Skip to main content

Targeting Cellular Cofactors in HIV Therapy

  • Chapter
  • First Online:

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 15))

Abstract

Besides viral proteins cellular factors play a key role in the replication of the human immunodeficiency virus HIV-1. The outcome of virus replication is determined by the balance between the activity of a number of cellular dependency factors and restriction factors. Whereas the first are essential cofactors for diverse steps in the viral replication cycle, the latter counteract virus replication by sensing particular viral components as non-self, often as mediators of the innate immune system. Cellular cofactors include receptors for HIV-1 entry, LEDGF as cofactor for the viral integrase, the RNA helicase DDX3 involved in the nuclear export of unspliced viral RNAs, and diverse cellular kinases that promote viral replication. Cellular restriction factors are often antagonized by HIV-1 accessory proteins in order to counteract their restrictive function on viral replication. Although cellular cofactors in the HIV field are understood as factors promoting viral replication, we add a subchapter on the most important restriction factors (Trim5α, APOBEC3G, SAMHD1, and tetherin/BST-2). Today highly active antiretroviral therapy (HAART) mostly targets HIV proteins like reverse transcriptase, protease, or integrase to specifically interfere with virus replication. However, the identification of cellular cofactors and the increasing knowledge on their mode of action at defined steps in the HIV-1 replication cycle have opened new avenues towards the development of HIV-1 inhibitors. Here we summarize the most important cellular factors involved in HIV-1 replication along with therapeutic approaches developed to target them, preferentially without harming their normal cellular function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

β-TrCP:

β-transducin repeat containing protein

APOBEC3G:

Apolipoprotein B mRNA editing enzyme 3G

BRD4:

BET bromodomain protein 4

BST-2:

Bone stromal protein 2

CADA:

Cyclotriazadisulfonamide

CCD:

Catalytic core domain

CCR5:

Chemokine receptor 5

CD4:

Cluster of differentiation 4

CD4bs:

CD4 binding site

CD4i:

CD4 induced

CHR:

C-heptad repeat

CRL:

Cullin ring E3 ligases

CRM1:

Chromosome region maintenance 1

CypA:

Cyclophylin A

DCAF:

Ddb1-and Cul4 associated factor

DC-SIGN:

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

DDX3:

X-linked DEAD-box polypeptide 3

DFS:

Dense fine speckles

ECL:

Extracellular loop

Env:

Envelope

HAART:

Highly active antiretroviral therapy

HDACI:

Histon deacetylase inhibitors

HDGF:

Hepatoma-derived growth factor

HCV:

Hepatitis C virus

HCK:

Hematopoietic cell kinase

HIV:

Human immunodeficiency virus

HRP:

Hepatoma-derived growth factor-related proteins

IBD:

Integrase binding domain

IFN:

Interferon

IN:

Integrase

JAK1:

Janus kinase 1

LEDGF:

Lens epithelium-derived growth factor

mAb:

Monoclonal antibody

MLL:

Mixed-lineage leukemia

MPER:

Membrane proximal external region

Nef:

Viral protein Nef (originally negative factor)

NES:

Nuclear export signal

NHR:

N-heptad repeat

NLS:

Nuclear localization signal

NV:

Norovirus

PAMP:

Pathogen-associated molecular patterns

PIC:

Preintegration complex

PKC:

Protein kinase C

P-TEFb:

Positive Transcription Elongation Factor b

PSIP1:

PC4- and SFRS-interacting protein

RIG:

RIG-like helicases

RRE:

Rev responsive element

sCD4:

Soluble CD4

SAMHD1:

Sterile alpha motif (SAM) and Histidine/aspartate (HD) residues

SDR:

Supercoiled DNA recognition domain

Talens:

Transcription activator-like effector nucleases

TLR:

Toll-like receptor

TNPO3:

Transportin 3

Trim5 α:

Tripartite motif 5α

Vif:

Viral infectivity factor

VIRIP:

Virus inhibitory peptide

Vpr:

Viral protein R

Vpx:

Viral protein X

References

  1. Brass AL et al (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:921–926

    CAS  Google Scholar 

  2. Konig R et al (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:49–60

    CAS  Google Scholar 

  3. Zhou H et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:495–504

    CAS  Google Scholar 

  4. Bushman FD et al (2009) Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 5:e1000437

    Google Scholar 

  5. Jager S et al (2012) Global landscape of HIV-human protein complexes. Nature 481:365–370

    Google Scholar 

  6. Li Y et al (2009) Target cell type-dependent modulation of human immunodeficiency virus type 1 capsid disassembly by cyclophilin A. J Virol 83:10951–10962

    CAS  Google Scholar 

  7. Sokolskaja E et al (2004) Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 78:12800–12808

    CAS  Google Scholar 

  8. Veillette M et al (2013) The V86M mutation in HIV-1 capsid confers resistance to TRIM5alpha by abrogation of cyclophilin A-dependent restriction and enhancement of viral nuclear import. Retrovirology 10:25

    CAS  Google Scholar 

  9. Van Lint C et al (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67

    Google Scholar 

  10. Dean M et al (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, multicenter hemophilia cohort study, San Francisco city cohort, ALIVE study. Science 273:1856–1862

