Skip to main content

Carbohydrate-Based Synthetic Chemistry in the Context of Drug Design

  • Chapter
  • First Online:
Carbohydrates as Drugs

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 12))

Abstract

Various carbohydrate building blocks serve as versatile and valuable precursors for modern target-orientated synthesis. The large number of different carbohydrates, their structural diversity with respect to functional groups and stereogenic centers allows the facile synthesis of a broad variety of possible target molecules. In a personal selection the authors demonstrate how to make use of carbohydrates as a starting point for Pd-catalyzed coupling reactions to obtain C-glycosides, how to link carbohydrate and cyclopropane chemistry, and how efficient carbopalladation cascades fuse carbohydrates with aromatic units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

anhyd:

Anhydrous

Ar:

Aryl

Bn:

Benzyl

Bu:

Butyl

Bz:

Benzoyl

cat:

Catalyst

concd:

Concentrated

Cp:

Cyclopentadienyl

d:

Day(s)

DIBALH:

Diisobutylaluminum hydride

DMAP:

4-(dimethylamino)pyridine

DMDO:

Dimethyldioxirane

DMF:

Dimethylformamide

DMSO:

Dimethyl sulfoxide

ee :

Enantiomeric excess

equiv.:

Equivalent(s)

Et:

Ethyl

i-Pr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide, potassium bis(trimethylsilyl)amide

LHMDS:

Lithium hexamethyldisilazide, lithium bis(trimethylsilyl)amide

Me:

Methyl

min:

Minute(s)

mol:

Mole(s)

NBS:

N-bromosuccinimide

NCS:

N-chlorosuccinimide

Nu:

Nucleophile

Ph:

Phenyl

PPTS:

Pyridinium p-toluenesulfonate

Pr:

Propyl

py:

Pyridine

rt:

Room temperature

s:

Second(s)

TBAF:

Tetrabutylammonium fluoride

TBDMS:

tert-butyldimethylsilyl

t-Bu:

tert-butyl

THF:

Tetrahydrofuran

TIPS:

Triisopropylsilyl

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

Ts:

Tosyl, 4-toluenesulfonyl

References

  1. Lindhorst TK (2007) Essentials of carbohydrate chemistry and biochemistry. Wiley, Weinheim

    Google Scholar 

  2. Koester DC, Holkenbrink A, Werz DB (2010) Recent advances in the synthesis of carbohydrate mimics. Synthesis 3217–3242

    Google Scholar 

  3. Horne G (2014) Iminosugars: therapeutic applications and synthetic considerations. Top Med Chem. doi:10.1007/7355_2014_50

    Google Scholar 

  4. Giese B, Witzel T (1986) Synthesis of “C-Disaccharides” by radical C–C bond formation. Angew Chem Int Ed Engl 25:450–451

    Article  Google Scholar 

  5. Schmidt RR, Preuss R (1989) Synthesis of carbon bridged C-disaccharides. Tetrahedron Lett 30:3409–3412

    Article  CAS  Google Scholar 

  6. Patro B, Schmidt RR (2000) (1-1)-Linked C-disaccharides – synthesis of bis(β-D-Galactopyranosyl)methane. J Carbohydr Chem 19:817–826

    Article  CAS  Google Scholar 

  7. Yang G, Schmieg J, Tsuji M, Franck RW (2004) The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed 43:3818–3822

    Article  CAS  Google Scholar 

  8. Yang G (2010) Synthesis of C-glycosides via Ramberg-Bäcklund reaction: synthesis of C-glycosides KRN-7000. LAP LAMBERT Academic Publishing

    Google Scholar 

  9. Chaulagain MR, Postema MHD, Valeriote F, Pietraszkewicz H (2004) Synthesis and anti-tumor activity of β- C-glycoside analogs of the immunostimulant KRN7000. Tetrahedron Lett 45:7791–7794

