Skip to main content

Carbohydrate-Based Anti-Virulence Compounds Against Chronic Pseudomonas aeruginosa Infections with a Focus on Small Molecules

  • Chapter
  • First Online:
Carbohydrates as Drugs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 12))

Abstract

The Gram-negative bacterium Pseudomonas aeruginosa can establish life-threatening chronic infections through biofilm formation. The two bacterial lectins LecA and LecB play important roles in the formation of these biofilms and the inhibition of the lectins with carbohydrate-based ligands was shown to disrupt biofilms. These effects provide a novel therapeutic option against infections caused by P. aeruginosa. In addition to the urgent need for novel therapeutics against Pseudomonas infections, two major advantages arise from these lectins as targets for therapy: (1) the extracellular localization and site of activity of LecA and LecB circumvent the bacterial cell envelope as a particularly impermeable barrier of Gram-negative pathogens, which must be overcome by drugs against intracellular targets, and (2) the lectins are targets of the so-called anti-virulence therapy and therefore a reduced appearance of resistances towards lectin-directed drugs can be anticipated. In this review, the recent development of carbohydrate-based inhibitors against both lectins is summarized with a main focus on small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper MA, Shlaes D (2011) Fix the antibiotics pipeline. Nature 472(7341):32

    Article  CAS  Google Scholar 

  2. Taubes G (2008) The bacteria fight back. Science 321(5887):356–361

    Article  CAS  Google Scholar 

  3. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197(8):1079–1081

    Article  Google Scholar 

  4. Chan M (2012) Antimicrobial resistance in the European Union and the world. Combating antimicrobial resistance: time for action. www.who.int/dg/speakers/2012/amr_20120314/en

  5. European Centre for Disease Prevention and Control (2009) The bacterial challenge: time to react. European Centre for Disease Prevention and Control. Technical report

    Google Scholar 

  6. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, Rokas A, Yandava CN, Engels R, Zeng E, Olavarietta R, Doud M, Smith RS, Montgomery P, White JR, Godfrey PA, Kodira C, Birren B, Galagan JE, Lory S (2008) Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci U S A 105(8):3100–3105

    Article  CAS  Google Scholar 

  7. Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev 74(4):621–641

    Article  CAS  Google Scholar 

  8. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. New Engl J Med 362(19):1804–1813

    Article  CAS  Google Scholar 

  9. Tümmler B, Kiewitz C (1999) Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5(8):351–358

    Article  Google Scholar 

  10. Cystic Fibrosis Foundation (2008) Patient Registry Report. Cystic Fibrosis Foundation. Technical report

    Google Scholar 

  11. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  Google Scholar 

  12. Monroe D (2007) Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5(11):e307

    Article  Google Scholar 

  13. Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. In: Romeo T (ed) Bacterial biofilms, vol 322. Springer, Berlin/Heidelberg, p 67–84

    Google Scholar 

  14. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  Google Scholar 

  15. Flemming H, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    CAS  Google Scholar 

  16. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210

    Article  CAS  Google Scholar 

  17. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N (2013) Applying insights from biofilm biology to drug development - can a new approach be developed? Nat Rev Drug Discov 12(10):791–808

    Article  CAS  Google Scholar 

  18. Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3(9):541–548

    Article  CAS  Google Scholar 

  19. Sommer R, Joachim I, Wagner S, Titz A (2013) New approaches to control infections: anti-biofilm strategies against gram-negative bacteria. CHIMIA 67(4):286–290

    Article  CAS  Google Scholar 

  20. Sharon N (1987) Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett 217(2):145–157

    Article  CAS  Google Scholar 

  21. Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760(4):527–537

    Article  CAS  Google Scholar 

  22. Ernst B, Magnani JL (2009) From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 8(8):661–677

    Article  CAS  Google Scholar 

  23. Scharenberg M, Schwardt O, Rabbani S, Ernst B (2012) Target selectivity of FimH antagonists. J Med Chem 55(22):9810–9816

    Article  CAS  Google Scholar 

  24. Pang L, Kleeb S, Lemme K, Rabbani S, Scharenberg M, Zalewski A, Schädler F, Schwardt O, Ernst B (2012) FimH antagonists: structure-activity and structure-property relationships for biphenyl α-D-mannopyranosides. ChemMedChem 7(8):1404–1422

    Article  CAS  Google Scholar 

  25. Jiang X, Abgottspon D, Kleeb S, Rabbani S, Scharenberg M, Wittwer M, Haug M, Schwardt O, Ernst B (2012) Antiadhesion therapy for urinary tract infections–a balanced PK/PD profile proved to be key for success. J Med Chem 55(10):4700–4713

