Abstract
Various carbohydrate building blocks serve as versatile and valuable precursors for modern target-orientated synthesis. The large number of different carbohydrates, their structural diversity with respect to functional groups and stereogenic centers allows the facile synthesis of a broad variety of possible target molecules. In a personal selection the authors demonstrate how to make use of carbohydrates as a starting point for Pd-catalyzed coupling reactions to obtain C-glycosides, how to link carbohydrate and cyclopropane chemistry, and how efficient carbopalladation cascades fuse carbohydrates with aromatic units.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- Ac:
-
Acetyl
- anhyd:
-
Anhydrous
- Ar:
-
Aryl
- Bn:
-
Benzyl
- Bu:
-
Butyl
- Bz:
-
Benzoyl
- cat:
-
Catalyst
- concd:
-
Concentrated
- Cp:
-
Cyclopentadienyl
- d:
-
Day(s)
- DIBALH:
-
Diisobutylaluminum hydride
- DMAP:
-
4-(dimethylamino)pyridine
- DMDO:
-
Dimethyldioxirane
- DMF:
-
Dimethylformamide
- DMSO:
-
Dimethyl sulfoxide
- ee :
-
Enantiomeric excess
- equiv.:
-
Equivalent(s)
- Et:
-
Ethyl
- i-Pr:
-
Isopropyl
- KHMDS:
-
Potassium hexamethyldisilazide, potassium bis(trimethylsilyl)amide
- LHMDS:
-
Lithium hexamethyldisilazide, lithium bis(trimethylsilyl)amide
- Me:
-
Methyl
- min:
-
Minute(s)
- mol:
-
Mole(s)
- NBS:
-
N-bromosuccinimide
- NCS:
-
N-chlorosuccinimide
- Nu:
-
Nucleophile
- Ph:
-
Phenyl
- PPTS:
-
Pyridinium p-toluenesulfonate
- Pr:
-
Propyl
- py:
-
Pyridine
- rt:
-
Room temperature
- s:
-
Second(s)
- TBAF:
-
Tetrabutylammonium fluoride
- TBDMS:
-
tert-butyldimethylsilyl
- t-Bu:
-
tert-butyl
- THF:
-
Tetrahydrofuran
- TIPS:
-
Triisopropylsilyl
- TMS:
-
Trimethylsilyl
- Tol:
-
4-Methylphenyl
- Ts:
-
Tosyl, 4-toluenesulfonyl
References
Lindhorst TK (2007) Essentials of carbohydrate chemistry and biochemistry. Wiley, Weinheim
Koester DC, Holkenbrink A, Werz DB (2010) Recent advances in the synthesis of carbohydrate mimics. Synthesis 3217–3242
Horne G (2014) Iminosugars: therapeutic applications and synthetic considerations. Top Med Chem. doi:10.1007/7355_2014_50
Giese B, Witzel T (1986) Synthesis of “C-Disaccharides” by radical C–C bond formation. Angew Chem Int Ed Engl 25:450–451
Schmidt RR, Preuss R (1989) Synthesis of carbon bridged C-disaccharides. Tetrahedron Lett 30:3409–3412
Patro B, Schmidt RR (2000) (1-1)-Linked C-disaccharides – synthesis of bis(β-D-Galactopyranosyl)methane. J Carbohydr Chem 19:817–826
Yang G, Schmieg J, Tsuji M, Franck RW (2004) The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed 43:3818–3822
Yang G (2010) Synthesis of C-glycosides via Ramberg-Bäcklund reaction: synthesis of C-glycosides KRN-7000. LAP LAMBERT Academic Publishing
Chaulagain MR, Postema MHD, Valeriote F, Pietraszkewicz H (2004) Synthesis and anti-tumor activity of β- C-glycoside analogs of the immunostimulant KRN7000. Tetrahedron Lett 45:7791–7794
Koester DC, Leibeling M, Neufeld R, Werz DB (2010) A Pd-catalyzed approach to (1–6)-linked C-glycosides. Org Lett 12:3934–3937
Potuzak JS, Tan DS (2004) Synthesis of C1-alkyl and C1-acylglycals from glycals using a B-alkyl Suzuki–Miyaura cross coupling approach. Tetrahedron Lett 45:1797–1801