    Article  CAS  Google Scholar 

  10. Koester DC, Leibeling M, Neufeld R, Werz DB (2010) A Pd-catalyzed approach to (1–6)-linked C-glycosides. Org Lett 12:3934–3937

    Article  CAS  Google Scholar 

  11. Potuzak JS, Tan DS (2004) Synthesis of C1-alkyl and C1-acylglycals from glycals using a B-alkyl Suzuki–Miyaura cross coupling approach. Tetrahedron Lett 45:1797–1801

    Article  CAS  Google Scholar 

  12. Lehmann J, Thieme R (1986) Synthese von 6- C-Azi-6-desoxy-d-glucose und - d-galactose für die Photoaffinitätsmarkierung von kohlenhydratbindenden Proteinen. Liebigs Ann:525–532

    Google Scholar 

  13. Roth GJ, Liepold B, Müller SG, Bestmann HJ (2004) Further improvements of the synthesis of alkynes from aldehydes. Synthesis 59–62

    Google Scholar 

  14. Wild R, Schmidt RR (1995) Synthesis of sphingosines, 11. Convenient synthesis of phytosphingosine and sphinganine from d-galactal and d-arabitol. Liebigs Ann 755–764

    Google Scholar 

  15. Jensen HH, Bols M (2003) Steric effects are not the cause of the rate difference in hydrolysis of stereoisomeric glycosides. Org Lett 5:3419–3421

    Article  CAS  Google Scholar 

  16. Fujiwara K, Tsunashima M, Awakura D, Murai A (1995) Stereoselective synthesis of Δ5-oxonene and its novel ring contraction to Δ4–oxocene. Tetrahedron Lett 36:8263–8266

    Article  CAS  Google Scholar 

  17. Sasaki M, Ishikawa M, Fuwa H, Tachibana K (2002) A general strategy for the convergent synthesis of fused polycyclic ethers via B-alkyl Suzuki coupling: synthesis of the ABCD ring fragment of ciguatoxins. Tetrahedron 58:1889–1911

    Article  CAS  Google Scholar 

  18. Hanessian S, Martin M, Desai RCJ (1986) Formation of C-glycosides by polarity inversion at the anomeric centre. J Chem Soc Chem Commun 926–927

    Google Scholar 

  19. Schmidt RR, Preuss R, Betz R (1987) C-1 lithiation of c-2 activated glucals. Tetrahedron Lett 28:6591–6594

    Article  CAS  Google Scholar 

  20. Halcomb RL, Danishefsky SJJ (1989) On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of β-linked oligosaccharides. J Am Chem Soc 111:6661–6666

    Article  CAS  Google Scholar 

  21. Majumder U, Cox JM, Johnson HWB, Rainier JD (2006) Total synthesis of Gambierol: the generation of the A–C and F–H subunits by using a C-glycoside centered strategy. Chem Eur J 12:1736–1746

    Article  CAS  Google Scholar 

  22. Inoue M, Yamashita S, Tatami A, Miyazaki K, Hirama MJ (2004) A new stereoselective synthesis of ciguatoxin right wing fragments. J Org Chem 69:2797–2804

    Article  CAS  Google Scholar 

  23. Krishnamurthy S, Schubert RM, Brown HC (1973) Lithium triethylborohydride as a convenient reagent for the facile reduction of both hindered and bicyclic epoxides prone to electrophilically induced rearrangement. J Am Chem Soc 95:8486–8487

    Article  CAS  Google Scholar 

  24. Koester DC, Kriemen E, Werz DB (2013) Flexible synthesis of 2-deoxy-C-glycosides and (1-2)-, (1-3)-, and (1-4)-linked C-glycosides. Angew Chem Int Ed 52:2985–2989

    Article  CAS  Google Scholar 

  25. Jarowicki K, Kilner C, Kocienski P, Komsta Z, Milne J, Wojtasiewicz A, Coombs V (2008) A synthesis of 1-lithiated glycals and 1-tributylstannyl glycals from 1-phenylsulfinyl glycals via sulfoxide-lithium ligand exchange. Synthesis 2747–2763

