Skip to main content

Improving Solubility via Structural Modification

Part of the Topics in Medicinal Chemistry book series (TMC,volume 9)

Abstract

The examples and discussion presented in this review are intended to serve as resource for medicinal chemists engaged in the task of optimizing drug physical properties. A discussion of the factors governing aqueous solubility is presented followed by specific examples drawn from the recent literature. According to the general solubility equation (GSE), the factors involved in the solubility of a compound are represented by logP and melting point. Improved solubility can be accomplished by reducing logP or melting point by increasing polarity or disrupting intermolecular interactions in the solid state. Tactics for increasing polarity include introducing a solubilizing appendage onto the drug or modifying the template or attached substituents. The melting point of a compound can be lowered by disrupting specific intermolecular interactions or changing the topology or shape of the molecule.

Keywords

  • Crystal lattice stability
  • Enthalpy of solvation
  • Entropy of solvation
  • Fluorine
  • General solubility equation
  • Hydrogen bonding
  • Hydrophobicity
  • Matched molecular pairs
  • Melting point
  • Molecular planarity
  • Molecular symmetry
  • Packing efficiency
  • Solubilizing appendage
  • Solvation
  • X-Ray crystallography

An erratum to this chapter can be found at http://dx.doi.org/10.1007/7355_2014_71

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7355_2013_32
  • Chapter length: 38 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-55041-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    ΔH m, melting (fusion) enthalpy; ΔS m, melting (fusion) entropy.

  2. 2.

    Z, number of molecules per unit cell; V mol, molecular volume (Å3); V cell, unit cell volume (Å3).

Abbreviations

C k :

The Kitaigorodski packing coefficient

CSD:

Cambridge Structural Database

DGAT1:

Diacylglycerol O-acyltransferase 1

GSE:

General solubility equation

ICAM 1:

Intercellular adhesion molecule 1

MMP:

Matched molecular pair

mp:

Melting point

PDE:

Phosphodiesterase

PEG:

Polyethylene glycol

S1P1:

Sphingosine 1-phosphate receptor subtype 1

sol:

Solubility

SPT:

Scaled particle theory

T m :

Melting temperature

References

  1. Amidon GL, Lennernäs HL, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    CAS  CrossRef  Google Scholar 

  2. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharm Tox Meth 44:235–249

    CAS  CrossRef  Google Scholar 

  3. Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756

    CAS  CrossRef  Google Scholar 

  4. Ritchie TJ, Macdonald SJF (2009) The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Disc Today 14:1011–1020

    CAS  CrossRef  Google Scholar 

  5. Hill AP, Young RJ (2010) Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Disc Today 15:649–655

    CrossRef  Google Scholar 

  6. Yang Y, Engkvist O, Llinàs A, Chen H (2012) Beyond size, ionization state, and lipophilicity: influence of molecular topology on absorption, distribution, metabolism, excretion, and toxicity for drug like compounds. J Med Chem 55:3667–3677

    CAS  CrossRef  Google Scholar 

  7. Hann MM (2011) Molecular obesity, potency and other addictions in drug discovery. Med Chem Comm 2:349–355

    CAS  CrossRef  Google Scholar 

  8. Faller B, Ottaviani G, Ertl P et al (2011) Evolution of the physicochemical properties of marketed drugs: can history foretell the future? Drug Discov Today 16:976–984

    CAS  CrossRef  Google Scholar 

  9. Di L, Fish PV, Mano T (2012) Bridging solubility between drug discovery and development. Drug Discov Today 17:486–495

    CAS  CrossRef  Google Scholar 

  10. Meanwell NA (2011) Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 24:1420–1456

    CAS  CrossRef  Google Scholar 

  11. Ran Y, Yalkowsky SH (2001) Prediction of drug solubility by the general solubility equation (GSE). J Chem Inf Comput Sci 41:354–357