    Article  CAS  Google Scholar 

  26. Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW (2012) Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem 55(8):3945–3959

    Article  CAS  Google Scholar 

  27. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ (2011) Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3(109):109ra115

    Article  Google Scholar 

  28. Klein T, Abgottspon D, Wittwer M, Rabbani S, Herold J, Jiang X, Kleeb S, Lüthi C, Scharenberg M, Bezençon J, Gubler E, Pang L, Smiesko M, Cutting B, Schwardt O, Ernst B (2010) FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J Med Chem 53(24):8627–8641

    Article  CAS  Google Scholar 

  29. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, Janetka JW (2010) Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53(12):4779–4792

    Article  CAS  Google Scholar 

  30. Gilboa-Garber N (1982) Pseudomonas aeruginosa lectins. Methods Enzymol 83:378–385

    Article  CAS  Google Scholar 

  31. Chemani C, Imberty A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K (2009) Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect Immun 77(5):2065–2075

    Article  CAS  Google Scholar 

  32. Adam EC, Mitchell BS, Schumacher DU, Grant G, Schumacher U (1997) Pseudomonas aeruginosa II lectin stops human ciliary beating: therapeutic implications of fucose. Am J Respir Crit Care Med 155(6):2102–2104

    Article  CAS  Google Scholar 

  33. Bajolet-Laudinat O, Girod-de Bentzmann S, Tournier JM, Madoulet C, Plotkowski MC, Chippaux C, Puchelle E (1994) Cytotoxicity of Pseudomonas aeruginosa internal lectin PA-I to respiratory epithelial cells in primary culture. Infect Immun 62(10):4481–4487

    CAS  Google Scholar 

  34. Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K (2006) The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8(6):1095–1104

    Article  CAS  Google Scholar 

  35. Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger K (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151(Pt 5):1313–1323

    Article  CAS  Google Scholar 

  36. Gilboa-Garber N (1972) Purification and properties of hemagglutinin from Pseudomonas aeruginosa and its reaction with human blood cells. Biochim Biophys Acta 273(1):165–173

    Article  CAS  Google Scholar 

  37. Gilboa-Garber N, Mizrahi L, Garber N (1977) Mannose-binding hemagglutinins in extracts of Pseudomonas aeruginosa. Can J Biochem 55(9):975–981

    Article  CAS  Google Scholar 

  38. Glick J, Garber N (1983) The intracellular localization of Pseudomonas aeruginosa lectins. J Gen Microbiol 129(10):3085–3090

    CAS  Google Scholar 

  39. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M, Williams P (2000) The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182(22):6401–6411

    Article  CAS  Google Scholar 

  40. Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2(14):1721–1731

    Article  CAS  Google Scholar 

  41. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404

    Article  CAS  Google Scholar 

  42. Yahr T, Parsek M (2006) The Prokaryotes. In: Proteobacteria: Gamma Subclass, vol 6, 3rd edn. Springer

    Google Scholar 

  43. von Bismarck P, Schneppenheim R, Schumacher U (2001) Successful treatment of Pseudomonas aeruginosa respiratory tract infection with a sugar solution–a case report on a lectin based therapeutic principle. Klin Padiatr 213(5):285–287

    Article  Google Scholar 

  44. Hauber H, Schulz M, Pforte A, Mack D, Zabel P, Schumacher U (2008) Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int J Med Sci 5(6):371–376

    Article  CAS  Google Scholar 

  45. Kukavica-Ibrulj I, Levesque RC (2008) Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 42(4):389–412

    Article  CAS  Google Scholar 

  46. Egan M (2009) How useful are cystic fibrosis mouse models? Drug Discov Today Dis Models 6(2):35–41

    Article  CAS  Google Scholar 

  47. Kadam RU, Bergmann M, Hurley M, Garg D, Cacciarini M, Swiderska MA, Nativi C, Sattler M, Smyth AR, Williams P, Cámara M, Stocker A, Darbre T, Reymond J (2011) A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew Chem Int Ed Engl 50(45):10631–10635

    Article  CAS  Google Scholar 

  48. Garber N, Guempel U, Belz A, Gilboa-Garber N, Doyle RJ (1992) On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. Biochim Biophys Acta 1116(3):331–333