    Google Scholar 

  26. Lu H, Silverman RB (2006) Fluorinated conformationally restricted γ-aminobutyric acid aminotransferase inhibitors. J Med Chem 49:7404–7412

    Article  CAS  Google Scholar 

  27. Ramana CV, Murali R, Nagarjan M (1997) Synthesis and reactions of 1,2-cyclopropanated sugars. J Org Chem 62:7694–7703

    Article  CAS  Google Scholar 

  28. Sato K, Sekiguchi T, Hozumi T, Yamazaki T, Akai S (2002) Improved synthetic method for preparing spiro α-chloroepoxides. Tetrahedron Lett 43:3087–3090

    Article  CAS  Google Scholar 

  29. Seyferth D, Heeren JK, Grim SO (1961) The action of phenyllithium on bromomethyl- and iodomethyltriphenylphosphonium halides. J Org Chem 26:4783–4784

    Article  Google Scholar 

  30. Hewitt RJ, Harvey JE (2010) Synthesis of Oxepines and 2-branched pyranosides from a d-glucal-derived gem-dibromo-1,2-cyclopropanated sugar. J Org Chem 75:955–958

    Article  CAS  Google Scholar 

  31. Li X, Li L, Tang Y, Zhong L, Cun L, Zhu J, Liao J, Deng J (2010) Chemoselective conjugate reduction of α, β-unsaturated ketones catalyzed by rhodium amido complexes in aqueous media. J Org Chem 75:2981–2988

    Article  CAS  Google Scholar 

  32. Koglin N, Zorn C, Beumer R, Cabrele C, Bubert C, Sewald N, Reiser O, Beck-Sickinger AG (2003) Analogues of Neuropeptide Y containing β-Aminocyclopropane carboxylic acids are the shortest linear peptides that are selective for the Y1 receptor. Angew Chem Int Ed 42:202–205

    Article  CAS  Google Scholar 

  33. De Pol S, Zorn C, Klein CD, Zerbe O, Reiser O (2004) Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew Chem Int Ed 43:511–514

    Article  Google Scholar 

  34. Brand C, Granitzka M, Stalke D, Werz DB (2011) Reducing the conformational flexibility of carbohydrates: locking the 6-hydroxyl group by cyclopropanes. Chem Commun 47:10782–10784

    Article  CAS  Google Scholar 

  35. Takahashi H, Kittaka H, Ikegami S (2001) Novel synthesis of enantiomerically pure natural inositols and their diastereoisomers. J Org Chem 66:2705–2716

    Article  CAS  Google Scholar 

  36. Simmons HE, Smith RD (1959) A new synthesis of cyclopropanes. J Am Chem Soc 81:4256–4264

    Article  CAS  Google Scholar 

  37. Furukawa J, Kawabata N, Nishimura J (1967) Synthesis of cyclopropanes by the reaction of olefins with dialkylzinc and methylene iodide. Tetrahedron 24:53–58

    Article  Google Scholar 

  38. Furukawa J, Kawabata N, Nishimura J (1966) A novel route to cyclopropanes from olefins. Tetrahedron Lett 7:3353–3354

    Article  Google Scholar 

  39. Song Z, Lu T, Hsung RP, Al-Rashid ZF, Ko C, Tang Y (2007) Stereoselective Simmons–Smith cyclopropanation of chiral enamides. Angew Chem Int Ed 46:4069–4072

    Article  CAS  Google Scholar 

  40. Brand C, Kettelhoit K, Werz DB (2012) Glycosylations of cyclopropyl-modified carbohydrates: remarkable β-selectivity using a mannose building block. Org Lett 14:5126–5129

    Article  CAS  Google Scholar 

  41. Crich D, Sun S (1996) Formation of β-mannopyranosides of primary alcohols using the sulfoxide method. J Org Chem 61:4506–4507