    CAS  CrossRef  Google Scholar 

  12. Ran Y, Jain N, Yalkowsky SH (2001) Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). J Chem Inf Comput Sci 41:1208–1217

    CAS  CrossRef  Google Scholar 

  13. Ben-Naim A (2001) On the evolution of the concept of solvation thermodynamics. J Sol Chem 30:475–487

    CAS  CrossRef  Google Scholar 

  14. Frank HS, Evans MW (1945) Free volume and entropy in condensed systems. III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13:507–532

    CAS  CrossRef  Google Scholar 

  15. Ben-Naim A, Tenne R (1977) Application of the scaled particle theory to the problem of hydrophobic interaction. J Chem Phys 67:627–635

    CAS  CrossRef  Google Scholar 

  16. Lee B, Graziano G (1996) A two-state model of hydrophobic hydration that produces compensating enthalpy and entropy changes. J Am Chem Soc 118:5163–5168

    CAS  CrossRef  Google Scholar 

  17. Reiss H, Frisch HL, Lebowitz JL (1959) Statistical mechanics of rigid spheres. J Chem Phys 31:369–380

    CAS  CrossRef  Google Scholar 

  18. Tolls J, van Dijk J, Verbruggen EJM et al (2002) Aqueous solubility-molecular size relationships: a mechanistic case study using C10- to C19-alkanes. J Phys Chem A 106:2760–2765

    CAS  CrossRef  Google Scholar 

  19. Khadikar RV, Mandloi D, Bajaj AV, Joshi S (2003) QSAR Study on solubility of alkanes in water and their partition coefficients in different solvent systems using PI index. Bioorg Med Chem Lett 13:419–422

    CAS  CrossRef  Google Scholar 

  20. Ferguson AL, Debenedetti PG, Panagiotopoulos AZ (2009) Solubility and molecular conformations of n-alkane chains in water. J Phys Chem B 113:6405–6414

    CAS  CrossRef  Google Scholar 

  21. Abraham MH, Ibrahim A, Zissimos AM et al (2002) Application of hydrogen bonding calculations in property based drug design. Drug Discov Today 7:1056–1063

    CAS  CrossRef  Google Scholar 

  22. Raevsky O (2008) H-Bonding parameterization in quantitative structure–activity relationships and drug design. In: Mannhold R (ed) Molecular drug properties. Wiley-VCH, Weinheim

    Google Scholar 

  23. Gurka D, Taft RW (1969) Studies of hydrogen-bonded complex formation with p-fluorophenol. IV. Fluorine nuclear magnetic resonance method. J Am Chem Soc 91:4794–4801

    CAS  CrossRef  Google Scholar 

  24. Arnett EM, Joris L, Mitchell E et al (1970) Hydrogen-bonded complex formation. III. Thermodynamics of complexing by infrared spectroscopy and calorimetry. J Am Chem Soc 92:2365–2377

    CAS  CrossRef  Google Scholar 

  25. Berthelot M, Laurence C, Safar M, Besseau F (1998) Hydrogen-bond basicity pK HB scale of six-membered aromatic N-heterocycles. J Chem Soc Perkin Trans 2:283–290

    CrossRef  Google Scholar 

  26. Laurence C, Brameld KA, Graton J et al (2009) The pK(BHX) database: toward a better understanding of hydrogen-bond basicity for medicinal chemists. J Med Chem 52:4073–4086

    CAS  CrossRef  Google Scholar 

  27. Yalkowsky SH, Valvani SC (1980) Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 69:912–922

    CAS  CrossRef  Google Scholar 

  28. Dannenfelser RM, Yalkowsky SH (1996) Estimation of entropy of melting from molecular structure: a non-group contribution method. Ind Eng Chem Res 35:1483–1486

    CAS  CrossRef  Google Scholar 

  29. Chickos JS, Braton CM, Hesse DG, Liebman JF (1991) Estimating entropies and enthalpies of fusion of organic compounds. J Org Chem 56:927–938