Lehmann J, Thieme R (1986) Synthese von 6- C-Azi-6-desoxy-d-glucose und - d-galactose für die Photoaffinitätsmarkierung von kohlenhydratbindenden Proteinen. Liebigs Ann:525–532
Roth GJ, Liepold B, Müller SG, Bestmann HJ (2004) Further improvements of the synthesis of alkynes from aldehydes. Synthesis 59–62
Wild R, Schmidt RR (1995) Synthesis of sphingosines, 11. Convenient synthesis of phytosphingosine and sphinganine from d-galactal and d-arabitol. Liebigs Ann 755–764
Jensen HH, Bols M (2003) Steric effects are not the cause of the rate difference in hydrolysis of stereoisomeric glycosides. Org Lett 5:3419–3421
Fujiwara K, Tsunashima M, Awakura D, Murai A (1995) Stereoselective synthesis of Δ5-oxonene and its novel ring contraction to Δ4–oxocene. Tetrahedron Lett 36:8263–8266
Sasaki M, Ishikawa M, Fuwa H, Tachibana K (2002) A general strategy for the convergent synthesis of fused polycyclic ethers via B-alkyl Suzuki coupling: synthesis of the ABCD ring fragment of ciguatoxins. Tetrahedron 58:1889–1911
Hanessian S, Martin M, Desai RCJ (1986) Formation of C-glycosides by polarity inversion at the anomeric centre. J Chem Soc Chem Commun 926–927
Schmidt RR, Preuss R, Betz R (1987) C-1 lithiation of c-2 activated glucals. Tetrahedron Lett 28:6591–6594
Halcomb RL, Danishefsky SJJ (1989) On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of β-linked oligosaccharides. J Am Chem Soc 111:6661–6666
Majumder U, Cox JM, Johnson HWB, Rainier JD (2006) Total synthesis of Gambierol: the generation of the A–C and F–H subunits by using a C-glycoside centered strategy. Chem Eur J 12:1736–1746
Inoue M, Yamashita S, Tatami A, Miyazaki K, Hirama MJ (2004) A new stereoselective synthesis of ciguatoxin right wing fragments. J Org Chem 69:2797–2804
Krishnamurthy S, Schubert RM, Brown HC (1973) Lithium triethylborohydride as a convenient reagent for the facile reduction of both hindered and bicyclic epoxides prone to electrophilically induced rearrangement. J Am Chem Soc 95:8486–8487
Koester DC, Kriemen E, Werz DB (2013) Flexible synthesis of 2-deoxy-C-glycosides and (1-2)-, (1-3)-, and (1-4)-linked C-glycosides. Angew Chem Int Ed 52:2985–2989
Jarowicki K, Kilner C, Kocienski P, Komsta Z, Milne J, Wojtasiewicz A, Coombs V (2008) A synthesis of 1-lithiated glycals and 1-tributylstannyl glycals from 1-phenylsulfinyl glycals via sulfoxide-lithium ligand exchange. Synthesis 2747–2763
Lu H, Silverman RB (2006) Fluorinated conformationally restricted γ-aminobutyric acid aminotransferase inhibitors. J Med Chem 49:7404–7412
Ramana CV, Murali R, Nagarjan M (1997) Synthesis and reactions of 1,2-cyclopropanated sugars. J Org Chem 62:7694–7703
Sato K, Sekiguchi T, Hozumi T, Yamazaki T, Akai S (2002) Improved synthetic method for preparing spiro α-chloroepoxides. Tetrahedron Lett 43:3087–3090
Seyferth D, Heeren JK, Grim SO (1961) The action of phenyllithium on bromomethyl- and iodomethyltriphenylphosphonium halides. J Org Chem 26:4783–4784
Hewitt RJ, Harvey JE (2010) Synthesis of Oxepines and 2-branched pyranosides from a d-glucal-derived gem-dibromo-1,2-cyclopropanated sugar. J Org Chem 75:955–958
Li X, Li L, Tang Y, Zhong L, Cun L, Zhu J, Liao J, Deng J (2010) Chemoselective conjugate reduction of α, β-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media. J Org Chem 75:2981–2988