    Article  CAS  Google Scholar 

  42. Crich D, Sun S (1997) Are glycosyl triflates intermediates in the sulfoxide glycosylation method? a chemical and 1H, 13C, and 19F NMR spectroscopic investigation. J Am Chem Soc 119:11217–11223

    Article  CAS  Google Scholar 

  43. Crich D, Sun S (1998) Direct chemical synthesis of β-mannopyranosides and other glycosides via glycosyl triflates. Tetrahedron 54:8321–8348

    Article  CAS  Google Scholar 

  44. Egusa K, Kusumoto S, Fukase K (2003) Solid-phase synthesis of a phytoalexin elicitor pentasaccharide using a 4-azido-3-chlorobenzyl group as the key for temporary protection and catch-and-release purification. Eur J Org Chem 3435–3445

    Google Scholar 

  45. Schmidt RR, Michel J, Moos M (1984) Glycosylimidate, 12 Direkte synthese von O-α- und O-β-Glycosyl-imidaten. Liebigs Ann Chem 1343–1357

    Google Scholar 

  46. Francke W, Kitching W (2001) Spiroacetals in insects. Curr Org Chem 5:233–251

    Article  CAS  Google Scholar 

  47. Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256

    Article  CAS  Google Scholar 

  48. Aho JE, Pihko PM, Rissa TK (2005) Nonanomeric spiroketals in natural products: structures, sources, and synthetic strategies. Chem Rev 105:4406–4440

    Article  CAS  Google Scholar 

  49. Brimble MA, Fares FA (1999) Synthesis of bis-spiroacetal ring systems. Tetrahedron 55:7661–7706

    Article  CAS  Google Scholar 

  50. Brasholz M, Sörgel S, Azap C, Reissig H-U (2007) Rubromycins: structurally intriguing, biologically valuable, synthetically challenging antitumour antibiotics. Eur J Org Chem 3801–3814

    Google Scholar 

  51. Rizzacasa MA, Pollex A (2009) The hetero-Diels–Alder approach to spiroketals. Org Biomol Chem 7:1053–1059

    Article  CAS  Google Scholar 

  52. Schneider TF, Kaschel J, Dittrich B, Werz DB (2009) Anti-oligoanellated THF moieties: synthesis via Push-Pull-substituted cyclopropanes. Org Lett 11:2317–2320

    Article  CAS  Google Scholar 

  53. Kaschel J, Schmidt CD, Mumby M, Kratzert D, Stalke D, Werz DB (2013) Donor-acceptor cyclopropanes with Lawesson’s and Woollins’ reagents: formation of bisthiophenes and unprecedented cage-like molecules. Chem Commun 49:4403–4405

    Article  CAS  Google Scholar 

  54. Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB (2012) Domino reactions of donor-acceptor-substituted cyclopropanes for the synthesis of 3,3′-linked oligopyrroles and pyrrolo[3,2-e]indoles. Angew Chem Int Ed 51:11153–11156

    Article  CAS  Google Scholar 

  55. Kaschel J, Schneider TF, Kratzert D, Stalke D, Werz DB (2013) Symmetric and unsymmetric 3,3′-linked bispyrroles via ring-enlargement reactions of furan-derived donor-acceptor cyclopropanes. Org Biomol Chem 11:3494–3509

    Article  CAS  Google Scholar 

  56. Kaschel J, Schneider TF, Schirmer P, Maaß C, Stalke D, Werz DB (2013) Rearrangements of Furan-, Thiophene- and N-Boc-pyrrole-derived donor-acceptor cyclopropanes: scope and limitations. Eur J Org Chem 4539–4551

    Google Scholar 

  57. Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786

    Article  CAS  Google Scholar 

  58. Petasis NA, Bzowej EI (1990) Titanium-mediated carbonyl olefinations. 1. Methylenations of carbonyl compounds with dimethyltitanocene. J Am Chem Soc 112:6392–6394