    CAS  CrossRef  Google Scholar 

  30. Dunitz JD, Filippini G, Gavezzotti A (2000) Molecular shape and crystal packing: a study of C12H12 isomers, real and imaginary. Helv Chim Acta 83:2317–2335

    CAS  CrossRef  Google Scholar 

  31. Du Y, Creighton CJ, Tounge BA, Reitz AP (2004) Noncovalent self-assembly of bicyclo[4.2.2]diketopiperazines: influence of saturation in the bridging carbacyclic ring. Org Lett 6:306–312

    CrossRef  Google Scholar 

  32. Dunitz JD, Gavezzotti A (2009) How molecules stick together in organic crystals: weak intermolecular interactions. Chem Soc Rev 38:2622–2633

    CAS  CrossRef  Google Scholar 

  33. Zhang J, Wang Y, Wang Q, Xu L (2012) 6,7-Dichloro-3-(2,4-dichlorobenzyl)- quinoxalin-2(1H)-one. Acta Crystallogr Sect E 68:2481

    CrossRef  Google Scholar 

  34. Zhou Y, Ren L, Lu Y, Zhang F, Chen G (2012) N-[4-Chloro-3-(trifluoromethyl)phenyl]-2,2-dimethylpropanamide. Acta Cryst Sect E 68:2534

    CrossRef  Google Scholar 

  35. Gavezzotti A, Filippini G (1994) Geometry of the intermolecular X-H-Y (X, Y = N, O) hydrogen-bond and the calibration of empirical hydrogen-bond potentials. J Phys Chem 98:4831–4837

    CAS  CrossRef  Google Scholar 

  36. Mei X, Wolf C (2004) Formation of new polymorphs of acridine using dicarboxylic acids as crystallization templates in solution. Cryst Growth Des 4:1099–1103

    CAS  CrossRef  Google Scholar 

  37. Metrangolo P, Resnati G (2012) Halogen bonding: where we are and where we are going. Cryst Growth Des 12:5835–5838

    CAS  CrossRef  Google Scholar 

  38. Pathak S, Kundu A, Pramanik A (2012) Regioselective synthesis of two types of highly substituted 2-pyridones through similar multicomponent reactions. Tet Lett 53:3030–3034

    CAS  CrossRef  Google Scholar 

  39. Cortez-Maya S, Cortes EC, Hernández-Ortega S et al (2012) Synthesis of 2-aminobenzophenone derivatives and their anticancer activity. Syn Comm 42:46–54

    CAS  CrossRef  Google Scholar 

  40. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Cryst B 58:380–388

    CrossRef  Google Scholar 

  41. Gavezzotto A (1989) On the preferred mutual orientation of aromatic groups in organic condensed media. Chem Phys Lett 161:67–72

    CrossRef  Google Scholar 

  42. Główka ML, Martynowski D, Kozłowska K (1999) Stacking of six-membered aromatic rings in crystals. J Mol Struct 474:81–89

    CrossRef  Google Scholar 

  43. Martinez CR, Iverson BL (2012) Rethinking the term “pi-stacking”. Chem Sci 3:2191–2201

    CAS  CrossRef  Google Scholar 

  44. Wheeler SE, Houk KN (2008) Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J Am Chem Soc 130:10854–10855

    CAS  CrossRef  Google Scholar 

  45. Pinal R (2004) Effect of molecular symmetry on melting temperature and solubility. Org Biomol Chem 2:2692–2699

    CAS  CrossRef  Google Scholar 

  46. Wei J (1999) Molecular symmetry, rotational entropy and elevated melting points. Ind Eng Chem Res 38:5019–5027

    CAS  CrossRef  Google Scholar 

  47. Brown RJC, Brown RFC (2000) Melting point and molecular symmetry. J Chem Edu 77:724–731

    CAS  CrossRef  Google Scholar 

  48. Holler AC (1948) An observation on the relationship between the melting points of the disubstituted isomers of benzene and their chemical constitution. J Org Chem 13:70–74