    Article  CAS  Google Scholar 

  49. Blanchard B, Nurisso A, Hollville E, Tétaud C, Wiels J, Pokorná M, Wimmerová M, Varrot A, Imberty A (2008) Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J Mol Biol 383(4):837–853

    Article  CAS  Google Scholar 

  50. Nurisso A, Blanchard B, Audfray A, Rydner L, Oscarson S, Varrot A, Imberty A (2010) Role of water molecules in structure and energetics of Pseudomonas aeruginosa PA-IL lectin interacting with disaccharides. J Biol Chem 285:20316–20327

    Article  CAS  Google Scholar 

  51. Cioci G, Mitchell EP, Gautier C, Wimmerová M, Sudakevitz D, Pérez S, Gilboa-Garber N, Imberty A (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555(2):297–301

    Article  CAS  Google Scholar 

  52. Bernardi A, Jiménez-Barbero J, Casnati A, De Castro C, Darbre T, Fieschi F, Finne J, Funken H, Jaeger K, Lahmann M, Lindhorst TK, Marradi M, Messner P, Molinaro A, Murphy PV, Nativi C, Oscarson S, Penadés S, Peri F, Pieters RJ, Renaudet O, Reymond J, Richichi B, Rojo J, Sansone F, Schäffer C, Turnbull WB, Velasco-Torrijos T, Vidal S, Vincent S, Wennekes T, Zuilhof H, Imberty A (2012) Multivalent glycoconjugates as anti-pathogenic agents. Chem Soc Rev 42(11):4709–4727

    Article  Google Scholar 

  53. Imberty A, Chabre YM, Roy R (2008) Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chem Eur J 14(25):7490–7499

    Article  CAS  Google Scholar 

  54. Reymond J, Bergmann M, Darbre T (2013) Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 42(11):4814–4822

    Article  CAS  Google Scholar 

  55. Kadam RU, Garg D, Schwartz J, Visini R, Sattler M, Stocker A, Darbre T, Reymond J (2013) CH-π “T-shape” interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA. ACS Chem Biol 8(9):1925–1930

    Article  CAS  Google Scholar 

  56. Kadam RU, Bergmann M, Garg D, Gabrieli G, Stocker A, Darbre T, Reymond J (2013) Structure-based optimization of the terminal tripeptide in glycopeptide dendrimer inhibitors of pseudomonas aeruginosa biofilms targeting LecA. Chem Eur J 19(50):17054–17063

    Article  CAS  Google Scholar 

  57. Pertici F, Pieters RJ (2012) Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA. Chem Commun (Camb) 48(33):4008–4010

    Article  CAS  Google Scholar 

  58. Pertici F, de Mol NJ, Kemmink J, Pieters RJ (2013) Optimizing divalent inhibitors of pseudomonas aeruginosa lectin LecA by using A rigid spacer. Chem Eur J 19(50):16923–16927

    Article  CAS  Google Scholar 

  59. Chabre YM, Giguère D, Blanchard B, Rodrigue J, Rocheleau S, Neault M, Rauthu S, Papadopoulos A, Arnold AA, Imberty A, Roy R (2011) Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors. Chem Eur J 17(23):6545–6562

    Article  CAS  Google Scholar 

  60. Cecioni S, Praly J, Matthews SE, Wimmerová M, Imberty A, Vidal S (2012) Rational design and synthesis of optimized glycoclusters for multivalent lectin-carbohydrate interactions: influence of the linker arm. Chem Eur J 18(20):6250–6263

    Article  CAS  Google Scholar 

  61. Rodrigue J, Ganne G, Blanchard B, Saucier C, Giguère D, Shiao TC, Varrot A, Imberty A, Roy R (2013) Aromatic thioglycoside inhibitors against the virulence factor LecA from Pseudomonas aeruginosa. Org Biomol Chem 11(40):6906–6918

    Article  CAS  Google Scholar 

  62. Stoitsova SR, Boteva RN, Doyle RJ (2003) Binding of hydrophobic ligands by Pseudomonas aeruginosa PA-I lectin. Biochim Biophys Acta 1619(2):213–219

    Article  CAS  Google Scholar 

  63. Boteva RN, Bogoeva VP, Stoitsova SR (2005) PA-I lectin from Pseudomonas aeruginosa binds acyl homoserine lactones. Biochim Biophys Acta 1747(2):143–149

    Article  CAS  Google Scholar 

  64. Sabin C, Mitchell EP, Pokorná M, Gautier C, Utille J, Wimmerová M, Imberty A (2006) Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: thermodynamics data correlated with X-ray structures. FEBS Lett 580(3):982–987