    Article  CAS  Google Scholar 

  59. Martin OR, Xie F (1994) Synthesis and spontaneous dimerization of the tri- O-benzyl derivative of”2-keto-1-C-methylene-d-glucopyranose” (2,6-anhydro-4,5,7-tri-O-benzyl-1-deoxy-d- arabino-hept-1-en-3-ulose). Carbohydr Res 264:141–146

    Article  CAS  Google Scholar 

  60. Bluechel C, Ramana CV, Vasella A (2003) Synthesis of monosaccharide-derived spirocyclic cyclopropylamines and their evaluation as glycosidase inhibitors. Helv Chim Acta 86:2998–3036

    Article  CAS  Google Scholar 

  61. Ellis GP, Lockhart IM (2007) The chemistry of heterocyclic compounds, chromenes, chromanones, and chromones. Wiley, New York

    Google Scholar 

  62. Shen HC (2009) Asymmetric synthesis of chiral chromans. Tetrahedron 65:3931–3952

    Article  CAS  Google Scholar 

  63. Leibeling M, Koester DC, Pawliczek M, Schild SC, Werz DB (2010) Domino access to highly substituted chromans and isochromans from carbohydrates. Nature Chem Biol 6:199–201

    Article  CAS  Google Scholar 

  64. Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. Wiley, Weinheim

    Book  Google Scholar 

  65. Leibeling M, Koester DC, Pawliczek M, Kratzert D, Dittrich B, Werz DB (2010) Hybrids of sugars and aromatics: A Pd-catalyzed modular approach to chromans and isochromans. Bioorg Med Chem 18:3656–3667

    Article  CAS  Google Scholar 

  66. Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136

    Article  CAS  Google Scholar 

  67. Yoshimoto K, Kawabata H, Nakamichi N, Hayashi M (2001) Tris(2,4,6-trimethoxyphenyl)phosphine (TTMPP): a novel catalyst for selective deacetylation. Chem Lett 30:934–935

    Article  Google Scholar 

  68. Ferrier RJ, Overend WG, Ryan AE (1962) The reaction between 3,4,6-tri-O-acetyl-d-glucal and p-nitrophenol. J Chem Soc 3667–3670

    Google Scholar 

  69. Meyer FE, de Meijere A (1991) Palladium-catalyzed polycyclizations of enediynes: a convenient one-step synthesis of polyfunctional angularly bisanellated benzene derivatives. Synlett 777–778

    Google Scholar 

  70. Blond G, Bour C, Salem B, Suffert J (2008) A new Pd-catalyzed cascade reaction for the synthesis of strained aromatic polycycles. Org Lett 10:1075–1078

    Article  CAS  Google Scholar 

  71. Leibeling M, Milde B, Kratzert D, Stalke D, Werz DB (2011) Intermolecular twofold carbopalladation/cyclization sequence to access chromans and isochromans from carbohydrates. Chem Eur J 17:9888–9892

    Article  CAS  Google Scholar 

  72. Leibeling M, Werz DB (2012) Winding up alkynes: a Pd-catalyzed Tandem-Domino reaction to chiral biphenyls. Chem Eur J 18:6138–6141

    Article  CAS  Google Scholar 

  73. Laatsch H, Fotso S (2008) Naturally occurring anthracyclines. Top Curr Chem 282:3–74

    Article  CAS  Google Scholar 

  74. Brockmann H (1963) Anthracyclinone und anthracycline. Fortschr Chem Org Naturst 21:121–182

    CAS  Google Scholar 

  75. Grynkiewicz G, Wieslaw S (2008) Synthesis of sugar moieties. Top Curr Chem 282:249–284

    Article  CAS  Google Scholar 

  76. Leng F, Savkur R, Fokt I, Przewloka T, Priebe W, Chaires JB (1996) Base specific and regioselective chemical cross-linking of daunorubicin to DNA. J Am Chem Soc 118:4731–4838

    Article  CAS  Google Scholar 

  77. Chaires JB, Satyanarayana S, Suh D, Fokt I, Przewloka T, Priebe W (1996) Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry 35:2047–2053

