's disease. WO2004113306 A1

    Google Scholar 

  219. Hendrix M, Baerfacker L, Heckroth H, Karthaus D, Tersteegen A (2005) Preparation of 6-amino-5-cyano-pyrimidine-4-ones as phosphodiesterase 9A inhibitors for improving, perception. WO2005068436 A1

    Google Scholar 

  220. Verhoest PR, Proulx-Lafrance C (2008) Amino-heterocyclic compounds as PDE9 inhibitors and their preparation, pharmaceutical compositions and use in the treatment of, neurodegenerative diseases. WO2008139293 A1

    Google Scholar 

  221. Claffey MM, Helal CJ, Verhoest PR (2010) Preparation of dihydropyrazolopyrimidinone derivatives for use as PDE9 inhibitors. WO2010084438 A1

    Google Scholar 

  222. Eickmeier C, Doerner-Ciossek C, Fiegen D, Fox T, Fuchs K, Giovannini R, Heine N, Hendrix M, Rosenbrock H, Schaenzle G (2009) Preparation of 1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one derivatives as PDE9A modulators for the treatment of CNS disorders. WO2009068617 A1

    Google Scholar 

  223. Fuchs K, Dorner-Ciossek C, Eickmeier C, Fiegen D, Fox T, Giovannini R, Heine N, Hendrix M, Rosenbrock H, Schaenzle G (2010) Preparation of pyrazolopyrimidinones and their use for the treatment of CNS disorders. WO2010026214 A1

    Google Scholar 

  224. Giovannini R, Doerner-Ciossek C, Eickmeier C, Fiegen D, Fox T, Fuchs K, Heine N, Rosenbrock H, Schaenzle G (2009) Preparation of heterocyclyldihydropyrazolopyrimidinone derivatives for use as PDE9A modulators. WO2009121919 A1

    Google Scholar 

  225. Heine N, Dorner-Ciossek C, Eickmeier C, Fiegen D, Fox T, Fuchs K, Giovannini R, Rosenbrock H, Schaenzle G, Baerfacker L (2011) 1,5-Dihydropyrazolo[3,4-d]pyrimidin-4-one derivatives as PDE9 inhibitors and their preparation and use for the treatment of CNS diseases. WO2011018495 A1

    Google Scholar 

  226. Heine N, Eickmeier C, Ferrara M, Giovannini R, Rosenbrock H, Schaenzle G (2012) preparation of 6-cycloalkyl-1,5-dihydropyrazolo[3,4-d]pyrimidin-4-one derivatives as PDE9 inhibitors. WO2012020022 A1

    Google Scholar 

  227. Heine N, Giovannini R (2012) Preparation of cycloalkylpyrazolopyrimidinone derivatives for use as PDE9 inhibitors for treatment and prevention of CNS diseases. WO2012110441 A1

    Google Scholar 

  228. Wan Y, Luo H, Meng F, Liu P, Zhu X, Wen D, Shao Y, Zhang C, Huang J (2011) Preparation of pyrazolo[3,4-d]pyrimidone derivatives as phosphodiesterase IX inhibitors. CN102260266 A

    Google Scholar 

  229. Ripka A, Shapiro G, McRiner A (2012) Preparation of imidazotriazinone derivatives for use as phosphodiesterase 9 inhibitors. WO2012040230 A1

    Google Scholar 

  230. Ripka A, Shapiro G, McRiner AJ, Bursavich MG (2013) Imidazotriazinone compounds as PDE9 inhibitors and their preparation. WO2013142269 A1

    Google Scholar 

  231. Norimine Y, Takeda K, Hagiwara K, Suzuki Y, Ishihara Y, Sato N (2013) Pyrazoloquinoline derivative as PDE9 inhibitor, pharmaceutical composition containing it. WO2013051639 A1

    Google Scholar 

  232. Svenstrup N, Simonsen KB, Rasmussen LK, Juhl K, Langgaard M, Wen K, Wang Y (2013) Preparation of imidazotriazinone derivatives for use as PDE9 inhibitors. WO2013110768 A1

    Google Scholar 

  233. Svenstrup N, Simonsen KB, Rasmussen LK, Juhl K, Langgaard M, Wen K, Wang Y (2013) Preparation of PDE9 inhibitors with imidazopyrazinone backbone. WO2013053690 A1

    Google Scholar 

  234. Evans RM, Nicholas T, Le V, Qiu R, Martin W, Martin D, Styren S, Fullerton T, Schwam E (2010) Safety and pharmacokinetics of PF-04447943, a PDEA inhibitor, in single and multiple dose Phase 1 studies in healthy volunteers. Alzheimers Dement 6(4):S135

    Google Scholar 

  235. Schwam E, Evans R, Nicholas T, Chew R, Davidson W, Ambrose D, Altstiel L (2011) PF-04447943: a phase II controlled clinical trial of a selective PDE9A inhbitor in Alzheimer's disease. Alzheimers Dement 7(4):S695

    Google Scholar 

  236. Kawamoto E, Vasconcelos A, Degaspari S, Böhmer A, Scavone C, Marcourakis T (2013) Age-related changes in nitric oxide activity, cyclic GMP, and TBARS levels in platelets and erythrocytes reflect the oxidative status in central nervous system. AGE 35(2):331–342. doi:10.1007/s11357-011-9365-7

    CAS  Google Scholar 

  237. Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ (2014) Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal 26(2):383–397. doi:10.1016/j.cellsig.2013.10.007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamison B. Tuttle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuttle, J.B., Kormos, B.L. (2014). The Use of PDE10A and PDE9 Inhibitors for Treating Schizophrenia. In: Celanire, S., Poli, S. (eds) Small Molecule Therapeutics for Schizophrenia. Topics in Medicinal Chemistry, vol 13. Springer, Cham. https://doi.org/10.1007/7355_2014_54

Download citation

Publish with us

Policies and ethics