    CAS  CrossRef  Google Scholar 

  49. Gavezzotti A (1995) Molecular symmetry, melting temperatures and melting enthalpies of substituted benzenes and naphthalenes. J Chem Soc Perkin Trans 2:1399–1404

    CrossRef  Google Scholar 

  50. Thalladi VR, Nüsse M, Boese R (2000) The melting point alternation in α, ω-alkanedicarboxylic acids. J Am Chem Soc 122:9227–9236

    CAS  CrossRef  Google Scholar 

  51. Gopalan RS, Kumaradhas P, Kulkami GU, Rao CNR (2000) An experimental charge density study of aliphatic dicarboxylic acids. J Mol Struct 521:97–106

    CrossRef  Google Scholar 

  52. Troshina OA, Troshin PA, Peregudov AS et al (2006) Photoaddition of N-substituted piperazines to C60: an efficient approach to the synthesis of water-soluble fullerene derivatives. Chemistry 12:5569–5577

    CAS  CrossRef  Google Scholar 

  53. Fischer H, Atzpodien EA, Csato M et al (2011) In silico assay for assessing phospholipidosis potential of small druglike molecules: training, validation, and refinement using several data sets. J Med Chem 55:126–139

    CrossRef  Google Scholar 

  54. Hennequin LF, Stokes ES, Thomas AP et al (2002) Novel 4-anilinoquinazolines with C-7 basic side chains: design and structure activity relationship of a series of potent, orally active, VEGF receptor tyrosine kinase inhibitors. J Med Chem 45:1300–1312

    CAS  CrossRef  Google Scholar 

  55. Yu T, Tagat JR, Kerekes AD et al (2010) Discovery of a potent, injectable inhibitor of aurora kinases based on the imidazo-[1,2- a]-pyrazine core. ACS Med Chem Lett 1:214–218

    CAS  CrossRef  Google Scholar 

  56. Govek SP, Oshiro G, Anzola JV et al (2010) Water-soluble PDE4 inhibitors for the treatment of dry eye. Bioorg Med Chem Lett 20:2928–2932

    CAS  CrossRef  Google Scholar 

  57. Addie M, Ballard P, Buttar D et al (2013) Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J Med Chem 56:2059–2073

    CAS  CrossRef  Google Scholar 

  58. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Del Rev 55:217–250

    CAS  CrossRef  Google Scholar 

  59. Zalipsky S, Gilon C, Zilkha A (1983) Attachment of drugs to polyethylene glycols. Eur Polym J 19:1177–1183

    CAS  CrossRef  Google Scholar 

  60. Smith JL, Rossiter KI, Semko CM et al (2013) PEG conjugates of potent α4 integrin inhibitors, maintaining sustained levels and bioactivity in vivo, following subcutaneous administration. Bioorg Med Chem Lett 23:4117–4119

    CAS  CrossRef  Google Scholar 

  61. Zhu GD, Arendsen DL, Gunawardana IW et al (2001) Selective inhibition of ICAM-1 and E-selectin expression in human endothelial cells. 2. Aryl modifications of 4-(aryloxy)thieno[2,3- c]pyridines with fine-tuning at C-2 carbamides. J Med Chem 44:3469–3487

    CAS  CrossRef  Google Scholar 

  62. Dossetter AG, Griffen EJ, Leach AG (2013) Matched molecular pair analysis in drug discovery. Drug Discov Today 18:724–731

    CAS  CrossRef  Google Scholar 

  63. Leach AG, Jones HD, Cosgrove DA et al (2006) Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 49:6672–6682

    CAS  CrossRef  Google Scholar 

  64. Zhang L, Zhu H, Mathiowetz A, Gao H et al (2011) Deep understanding of structure–solubility relationship for a diverse set of organic compounds using matched molecular pairs. Bioorg Med Chem Lett 19:5763–5770