    CAS  Google Scholar 

  11. Hutter G et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–698

    Google Scholar 

  12. Ali A et al (2012) Synthesis and structure-activity relationship studies of HIV-1 virion infectivity factor (Vif) inhibitors that block viral replication. ChemMedChem 7:1217–1229

    CAS  Google Scholar 

  13. Cen S et al (2010) Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. J Biol Chem 285:16546–16552

    CAS  Google Scholar 

  14. Christ F et al (2010) Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448

    CAS  Google Scholar 

  15. Desimmie BA et al (2012) Phage display-directed discovery of LEDGF/p75 binding cyclic peptide inhibitors of HIV replication. Mol Ther 20:2064–2075

    CAS  Google Scholar 

  16. Caffrey M (2011) HIV envelope: challenges and opportunities for development of entry inhibitors. Trends Microbiol 19:191–197

    CAS  Google Scholar 

  17. Checkley MA et al (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410:582–608

    CAS  Google Scholar 

  18. Didigu CA, Doms RW (2012) Novel approaches to inhibit HIV entry. Viruses 4:309–324

    CAS  Google Scholar 

  19. Gibson RM, Arts EJ (2012) Past, present, and future of entry inhibitors as HIV microbicides. Curr HIV Res 10:19–26

    CAS  Google Scholar 

  20. Hertje M et al (2010) Inhibition of HIV-1 entry: multiple keys to close the door. ChemMedChem 5:1825–1835

    CAS  Google Scholar 

  21. Burton DR et al (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:183–186

    CAS  Google Scholar 

  22. Corti D, Lanzavecchia A (2013) Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31:705–742

    CAS  Google Scholar 

  23. Kwong PD, Mascola JR (2012) Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37:412–425

    CAS  Google Scholar 

  24. McCoy LE, Weiss RA (2013) Neutralizing antibodies to HIV-1 induced by immunization. J Exp Med 210:209–223

    CAS  Google Scholar 

  25. Mondor I et al (1998) Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol 72:3623–3634

    CAS  Google Scholar 

  26. Moulard M et al (2000) Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J Virol 74:1948–1960

    CAS  Google Scholar 

  27. Arthos J et al (2008) HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 9:301–309

    CAS  Google Scholar 

  28. Geijtenbeek TB et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    CAS  Google Scholar 

  29. McDonald D et al (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300:1295–1297

    CAS  Google Scholar 

  30. Jennings R, Clegg A (1993) The inhibitory effect of spermicidal agents on replication of HSV-2 and HIV-1 in-vitro. J Antimicrob Chemother 32:71–82

    CAS  Google Scholar 

  31. Moench TR et al (1993) The cat/feline immunodeficiency virus model for transmucosal transmission of AIDS: nonoxynol-9 contraceptive jelly blocks transmission by an infected cell inoculum. AIDS 7:797–802

    CAS  Google Scholar 

  32. Feldblum PJ et al (2008) SAVVY vaginal gel (C31G) for prevention of HIV infection: a randomized controlled trial in Nigeria. PLoS One 3:e1474

    Google Scholar 

  33. Kreiss J et al (1992) Efficacy of nonoxynol 9 contraceptive sponge use in preventing heterosexual acquisition of HIV in Nairobi prostitutes. JAMA 268:477–482

    CAS  Google Scholar 

  34. Peterson L et al (2007) SAVVY (C31G) gel for prevention of HIV infection in women: a Phase 3, double-blind, randomized, placebo-controlled trial in Ghana. PLoS One 2:e1312

    Google Scholar 

  35. Richardson BA et al (2001) Evaluation of a low-dose nonoxynol-9 gel for the prevention of sexually transmitted diseases: a randomized clinical trial. Sex Transm Dis 28:394–400

    CAS  Google Scholar 

  36. Tao W et al (2008) Enhancement of HIV infection by cellulose sulfate. AIDS Res Hum Retroviruses 24:925–929

    Google Scholar 

  37. Gupta RK et al (2013) Oral antiretroviral drugs as public health tools for HIV prevention: global implications for adherence, drug resistance, and the success of HIV treatment programs. J Infect Dis 207(Suppl 2):S101–S106

    CAS  Google Scholar 

  38. Obiero J et al (2012) Vaginal microbicides for reducing the risk of sexual acquisition of HIV infection in women: systematic review and meta-analysis. BMC Infect Dis 12:289

    Google Scholar 

  39. Nawaz F et al (2011) The genotype of early-transmitting HIV gp120s promotes alpha (4) beta(7)-reactivity, revealing alpha (4) beta(7) +/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog 7:e1001301

    CAS  Google Scholar 

  40. Rerks-Ngarm S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    CAS  Google Scholar 

  41. Haynes BF et al (2012) Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 366:1275–1286

    CAS  Google Scholar 

  42. Tsegaye TS, Pohlmann S (2010) The multiple facets of HIV attachment to dendritic cell lectins. Cell Microbiol 12:1553–1561