Koglin N, Zorn C, Beumer R, Cabrele C, Bubert C, Sewald N, Reiser O, Beck-Sickinger AG (2003) Analogues of Neuropeptide Y containing β-Aminocyclopropane carboxylic acids are the shortest linear peptides that are selective for the Y1 receptor. Angew Chem Int Ed 42:202–205
De Pol S, Zorn C, Klein CD, Zerbe O, Reiser O (2004) Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew Chem Int Ed 43:511–514
Brand C, Granitzka M, Stalke D, Werz DB (2011) Reducing the conformational flexibility of carbohydrates: locking the 6-hydroxyl group by cyclopropanes. Chem Commun 47:10782–10784
Takahashi H, Kittaka H, Ikegami S (2001) Novel synthesis of enantiomerically pure natural inositols and their diastereoisomers. J Org Chem 66:2705–2716
Simmons HE, Smith RD (1959) A new synthesis of cyclopropanes. J Am Chem Soc 81:4256–4264
Furukawa J, Kawabata N, Nishimura J (1967) Synthesis of cyclopropanes by the reaction of olefins with dialkylzinc and methylene iodide. Tetrahedron 24:53–58
Furukawa J, Kawabata N, Nishimura J (1966) A novel route to cyclopropanes from olefins. Tetrahedron Lett 7:3353–3354
Song Z, Lu T, Hsung RP, Al-Rashid ZF, Ko C, Tang Y (2007) Stereoselective Simmons–Smith cyclopropanation of chiral enamides. Angew Chem Int Ed 46:4069–4072
Brand C, Kettelhoit K, Werz DB (2012) Glycosylations of cyclopropyl-modified carbohydrates: remarkable β-selectivity using a mannose building block. Org Lett 14:5126–5129
Crich D, Sun S (1996) Formation of β-mannopyranosides of primary alcohols using the sulfoxide method. J Org Chem 61:4506–4507
Crich D, Sun S (1997) Are glycosyl triflates intermediates in the sulfoxide glycosylation method? a chemical and 1H, 13C, and 19F NMR spectroscopic investigation. J Am Chem Soc 119:11217–11223
Crich D, Sun S (1998) Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron 54:8321–8348
Egusa K, Kusumoto S, Fukase K (2003) Solid-phase synthesis of a phytoalexin elicitor pentasaccharide using a 4-azido-3-chlorobenzyl group as the key for temporary protection and catch-and-release purification. Eur J Org Chem 3435–3445
Schmidt RR, Michel J, Moos M (1984) Glycosylimidate, 12 Direkte synthese von O-α- und O-β-Glycosyl-imidaten. Liebigs Ann Chem 1343–1357
Francke W, Kitching W (2001) Spiroacetals in insects. Curr Org Chem 5:233–251
Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256
Aho JE, Pihko PM, Rissa TK (2005) Nonanomeric spiroketals in natural products: structures, sources, and synthetic strategies. Chem Rev 105:4406–4440
Brimble MA, Fares FA (1999) Synthesis of bis-spiroacetal ring systems. Tetrahedron 55:7661–7706
Brasholz M, Sörgel S, Azap C, Reissig H-U (2007) Rubromycins: structurally intriguing, biologically valuable, synthetically challenging antitumour antibiotics. Eur J Org Chem 3801–3814
Rizzacasa MA, Pollex A (2009) The hetero-Diels–Alder approach to spiroketals. Org Biomol Chem 7:1053–1059
Schneider TF, Kaschel J, Dittrich B, Werz DB (2009) Anti-oligoanellated THF moieties: synthesis via Push-Pull-substituted cyclopropanes. Org Lett 11:2317–2320
Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB (2013) Donor-acceptor cyclopropanes with Lawesson’s and Woollins’ reagents: formation of bisthiophenes and unprecedented cage-like molecules. Chem Commun 49:4403–4405
Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB (2012) Domino reactions of donor-acceptor-substituted cyclopropanes for the synthesis of 3,3′-linked oligopyrroles and pyrrolo[3,2-e]indoles. Angew Chem Int Ed 51:11153–11156
Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB (2013) Symmetric and unsymmetric 3,3′-linked bispyrroles via ring-enlargement reactions of furan-derived donor-acceptor cyclopropanes. Org Biomol Chem 11:3494–3509
Kaschel J, Schneider TF, Schirmer P, Maaß C, Stalke D, Werz DB (2013) Rearrangements of Furan-, Thiophene- and N-Boc-pyrrole-derived donor-acceptor cyclopropanes: scope and limitations. Eur J Org Chem 4539–4551
Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786
Petasis NA, Bzowej EI (1990) Titanium-mediated carbonyl olefinations. 1. Methylenations of carbonyl compounds with dimethyltitanocene. J Am Chem Soc 112:6392–6394
Martin OR, Xie F (1994) Synthesis and spontaneous dimerization of the tri- O-benzyl derivative of”2-keto-1-C-methylene-d-glucopyranose” (2,6-anhydro-4,5,7-tri-O-benzyl-1-deoxy-d- arabino-hept-1-en-3-ulose). Carbohydr Res 264:141–146
Bluechel C, Ramana CV, Vasella A (2003) Synthesis of monosaccharide-derived spirocyclic cyclopropylamines and their evaluation as glycosidase inhibitors. Helv Chim Acta 86:2998–3036
Ellis GP, Lockhart IM (2007) The chemistry of heterocyclic compounds, chromenes, chromanones, and chromones. Wiley, New York
Shen HC (2009) Asymmetric synthesis of chiral chromans. Tetrahedron 65:3931–3952
Leibeling M, Koester DC, Pawliczek M, Schild SC, Werz DB (2010) Domino access to highly substituted chromans and isochromans from carbohydrates. Nature Chem Biol 6:199–201
Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley, Weinheim
Leibeling M, Koester DC, Pawliczek M, Kratzert D, Dittrich B, Werz DB (2010) Hybrids of sugars and aromatics: A Pd-catalyzed modular approach to chromans and isochromans. Bioorg Med Chem 18:3656–3667
Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136
Yoshimoto K, Kawabata H, Nakamichi N, Hayashi M (2001) Tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP): a novel catalyst for selective deacetylation. Chem Lett 30:934–935
Ferrier RJ, Overend WG, Ryan AE (1962) The reaction between 3,4,6-tri-O-acetyl-d-glucal and p-nitrophenol. J Chem Soc 3667–3670
Meyer FE, de Meijere A (1991) Palladium-catalyzed polycyclizations of enediynes: a convenient one-step synthesis of polyfunctional angularly bisanellated benzene derivatives. Synlett 777–778
Blond G, Bour C, Salem B, Suffert J (2008) A new Pd-catalyzed cascade reaction for the synthesis of strained aromatic polycycles. Org Lett 10:1075–1078
Leibeling M, Milde B, Kratzert D, Stalke D, Werz DB (2011) Intermolecular twofold carbopalladation/cyclization sequence to access chromans and isochromans from carbohydrates. Chem Eur J 17:9888–9892
Leibeling M, Werz DB (2012) Winding up alkynes: a Pd-catalyzed Tandem-Domino reaction to chiral biphenyls. Chem Eur J 18:6138–6141
Laatsch H, Fotso S (2008) Naturally occurring anthracyclines. Top Curr Chem 282:3–74