    CAS  CrossRef  Google Scholar 

  65. Gleeson P, Bravi G, Modi S, Lowe D et al (2009) ADMET rules of thumb II: a comparison of the effects of common substituents on a range of ADMET parameters. Bioorg Med Chem 17:5906–5919

    CAS  CrossRef  Google Scholar 

  66. Hagmann WK (2008) The many roles for fluorine in medicinal chemistry. J Med Chem 51:4359–4369

    CAS  CrossRef  Google Scholar 

  67. Fujita T, Iwasa J, Hansch C (1964) A new substituent constant, π, derived from partition coefficients. J Am Chem Soc 86:5175–5180

    CAS  CrossRef  Google Scholar 

  68. Hansch C, Anderson SM (1967) The effect of intramolecular hydrophobic bonding on partition coefficients. J Org Chem 32:2583–2586

    CAS  CrossRef  Google Scholar 

  69. Böhm HJ, Banner D, Bendels S et al (2004) Fluorine in medicinal chemistry. ChemBioChem 5:637–643

    CrossRef  Google Scholar 

  70. Atarashi S, Imamura M, Kimura Y (1993) Fluorocyclopropyl quinolones. 1. Synthesis and structure-activity relationships of 1-(2-fluorocyclopropyl)-3-pyridonecarboxylic acid antibacterial agents. J Med Chem 22:3444–3448

    CrossRef  Google Scholar 

  71. Goldberg FW, Birch AM, Leach AG et al (2013) Discovery and optimization of efficacious neutral 4-amino-6-biphenyl-7,8-dihydropyrimido[5,4- f][1, 4] oxazepin-5-one diacylglycerol acyl transferase-1 (DGAT1) inhibitors. Med Chem Comm 4:165–174

    CAS  CrossRef  Google Scholar 

  72. Jasys VJ, Lombardo F, Appleton TA et al (2000) Preparation of fluoroadamantane acids and amines: Impact of bridgehead fluorine substitution on the solution- and solid-state properties of functionalized adamantanes. J Am Chem Soc 122:466–473

    CAS  CrossRef  Google Scholar 

  73. Wenlock MC, Barton P, Luker T (2011) Lipophilicity of acidic compounds: impact of ion pair partitioning on drug design. Bioorg Med Chem Lett 21:3550–3556

    CAS  CrossRef  Google Scholar 

  74. Yokoawa F, Wang G, Chan WL et al (2013) Discovery of tetrahydropyrazolopyrimidine carboxamide derivatives as potent and orally active antitubercular agents. ACS Med Chem Lett 4:451–455

    CrossRef  Google Scholar 

  75. Scully SC, Tang AJ, Lundh M et al (2013) Small-molecule inhibitors of cytokine-mediated STAT1 signal transduction in β-cells with improved aqueous solubility. J Med Chem 56:4125–4129

    CAS  CrossRef  Google Scholar 

  76. Cantin LD, Bayrakdarian M, Buon C et al (2012) Discovery of P2X3 selective antagonists for the treatment of chronic pain. Bioorg Med Chem Lett 22:2656–2671

    CrossRef  Google Scholar 

  77. Sheng XC, Appleby T, Butler T et al (2012) Discovery of GS-9451: an acid inhibitor of the hepatitis C virus NS3/4A protease. Bioorg Med Chem Lett 22:2629–2634

    CrossRef  Google Scholar 

  78. Kuhn B, Mohr P, Stahl M (2010) Intramolecular hydrogen-bonding in medicinal chemistry. J Med Chem 53:2601–2611

    CAS  CrossRef  Google Scholar 

  79. Sugane T, Tobe T, Hamaguchi W et al (2013) Atropisomeric 4-phenyl-4H-1,2,4-triazoles as selective glycine transporter 1 inhibitors. J Med Chem 56:5744–5756