    CAS  Google Scholar 

  43. Kwong PD et al (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    CAS  Google Scholar 

  44. Hartley O et al (2005) V3: HIV’s switch-hitter. AIDS Res Hum Retroviruses 21:171–189

    CAS  Google Scholar 

  45. Stolp B et al (2012) HIV-1 Nef interferes with T-lymphocyte circulation through confined environments in vivo. Proc Natl Acad Sci U S A 109:18541–18546

    CAS  Google Scholar 

  46. Vermeire K, Schols D (2005) Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 14:1199–1212

    CAS  Google Scholar 

  47. Chang TL, Klotman ME (2004) Defensins: natural anti-HIV peptides. AIDS Rev 6:161–168

    Google Scholar 

  48. Furci L et al (2007) Alpha-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood 109:2928–2935

    CAS  Google Scholar 

  49. Shankar EM et al (2012) Recent advances targeting innate immunity-mediated therapies against HIV-1 infection. Microbiol Immunol 56:497–505

    CAS  Google Scholar 

  50. Schutten M et al (1995) Enhancement of infectivity of a non-syncytium inducing HIV-1 by sCD4 and by human antibodies that neutralize syncytium inducing HIV-1. Scand J Immunol 41:18–22

    CAS  Google Scholar 

  51. Daar ES et al (1990) High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proc Natl Acad Sci U S A 87:6574–6578

    CAS  Google Scholar 

  52. Trkola A et al (1995) Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 69:6609–6617

    CAS  Google Scholar 

  53. Fletcher CV et al (2007) Nonlinear pharmacokinetics of high-dose recombinant fusion protein CD4-IgG2 (PRO 542) observed in HIV-1-infected children. J Allergy Clin Immunol 119:747–750

    CAS  Google Scholar 

  54. Martin L et al (2003) Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 21:71–76

    CAS  Google Scholar 

  55. Van Herrewege Y et al (2008) CD4 mimetic miniproteins: potent anti-HIV compounds with promising activity as microbicides. J Antimicrob Chemother 61:818–826

    Google Scholar 

  56. Burton DR et al (1994) Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027

    CAS  Google Scholar 

  57. Parren PW et al (2001) Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 75:8340–8347

    CAS  Google Scholar 

  58. Scheid JF et al (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637

    CAS  Google Scholar 

  59. Wu X et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861

    CAS  Google Scholar 

  60. Yang Z et al (2005) Preclinical pharmacokinetics of a novel HIV-1 attachment inhibitor BMS-378806 and prediction of its human pharmacokinetics. Biopharm Drug Dispos 26:387–402

    CAS  Google Scholar 

  61. Bruno CJ, Jacobson JM (2010) Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother 65:1839–1841

    CAS  Google Scholar 

  62. Vermeire K et al (2004) CD4 down-modulating compounds with potent anti-HIV activity. Curr Pharm Des 10:1795–1803

    CAS  Google Scholar 

  63. Vermeire K et al (2002) CADA inhibits human immunodeficiency virus and human herpesvirus 7 replication by down-modulation of the cellular CD4 receptor. Virology 302:342–353

    CAS  Google Scholar 

  64. Huang CC et al (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310:1025–1028

    CAS  Google Scholar 

  65. Gorry PR, Ancuta P (2011) Coreceptors and HIV-1 pathogenesis. Curr HIV/AIDS Rep 8:45–53

    Google Scholar 

  66. Pollakis G, Paxton WA (2012) Use of (alternative) coreceptors for HIV entry. Curr Opin HIV AIDS 7:440–449

    CAS  Google Scholar 

  67. Stolp B, Fackler OT (2011) How HIV takes advantage of the cytoskeleton in entry and replication. Viruses 3:293–311

    CAS  Google Scholar 

  68. Wu Y, Yoder A (2009) Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. PLoS Pathog 5:e1000520

    Google Scholar 

  69. Yoder A et al (2008) HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134:782–792

    CAS  Google Scholar 

  70. Lusso P (2006) HIV and the chemokine system: 10 years later. EMBO J 25:447–456

    CAS  Google Scholar 

  71. Sharon M et al (2003) Alternative conformations of HIV-1 V3 loops mimic beta hairpins in chemokines, suggesting a mechanism for coreceptor selectivity. Structure 11:225–236

    CAS  Google Scholar 

  72. Gaertner H et al (2008) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci U S A 105:17706–17711

    CAS  Google Scholar 

  73. Hartley O, Offord RE (2005) Engineering chemokines to develop optimized HIV inhibitors. Curr Protein Pept Sci 6:207–219

    CAS  Google Scholar 

  74. Cormier EG et al (2000) Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120. Proc Natl Acad Sci U S A 97:5762–5767

    CAS  Google Scholar 

  75. Cormier EG et al (2001) Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120-CD4 complexes. J Virol 75:5541–5549

    CAS  Google Scholar 

  76. Farzan M et al (2000) A tyrosine-sulfated peptide based on the N terminus of CCR5 interacts with a CD4-enhanced epitope of the HIV-1 gp120 envelope glycoprotein and inhibits HIV-1 entry. J Biol Chem 275:33516–33521