    Article  CAS  Google Scholar 

  78. Menna P, Salvatorelli E, Gianni L, Minotti G (2008) Anthracycline cardiotoxicity. Top Curr Chem 283:21–44

    Article  CAS  Google Scholar 

  79. Cortés-Funes H, Coronado C (2007) Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7:56–60

    Article  Google Scholar 

  80. Vogel P (2008) Combinatorial synthesis of linearly condensed polycyclic compounds, including anthracyclinones, through Tandem Diels–Alder additions. Top Curr Chem 282:187–214

    Article  CAS  Google Scholar 

  81. Gupta RC, Harland PA, Stoodley RJ (1983) A new strategy for the enantiocontrolled synthesis of anthracyclines resulting in a practical route to (+)-4-demethoxydaunomycinone. J Chem Soc Chem Commun 754–756

    Google Scholar 

  82. Tamariz J, Vogel P (1984) A doubly-convergent and regioselective synthesis of (±)-daunomycinone. Tetrahedron 40:4549–4560

    Article  CAS  Google Scholar 

  83. Carrupt P-A, Vogel P (1979) A new, doubly convergent synthesis of anthracyclinones. Diels–Alder additions to 2,3,5,6-tetrakis(methylene)-7-oxanorbornane. Tetrahedron Lett 20:4533–4536

    Article  Google Scholar 

  84. Filippini S, Lomovskaya N, Fonstein L, Colombo AL, Hutchinson CR, Otten SL, Breme U (2001) Process for preparing doxorubicin. Patent No.: US 6,210,930 B1:1–22

    Google Scholar 

  85. Leibeling M, Werz DB (2013) Flexible synthesis of anthracycline aglycone mimics via domino carbopalladation reactions. Beilstein J Org Chem 9:2194–2201

    Article  Google Scholar 

  86. Takahashi T, Li S, Huang W, Kong F, Nakajima K, Shen B, Ohe T, Kanno K-I (2006) Article homologation method for preparation of substituted pentacenes and naphthacenes. J Org Chem 71:7967–7977

    Article  CAS  Google Scholar 

  87. Petit M, Chouraqui G, Aubert C, Malacria M (2003) New and efficient procedure for the preparation of unsymmetrical silaketals. Org Lett 5:2037–2040

    Article  CAS  Google Scholar 

  88. Pichaandi KR, Mague JT, Fink MJ (2011) Synthesis of a tert-butyl substituted bis(silirane) and comparison with its methyl and phenyl analogs. J Organomet Chem 696:1957–1963

    Article  CAS  Google Scholar 

  89. Tamao K, Akita M, Kumada M (1983) Silafunctional compounds in organic synthesis: XVIII. Oxidative cleavage of the silicon-carbon bond in alkenylfluorosilanes to carbonyl compounds: Synthetic and mechanistic aspects. J Organomet Chem 254:13–22

    Article  CAS  Google Scholar 

  90. Tamao K, Ishida N, Kumada M (1983) (Diisopropoxymethylsilyl)methyl Grignard reagent: a new, practically useful nucleophilic hydroxymethylating agent. J Org Chem 48:2120–2122

    Article  CAS  Google Scholar 

  91. Fleming I, Henning R, Plaut HJ (1984) The phenyldimethylsilyl group as a masked form of the hydroxy group. J Chem Soc Chem Commun 29–31

    Google Scholar 

  92. Nakanishi M, Bolm C (2007) Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Adv Synth Catal 349:861–864

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leibeling, M., Werz, D.B. (2014). Carbohydrate-Based Synthetic Chemistry in the Context of Drug Design. In: Seeberger, P., Rademacher, C. (eds) Carbohydrates as Drugs. Topics in Medicinal Chemistry, vol 12. Springer, Cham. https://doi.org/10.1007/7355_2014_43

Download citation

Publish with us

Policies and ethics