    CAS  CrossRef  Google Scholar 

  80. Ritchie TJ, Macdonal SJF, Peace S et al (2012) The developability of heteroaromatic and heteroaliphatic rings – do some have a better pedigree as potential drug molecules than others? Med Chem Comm 3:1062–1069

    CAS  CrossRef  Google Scholar 

  81. Goldberg K, Groombridge S, Hudson J et al (2012) Oxadiazole isomers: all bioisosteres are not created equal. Med Chem Commun 3:600–604

    CAS  CrossRef  Google Scholar 

  82. Abraham MH, Duce PD, Prior DV et al (1989) Hydrogen bonding. Part 9. Solute proton donor and proton acceptor scales for use in drug design. J Chem Soc Perkin Trans II 1355–1375

    Google Scholar 

  83. Toulmin A, Wood JM, Kenny PW (2008) Toward prediction of alkane/water partition coefficients. J Med Chem 51:3720–3730

    CAS  CrossRef  Google Scholar 

  84. Ren F, Deng G, Wang H (2012) Discovery of novel 1,2,4-thiadiazole derivatives as potent, orally active agonists of sphingosine 1-phosphate receptor subtype 1 (S1P(1)). J Med Chem 55:4286–4296

    CAS  CrossRef  Google Scholar 

  85. Bradbury RH, Acton DG, Broadbent NL et al (2013) Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer. Bioorg Med Chem Lett 23:1945–1948

    CAS  CrossRef  Google Scholar 

  86. Stepan AF, Subramanyam C, Efremov IV et al (2012) Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J Med Chem 55:3414–3424

    CAS  CrossRef  Google Scholar 

  87. Wassvik CM, Holmén AG, Draheim RI et al (2008) Molecular characteristics for solid-state limited solubility. J Med Chem 51:3035–3039

    CAS  CrossRef  Google Scholar 

  88. Etter MC (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 23:120–126

    CAS  CrossRef  Google Scholar 

  89. Abraham MH (2004) Hydrogen bond and other descriptors for thalidomide and its N-alkyl analogs; prediction of physicochemical and biological properties. Eur J Pharm Sci 21:465–469

    CAS  CrossRef  Google Scholar 

  90. Goosen C, Laing TJ, du PJ, Goosen TC, Flynn GL (2002) Physicochemical characterization and solubility analysis of thalidomide and its N-alkyl analogs. Pharm Res 19:13–19

    Google Scholar 

  91. Li JJ, Sutton JC, Nirschl A et al (2007) Discovery of potent and muscle selective androgen receptor modulators through scaffold modifications. J Med Chem 50:3015–3025

    CAS  CrossRef  Google Scholar 

  92. Venkatachalam TK, Zheng Y, Ghosh S, Uckun FM (2005) Structural influence on the intermolecular/intramolecular hydrogen bonding in solid state of substituted leflunomides: evidence by X-ray crystal structure. J Mol Struct 753:103–115

    CrossRef  Google Scholar 

  93. Wenglowsky S, Moreno D, Rudolph J et al (2012) Pyrazolopyridine inhibitors of B-RafV600E. Part 3: An increase in aqueous solubility via the disruption of crystal packing. Bioorg Med Chem Lett 22:912–915

    CAS  CrossRef  Google Scholar 

  94. Ishikawa M, Hashimoto Y (2011) Improvement in aqueous solubility in small molecule drug discovery programs by disruption of molecular planarity and symmetry. J Med Chem 54:1539–1554

    CAS  CrossRef  Google Scholar 

  95. Paasivirta J, Sinkkonen SI (2009) Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions. J Chem Eng Data 54:1189–1213

    CAS  CrossRef  Google Scholar 

  96. Foote KM, Blades K, Cronin A et al (2013) Discovery of 4-{4-[(3R)-3-methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem 56:2125–2138

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walker, M.A. (2013). Improving Solubility via Structural Modification. In: Meanwell, N. (eds) Tactics in Contemporary Drug Design. Topics in Medicinal Chemistry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7355_2013_32

Download citation