    CAS  Google Scholar 

  77. Dervillez X et al (2010) Peptide ligands selected with CD4-induced epitopes on native dualtropic HIV-1 envelope proteins mimic extracellular coreceptor domains and bind to HIV-1 gp120 independently of coreceptor usage. J Virol 84:10131–10138

    CAS  Google Scholar 

  78. Mobius K et al (2012) A functionally selective synthetic mimic of the HIV-1 co-receptor CXCR4. Chemistry 18:8292–8295

    Google Scholar 

  79. Jacobson JM et al (2008) Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected adults. J Infect Dis 198:1345–1352

    Google Scholar 

  80. Trkola A et al (2001) Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 75:579–588

    CAS  Google Scholar 

  81. Haqqani AA, Tilton JC (2013) Entry inhibitors and their use in the treatment of HIV-1 infection. Antiviral Res 98:158–170

    CAS  Google Scholar 

  82. Wilkin TJ, Gulick RM (2012) CCR5 antagonism in HIV infection: current concepts and future opportunities. Annu Rev Med 63:81–93

    CAS  Google Scholar 

  83. Holt N et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28:839–847

    CAS  Google Scholar 

  84. Liles WC et al (2005) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 45:295–300

    CAS  Google Scholar 

  85. DeMarco SJ et al (2006) Discovery of novel, highly potent and selective beta-hairpin mimetic CXCR4 inhibitors with excellent anti-HIV activity and pharmacokinetic profiles. Bioorg Med Chem 14:8396–8404

    CAS  Google Scholar 

  86. Jenkinson S et al (2010) Blockade of X4-tropic HIV-1 cellular entry by GSK812397, a potent noncompetitive CXCR4 receptor antagonist. Antimicrob Agents Chemother 54:817–824

    CAS  Google Scholar 

  87. Moncunill G et al (2008) HIV-1 escape to CCR5 coreceptor antagonism through selection of CXCR4-using variants in vitro. AIDS 22:23–31

    CAS  Google Scholar 

  88. Garg H et al (2011) Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem 11:2947–2958

    CAS  Google Scholar 

  89. Kimpel J et al (2010) Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection. PLoS One 5:e12357

    Google Scholar 

  90. Younan PM et al (2013) Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood 122:179–187

    CAS  Google Scholar 

  91. Zahn RC et al (2008) Efficient entry inhibition of human and nonhuman primate immunodeficiency virus by cell surface-expressed gp41-derived peptides. Gene Ther 15:1210–1222

    CAS  Google Scholar 

  92. Munch J et al (2007) Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 129:263–275

    Google Scholar 

  93. Forssmann WG et al (2010) Short-term monotherapy in HIV-infected patients with a virus entry inhibitor against the gp41 fusion peptide. Sci Transl Med 2:63re3

    CAS  Google Scholar 

  94. Gerber D et al (2004) Inhibition of HIV-1 envelope glycoprotein-mediated cell fusion by a DL-amino acid-containing fusion peptide: possible recognition of the fusion complex. J Biol Chem 279:48224–48230

    CAS  Google Scholar 

  95. Gach JS et al (2011) Targeting HIV-1 gp41 in close proximity to the membrane using antibody and other molecules. Curr Top Med Chem 11:2997–3021

    CAS  Google Scholar 

  96. Huang J et al (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491:406–412

    CAS  Google Scholar 

  97. Zhang MY et al (2008) Cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody that recognizes a novel conformational epitope on gp41 and lacks reactivity against self-antigens. J Virol 82:6869–6879

    CAS  Google Scholar 

  98. Zhou M et al (2013) Identification of a new epitope for HIV-neutralizing antibodies in the gp41 membrane proximal external region by an Env-tailored phage display library. Eur J Immunol 43:499–509

    CAS  Google Scholar 

  99. Van Maele B et al (2006) Cellular co-factors of HIV-1 integration. Trends Biochem Sci 31:98–105

    Google Scholar 

  100. Llano M et al (2009) Virological and cellular roles of the transcriptional coactivator LEDGF/p75. Curr Top Microbiol Immunol 339:125–146

    CAS  Google Scholar 

  101. Debyser Z, Christ F (2010) On the cell biology of HIV integration from basic research to development of novel antiviral drugs. Verh K Acad Geneeskd Belg 72:219–237

    CAS  Google Scholar 

  102. Yokoyama A, Cleary ML (2008) Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell 14:36–46

    CAS  Google Scholar 

  103. Daugaard M et al (2012) LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 19:803–810

    CAS  Google Scholar 

  104. Ge H et al (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729

    CAS  Google Scholar 

  105. Singh DP et al (1999) Lens epithelium-derived growth factor: increased resistance to thermal and oxidative stresses. Invest Ophthalmol Vis Sci 40:1444–1451

    CAS  Google Scholar 

  106. Ganapathy V, Casiano CA (2004) Autoimmunity to the nuclear autoantigen DFS70 (LEDGF): what exactly are the autoantibodies trying to tell us? Arthritis Rheum 50:684–688

    Google Scholar 

  107. Ganapathy V et al (2003) LEDGF/p75: a novel nuclear autoantigen at the crossroads of cell survival and apoptosis. Autoimmun Rev 2:290–297