Brockmann H (1963) Anthracyclinone und anthracycline. Fortschr Chem Org Naturst 21:121–182
Grynkiewicz G, Wieslaw S (2008) Synthesis of sugar moieties. Top Curr Chem 282:249–284
Leng F, Savkur R, Fokt I, Przewloka T, Priebe W, Chaires JB (1996) Base specific and regioselective chemical cross-linking of daunorubicin to DNA. J Am Chem Soc 118:4731–4838
Chaires JB, Satyanarayana S, Suh D, Fokt I, Przewloka T, Priebe W (1996) Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry 35:2047–2053
Menna P, Salvatorelli E, Gianni L, Minotti G (2008) Anthracycline cardiotoxicity. Top Curr Chem 283:21–44
Cortés-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7:56–60
Vogel P (2008) Combinatorial synthesis of linearly condensed polycyclic compounds, including anthracyclinones, through Tandem Diels–Alder additions. Top Curr Chem 282:187–214
Gupta RC, Harland PA, Stoodley RJ (1983) A new strategy for the enantiocontrolled synthesis of anthracyclines resulting in a practical route to (+)-4-demethoxydaunomycinone. J Chem Soc Chem Commun 754–756
Tamariz J, Vogel P (1984) A doubly-convergent and regioselective synthesis of (±)-daunomycinone. Tetrahedron 40:4549–4560
Carrupt P-A, Vogel P (1979) A new, doubly convergent synthesis of anthracyclinones. Diels–Alder additions to 2,3,5,6-tetrakis(methylene)-7-oxanorbornane. Tetrahedron Lett 20:4533–4536
Filippini S, Lomovskaya N, Fonstein L, Colombo AL, Hutchinson CR, Otten SL, Breme U (2001) Process for preparing doxorubicin. Patent No.: US 6,210,930 B1:1–22
Leibeling M, Werz DB (2013) Flexible synthesis of anthracycline aglycone mimics via domino carbopalladation reactions. Beilstein J Org Chem 9:2194–2201
Takahashi T, Li S, Huang W, Kong F, Nakajima K, Shen B, Ohe T, Kanno K-I (2006) Article homologation method for preparation of substituted pentacenes and naphthacenes. J Org Chem 71:7967–7977
Petit M, Chouraqui G, Aubert C, Malacria M (2003) New and efficient procedure for the preparation of unsymmetrical silaketals. Org Lett 5:2037–2040
Pichaandi KR, Mague JT, Fink MJ (2011) Synthesis of a tert-butyl substituted bis(silirane) and comparison with its methyl and phenyl analogs. J Organomet Chem 696:1957–1963
Tamao K, Akita M, Kumada M (1983) Silafunctional compounds in organic synthesis: XVIII. Oxidative cleavage of the silicon-carbon bond in alkenylfluorosilanes to carbonyl compounds: Synthetic and mechanistic aspects. J Organomet Chem 254:13–22
Tamao K, Ishida N, Kumada M (1983) (Diisopropoxymethylsilyl)methyl Grignard reagent: a new, practically useful nucleophilic hydroxymethylating agent. J Org Chem 48:2120–2122
Fleming I, Henning R, Plaut HJ (1984) The phenyldimethylsilyl group as a masked form of the hydroxy group. J Chem Soc Chem Commun 29–31
Nakanishi M, Bolm C (2007) Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Adv Synth Catal 349:861–864
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Leibeling, M., Werz, D.B. (2014). Carbohydrate-Based Synthetic Chemistry in the Context of Drug Design. In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_43
Download citation
DOI: https://doi.org/10.1007/7355_2014_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08674-3
Online ISBN: 978-3-319-08675-0
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)