    Article  CAS  Google Scholar 

  65. Perret S, Sabin C, Dumon C, Pokorná M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerová M, Mitchell EP, Imberty A (2005) Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J 389(Pt 2):325–332

    CAS  Google Scholar 

  66. Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9(12):918–921

    Article  CAS  Google Scholar 

  67. Loris R, Tielker D, Jaeger K, Wyns L (2003) Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. J Mol Biol 331(4):861–870

    Article  CAS  Google Scholar 

  68. Mitchell EP, Sabin C, Snajdrová L, Pokorná M, Perret S, Gautier C, Hofr C, Gilboa-Garber N, Koca J, Wimmerová M, Imberty A (2005) High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins 58(3):735–746

    Article  CAS  Google Scholar 

  69. Adam J, Pokorná M, Sabin C, Mitchell EP, Imberty A, Wimmerová M (2007) Engineering of PA-IIL lectin from Pseudomonas aeruginosa - unravelling the role of the specificity loop for sugar preference. BMC Struct Biol 7:36

    Article  Google Scholar 

  70. Marotte K, Sabin C, Préville C, Moumé-Pymbock M, Wimmerová M, Mitchell EP, Imberty A, Roy R (2007) X-ray structures and thermodynamics of the interaction of PA-IIL from Pseudomonas aeruginosa with disaccharide derivatives. ChemMedChem 2(9):1328–1338

    Article  CAS  Google Scholar 

  71. Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K, Darbre T, Reymond J (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15(12):1249–1257

    Article  CAS  Google Scholar 

  72. Andreini M, Anderluh M, Audfray A, Bernardi A, Imberty A (2010) Monovalent and bivalent N-fucosyl amides as high affinity ligands for Pseudomonas aeruginosa PA-IIL lectin. Carbohydr Res 345(10):1400–1407

    Article  CAS  Google Scholar 

  73. Hauck D, Joachim I, Frommeyer B, Varrot A, Philipp B, Möller HM, Imberty A, Exner TE, Titz A (2013) Discovery of two classes of potent glycomimetic inhibitors of pseudomonas aeruginosa LecB with distinct binding modes. ACS Chem Biol 8(8):1775–1784

    Article  CAS  Google Scholar 

  74. Magnani JL, Patton JT, Sarkar AK (2007) patent, US2007/0037775A1

    Google Scholar 

  75. Deguise I, Lagnoux D, Roy R (2007) Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa. New J Chem 31:1321–1331

    Article  CAS  Google Scholar 

  76. Dam TK, Brewer CF (2010) Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20(3):270–279

    Article  CAS  Google Scholar 

  77. Cecioni S, Faure S, Darbost U, Bonnamour I, Parrot-Lopez H, Roy O, Taillefumier C, Wimmerová M, Praly J, Imberty A, Vidal S (2011) Selectivity among two lectins: probing the effect of topology, multivalency and flexibility of “clicked” multivalent glycoclusters. Chem Eur J 17(7):2146–2159

    Article  CAS  Google Scholar 

  78. Egger J, Weckerle C, Cutting B, Schwardt O, Rabbani S, Lemme K, Ernst B (2013) Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J Am Chem Soc 135(26):9820–9828

    Article  CAS  Google Scholar 

  79. Shelke SV, Cutting B, Jiang X, Koliwer-Brandl H, Strasser DS, Schwardt O, Kelm S, Ernst B (2010) A fragment-based in situ combinatorial approach to identify high-affinity ligands for unknown binding sites. Angew Chem Int Ed Engl 49(33):5721–5725

    Article  CAS  Google Scholar 

  80. Rillahan CD, Schwartz E, Rademacher C, McBride R, Rangarajan J, Fokin VV, Paulson JC (2013) On-chip synthesis and screening of a sialoside library yields a high affinity ligand for siglec-7. ACS Chem Biol 8(7):1417–1422

    Article  CAS  Google Scholar 

  81. Zeng Y, Rademacher C, Nycholat CM, Futakawa S, Lemme K, Ernst B, Paulson JC (2011) High affinity sialoside ligands of myelin associated glycoprotein. Bioorg Med Chem Lett 21(17):5045–5049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.T. acknowledges the Helmholtz Association for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Titz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Titz, A. (2014). Carbohydrate-Based Anti-Virulence Compounds Against Chronic Pseudomonas aeruginosa Infections with a Focus on Small Molecules. In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_44

Download citation

Publish with us

Policies and ethics