    CAS  Google Scholar 

  108. Cherepanov P et al (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381

    CAS  Google Scholar 

  109. Singh DP et al (2000) Lens epithelium-derived growth factor (LEDGF/p75) and p52 are derived from a single gene by alternative splicing. Gene 242:265–273

    CAS  Google Scholar 

  110. Dietz F et al (2002) The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies. Biochem J 366:491–500

    CAS  Google Scholar 

  111. Izumoto Y et al (1997) Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 238:26–32

    CAS  Google Scholar 

  112. Stec I et al (2000) The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473:1–5

    CAS  Google Scholar 

  113. Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421

    CAS  Google Scholar 

  114. Llano M et al (2006) Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J Mol Biol 360:760–773

    CAS  Google Scholar 

  115. Tsutsui KM et al (2011) Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain. Nucleic Acids Res 39:5067–5081

    CAS  Google Scholar 

  116. Turlure F et al (2006) A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res 34:1653–1665

    CAS  Google Scholar 

  117. Vanegas M et al (2005) Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. J Cell Sci 118:1733–1743

    CAS  Google Scholar 

  118. Ikegame K et al (1999) A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus. Biochem Biophys Res Commun 266:81–87

    CAS  Google Scholar 

  119. Schrijvers R et al (2012) LEDGF/p75-independent HIV-1 replication demonstrates a role for HRP-2 and remains sensitive to inhibition by LEDGINs. PLoS Pathog 8:e1002558

    CAS  Google Scholar 

  120. Cherepanov P et al (2004) Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase. J Biol Chem 279:48883–48892

    CAS  Google Scholar 

  121. Bartholomeeusen K et al (2009) Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. J Biol Chem 284:11467–11477

    CAS  Google Scholar 

  122. Bartholomeeusen K et al (2007) Differential interaction of HIV-1 integrase and JPO2 with the C terminus of LEDGF/p75. J Mol Biol 372:407–421

    CAS  Google Scholar 

  123. Maertens GN et al (2006) Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. J Cell Sci 119:2563–2571

    CAS  Google Scholar 

  124. Maertens G et al (2003) LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539

    CAS  Google Scholar 

  125. Shun MC et al (2007) LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev 21:1767–1778

    CAS  Google Scholar 

  126. Maurer-Stroh S et al (2003) The Tudor domain “Royal Family”: Tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74

    CAS  Google Scholar 

  127. Vermeulen M et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142:967–980

    CAS  Google Scholar 

  128. Vezzoli A et al (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol 17:617–619

    CAS  Google Scholar 

  129. Eidahl JO et al (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936

    CAS  Google Scholar 

  130. Pradeepa MM et al (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8:e1002717

    CAS  Google Scholar 

  131. Lukasik SM et al (2006) High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 15:314–323

    CAS  Google Scholar 

  132. Nameki N et al (2005) Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci 14:756–764

    CAS  Google Scholar 

  133. Slater LM et al (2003) Structural variation in PWWP domains. J Mol Biol 330:571–576

    CAS  Google Scholar 

  134. Cherepanov P et al (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 102:17308–17313

    CAS  Google Scholar 

  135. Huang J et al (2012) The same pocket in menin binds both MLL and JUND but has opposite effects on transcription. Nature 482:542–546

    CAS  Google Scholar 

  136. Busschots K et al (2007) Identification of the LEDGF/p75 binding site in HIV-1 integrase. J Mol Biol 365:1480–1492

    CAS  Google Scholar 

  137. Emiliani S et al (2005) Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280:25517–25523

    CAS  Google Scholar 

  138. Hombrouck A et al (2007) Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 3:e47

    Google Scholar 

  139. Christ F et al (2012) Small-molecule inhibitors of the LEDGF/p75 binding site of integrase block HIV replication and modulate integrase multimerization. Antimicrob Agents Chemother 56:4365–4374

    CAS  Google Scholar 

  140. Demeulemeester J, De Maeyer M, Debyser Z (2013) HIV-1 integrase drug discovery comes of age. Top Med Chem. doi:10.1007/7355_2013_33

    Google Scholar 

  141. Cherepanov P (2007) LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res 35:113–124

    CAS  Google Scholar 

  142. Llano M et al (2006) An essential role for LEDGF/p75 in HIV integration. Science 314:461–464

    CAS  Google Scholar 

  143. Llano M et al (2004) LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78:9524–9537

    CAS  Google Scholar 

  144. Ciuffi A et al (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289

    CAS  Google Scholar 

  145. Vandegraaff N et al (2006) Biochemical and genetic analyses of integrase-interacting proteins lens epithelium-derived growth factor (LEDGF)/p75 and hepatoma-derived growth factor related protein 2 (HRP2) in preintegration complex function and HIV-1 replication. Virology 346:415–426

    CAS  Google Scholar 

  146. Vandekerckhove L et al (2006) Transient and stable knockdown of the integrase cofactor LEDGF/p75 reveals its role in the replication cycle of human immunodeficiency virus. J Virol 80:1886–1896

    CAS  Google Scholar 

  147. Zielske SP, Stevenson M (2006) Modest but reproducible inhibition of human immunodeficiency virus type 1 infection in macrophages following LEDGFp75 silencing. J Virol 80:7275–7280

    CAS  Google Scholar 

  148. Gijsbers R et al (2010) LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol Ther 18:552–560

    CAS  Google Scholar 

  149. Meehan AM et al (2009) LEDGF/p75 proteins with alternative chromatin tethers are functional HIV-1 cofactors. PLoS Pathog 5:e1000522

    Google Scholar 

  150. McNeely M et al (2011) In vitro DNA tethering of HIV-1 integrase by the transcriptional coactivator LEDGF/p75. J Mol Biol 410:811–830

    CAS  Google Scholar 

  151. Botbol Y et al (2008) Chromatinized templates reveal the requirement for the LEDGF/p75 PWWP domain during HIV-1 integration in vitro. Nucleic Acids Res 36:1237–1246

    CAS  Google Scholar 

  152. McKee CJ et al (2008) Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein. J Biol Chem 283:31802–31812

    CAS  Google Scholar 

  153. Yu F et al (2007) HIV-1 integrase preassembled on donor DNA is refractory to activity stimulation by LEDGF/p75. Biochemistry 46:2899–2908

    CAS  Google Scholar 

  154. Christ F, Debyser Z (2013) The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology 435:102–109

    CAS  Google Scholar 

  155. Kessl JJ et al (2012) Multimode, cooperative mechanism of action of allosteric HIV-1 integrase inhibitors. J Biol Chem 287:16801–16811

    CAS  Google Scholar 

  156. Tsiang M et al (2012) New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J Biol Chem 287:21189–21203

    CAS  Google Scholar 

  157. De Rijck J et al (2006) Overexpression of the lens epithelium-derived growth factor/p75 integrase binding domain inhibits human immunodeficiency virus replication. J Virol 80:11498–11509

    Google Scholar 

  158. Hombrouck A et al (2007) Selection of human immunodeficiency virus type 1 resistance against the pyranodipyrimidine V-165 points to a multimodal mechanism of action. J Antimicrob Chemother 59:1084–1095

    CAS  Google Scholar 

  159. Angus AG et al (2010) Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein. J Gen Virol 91:122–132

    CAS  Google Scholar 

  160. Vashist S et al (2012) Identification of RNA-protein interaction networks involved in the norovirus life cycle. J Virol 86:11977–11990

    CAS  Google Scholar 

  161. Garbelli A et al (2011) Targeting the human DEAD-box polypeptide 3 (DDX3) RNA helicase as a novel strategy to inhibit viral replication. Curr Med Chem 18:3015–3027

    CAS  Google Scholar 

  162. Garbelli A et al (2011) A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication. PLoS One 6:e19810

    CAS  Google Scholar 

  163. Schroder M (2010) Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem Pharmacol 79:297–306

    CAS  Google Scholar 

  164. Soto-Rifo R et al (2012) DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J 31:3745–3756

    CAS  Google Scholar 

  165. Chang PC et al (2006) DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 25:1991–2003

    CAS  Google Scholar 

  166. Botlagunta M et al (2008) Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27:3912–3922

    CAS  Google Scholar 

  167. Schroder M et al (2008) Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J 27:2147–2157

    Google Scholar 

  168. Yedavalli VS et al (2004) Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119:381–392

    CAS  Google Scholar 

  169. Maga G et al (2011) Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity: synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem 6:1371–1389

    CAS  Google Scholar 

  170. Radi M et al (2012) Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg Med Chem Lett 22:2094–2098

    CAS  Google Scholar 

  171. Graves LM et al (2013) The dynamic nature of the kinome. Biochem J 450:1–8

    CAS  Google Scholar 

  172. Guiet R et al (2008) Hematopoietic cell kinase (Hck) isoforms and phagocyte duties - from signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 87:527–542

    CAS  Google Scholar 

  173. Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13:513–609

    CAS  Google Scholar 

  174. Durden DL et al (1995) The Fc gamma RI receptor signals through the activation of Hck and MAP kinase. J Immunol 154:4039–4047

    CAS  Google Scholar 

  175. Lowell CA et al (1996) Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 133:895–910

    CAS  Google Scholar 

  176. Meng F, Lowell CA (1998) A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J 17:4391–4403

    CAS  Google Scholar 

  177. Hassaine G et al (2001) The tyrosine kinase Hck is an inhibitor of HIV-1 replication counteracted by the viral vif protein. J Biol Chem 276:16885–16893

    CAS  Google Scholar 

  178. Douaisi M et al (2005) The tyrosine kinases Fyn and Hck favor the recruitment of tyrosine-phosphorylated APOBEC3G into vif-defective HIV-1 particles. Biochem Biophys Res Commun 329:917–924

    CAS  Google Scholar 

  179. Haller C et al (2007) HIV-1 Nef employs two distinct mechanisms to modulate Lck subcellular localization and TCR induced actin remodeling. PLoS One 2:e1212

    Google Scholar 

  180. Briggs SD et al (1997) SH3-mediated Hck tyrosine kinase activation and fibroblast transformation by the Nef protein of HIV-1. J Biol Chem 272:17899–17902

    CAS  Google Scholar 

  181. Moarefi I et al (1997) Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385:650–653

    CAS  Google Scholar 

  182. Jung J et al (2011) Structure, dynamics, and Hck interaction of full-length HIV-1 Nef. Proteins 79:1609–1622

    CAS  Google Scholar 

  183. Strasner AB et al (2008) The Src kinase Lck facilitates assembly of HIV-1 at the plasma membrane. J Immunol 181:3706–3713

    CAS  Google Scholar 

  184. Haller C et al (2006) The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 281:19618–19630

    CAS  Google Scholar 

  185. Schindler M et al (2006) Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:1055–1067

    CAS  Google Scholar 

  186. Thoulouze MI et al (2006) Human immunodeficiency virus type-1 infection impairs the formation of the immunological synapse. Immunity 24:547–561

    CAS  Google Scholar 

  187. Harmon B et al (2010) Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog 6:e1000956

    Google Scholar 

  188. Pontow SE et al (2004) Actin cytoskeletal reorganizations and coreceptor-mediated activation of rac during human immunodeficiency virus-induced cell fusion. J Virol 78:7138–7147

    CAS  Google Scholar 

  189. Zandy NL, Pendergast AM (2008) Abl tyrosine kinases modulate cadherin-dependent adhesion upstream and downstream of Rho family GTPases. Cell Cycle 7:444–448

    CAS  Google Scholar 

  190. Zandy NL et al (2007) Abl tyrosine kinases regulate cell-cell adhesion through Rho GTPases. Proc Natl Acad Sci U S A 104:17686–17691

    CAS  Google Scholar 

  191. Readinger JA et al (2008) Selective targeting of ITK blocks multiple steps of HIV replication. Proc Natl Acad Sci U S A 105:6684–6689

    CAS  Google Scholar 

  192. Perlman M, Resh MD (2006) Identification of an intracellular trafficking and assembly pathway for HIV-1 gag. Traffic 7:731–745

    CAS  Google Scholar 

  193. Garron ML et al (2008) Structural basis for the interaction between focal adhesion kinase and CD4. J Mol Biol 375:1320–1328

    CAS  Google Scholar 

  194. Cicala C et al (1999) Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope. J Immunol 163:420–426

    CAS  Google Scholar 

  195. Preusser A et al (2002) Presence of a helix in human CD4 cytoplasmic domain promotes binding to HIV-1 Nef protein. Biochem Biophys Res Commun 292:734–740

    CAS  Google Scholar 

  196. Wildum S et al (2006) Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol 80:8047–8059

    CAS  Google Scholar 

  197. Correll PH et al (2004) Receptor tyrosine kinases and the regulation of macrophage activation. J Leukoc Biol 75:731–737

    CAS  Google Scholar 

  198. Lee ES et al (2004) RON receptor tyrosine kinase, a negative regulator of inflammation, inhibits HIV-1 transcription in monocytes/macrophages and is decreased in brain tissue from patients with AIDS. J Immunol 173:6864–6872

    CAS  Google Scholar 

  199. Liu QP et al (1999) Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosine kinase. J Immunol 163:6606–6613

    CAS  Google Scholar 

  200. Kalantari P et al (2008) HIV-1 Tat mediates degradation of RON receptor tyrosine kinase, a regulator of inflammation. J Immunol 181:1548–1555

    CAS  Google Scholar 

  201. Bovolenta C et al (1999) Constitutive activation of STATs upon in vivo human immunodeficiency virus infection. Blood 94:4202–4209

    CAS  Google Scholar 

  202. Juffroy O et al (2010) Dual mechanism of impairment of interleukin-7 (IL-7) responses in human immunodeficiency virus infection: decreased IL-7 binding and abnormal activation of the JAK/STAT5 pathway. J Virol 84:96–108

    CAS  Google Scholar 

  203. Miller RC et al (2011) HIV interferes with SOCS-1 and -3 expression levels driving immune activation. Eur J Immunol 41:1058–1069

    CAS  Google Scholar 

  204. Kryworuchko M et al (2004) Defective interleukin-2-dependent STAT5 signalling in CD8 T lymphocytes from HIV-positive patients: restoration by antiretroviral therapy. AIDS 18:421–426

    CAS  Google Scholar 

  205. Marshall RM, Grana X (2006) Mechanisms controlling CDK9 activity. Front Biosci 11:2598–2613

    CAS  Google Scholar 

  206. Chao SH et al (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275:28345–28348

    CAS  Google Scholar 

  207. Chiu YL et al (2004) Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J Virol 78:2517–2529

    CAS  Google Scholar 

  208. Fu TJ et al (1999) Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 274:34527–34530

    CAS  Google Scholar 

  209. Mancebo HS et al (1997) P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 11:2633–2644

    CAS  Google Scholar 

  210. Van Duyne R et al (2013) Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription. J Mol Biol 425:812–829

    Google Scholar 

  211. Deng L et al (2002) HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter. J Biol Chem 277:33922–33929

    CAS  Google Scholar 

  212. Agbottah E et al (2005) Antiviral activity of CYC202 in HIV-1-infected cells. J Biol Chem 280:3029–3042

    CAS  Google Scholar 

  213. Ammosova T et al (2005) RNA interference directed to CDK2 inhibits HIV-1 transcription. Virology 341:171–178

    CAS  Google Scholar 

  214. Breuer D et al (2012) CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90. Retrovirology 9:94

    CAS  Google Scholar 

  215. Emert-Sedlak L et al (2009) Chemical library screens targeting an HIV-1 accessory factor/host cell kinase complex identify novel antiretroviral compounds. ACS Chem Biol 4:939–947

    CAS  Google Scholar 

  216. Olszewski A et al (2004) Guanidine alkaloid analogs as inhibitors of HIV-1 Nef interactions with p53, actin, and p56lck. Proc Natl Acad Sci U S A 101:14079–14084

    CAS  Google Scholar 

  217. Ali A et al (2009) Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. Chembiochem 10:2072–2080

    CAS  Google Scholar 

  218. Nemeth G et al (2011) Novel, selective CDK9 inhibitors for the treatment of HIV infection. Curr Med Chem 18:342–358

    CAS  Google Scholar 

  219. Olszewski A, Weiss GA (2005) Library versus library recognition and inhibition of the HIV-1 Nef allelome. J Am Chem Soc 127:12178–12179

    CAS  Google Scholar 

  220. Goujon C et al (2013) Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502:559–562

    CAS  Google Scholar 

  221. Liu Z et al (2013) The Interferon-Inducible MxB Protein Inhibits HIV-1 Infection. Cell Host Microbe 14:398–410

    CAS  Google Scholar 

  222. Stremlau M et al (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427:848–853

    CAS  Google Scholar 

  223. Hatziioannou T et al (2004) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78:6005–6012

    CAS  Google Scholar 

  224. Keckesova Z et al (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. Proc Natl Acad Sci U S A 101:10780–10785

    CAS  Google Scholar 

  225. Hatziioannou T et al (2006) Generation of simian-tropic HIV-1 by restriction factor evasion. Science 314:95

    CAS  Google Scholar 

  226. Malim MH (2009) APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 364:675–687

    CAS  Google Scholar 

  227. Sheehy AM et al (2003) The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 9:1404–1407

    CAS  Google Scholar 

  228. Stopak K et al (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12:591–601

    CAS  Google Scholar 

  229. Lever RA, Lever AM (2011) Intracellular defenses against HIV, viral evasion and novel therapeutic approaches. J Formos Med Assoc 110:350–362

    CAS  Google Scholar 

  230. Jager S et al (2012) Vif hijacks CBF-beta to degrade APOBEC3G and promote HIV-1 infection. Nature 481:371–375

    Google Scholar 

  231. Reddy K et al (2010) APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load. AIDS 24:195–204

    CAS  Google Scholar 

  232. Nathans R et al (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187–1192

    CAS  Google Scholar 

  233. Cadima-Couto I, Goncalves J (2010) Towards inhibition of Vif-APOBEC3G interaction: which protein to target? Adv Virol 2010:649315

    Google Scholar 

  234. Neil SJ et al (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430

    CAS  Google Scholar 

  235. Van Damme N et al (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3:245–252

    Google Scholar 

  236. Swiecki M et al (2013) BST-2/tetherin: structural biology, viral antagonism, and immunobiology of a potent host antiviral factor. Mol Immunol 54:132–139

    CAS  Google Scholar 

  237. Hinz A et al (2010) Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain. Cell Host Microbe 7:314–323

    CAS  Google Scholar 

  238. Schubert HL et al (2010) Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations. Proc Natl Acad Sci U S A 107:17951–17956

    CAS  Google Scholar 

  239. Goffinet C et al (2009) HIV-1 antagonism of CD317 is species specific and involves Vpu-mediated proteasomal degradation of the restriction factor. Cell Host Microbe 5:285–297

    CAS  Google Scholar 

  240. Schmidt S et al (2011) HIV-1 Vpu blocks recycling and biosynthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restriction. MBio 2:e00036–e00011

    Google Scholar 

  241. Zhang Q et al (2011) High-throughput assay to identify inhibitors of Vpu-mediated down-regulation of cell surface BST-2. Antiviral Res 91:321–329

    CAS  Google Scholar 

  242. Hrecka K et al (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–661

    CAS  Google Scholar 

  243. Laguette N et al (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657

    CAS  Google Scholar 

  244. Baldauf HM et al (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18:1682–1687

    CAS  Google Scholar 

  245. Descours B et al (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87

    CAS  Google Scholar 

  246. Lahouassa H et al (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228

    CAS  Google Scholar 

  247. Beloglazova N et al (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110

    CAS  Google Scholar 

  248. Gibbs JS et al (1995) Progression to AIDS in the absence of a gene for vpr or vpx. J Virol 69:2378–2383

    CAS  Google Scholar 

  249. Manel N et al (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–217

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dürr, R. et al. (2014). Targeting Cellular Cofactors in HIV Therapy. In: Diederich, W., Steuber, H. (eds) Therapy of Viral Infections. Topics in Medicinal Chemistry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2014_45

Download citation

Publish with us

Policies and ethics