Nanoparticles as Blood–Brain Barrier Permeable CNS Targeted Drug Delivery Systems

  • Andreas M. GrabruckerEmail author
  • Resham Chhabra
  • Daniela Belletti
  • Flavio Forni
  • Maria Angela Vandelli
  • Barbara Ruozi
  • Giovanni TosiEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 10)


Research in the field of nano-neuroscience is becoming a promising future direction given the advantages presented by nanosystems for central nervous system (CNS) drug delivery. Since the blood–brain barrier (BBB) represents an invincible obstacle for the majority of drugs such as antineoplastic agents and a variety of psychoactive drugs such as neuropeptides, “smart” CNS drug delivery systems with high ability to deliver substances across the BBB are highly desired and will not only enable drugs to reach the CNS but also target specific areas of the CNS. Thus, injectable biodegradable nanoparticles have an important potential application in the treatment of a variety of neurological and psychiatric disorders. Therefore, in the following, we will highlight the requirement and importance of CNS drug delivery systems with particular emphasis on nano-scale systems. It is the objective of this article to offer a perspective on the complexity and challenges in fabrication of nanostructures, in vivo nano–bio interactions and also to highlight some of the most used nanosystems for drug delivery into the CNS.


Blood–brain barrier Central nervous system Nanomedicine Nanoparticles 


  1. 1.
    Pardridge WM (2003) Blood brain barrier drug targeting: the future of brain drug development. Mol Interv 3:90–105CrossRefGoogle Scholar
  2. 2.
    Burke M, Langer R, Brim H (1999) Central nervous system: drug delivery to treat. Wiley, New YorkGoogle Scholar
  3. 3.
    Ambikanandan M, Ganesh S, Aliasgar S (2003) Drug delivery to the central nervous system: a review. J Pharm Pharmaceut Sci 6(2):252–273Google Scholar
  4. 4.
    Jones DR, Hall SD, Jackson EK, Branch RA, Wilkinson GR (1988) Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding. J Pharmacol Exp Ther 245(3):816–822Google Scholar
  5. 5.
    Begley DJ, Sqiires LK, Zlokovic BV et al (1990) Permeability of the blood–brain barrier to the immunosuppresive cyclic peptide cyclosporin A. J Neurochem 55:1222–1230CrossRefGoogle Scholar
  6. 6.
    Tsuji A, Tamai I (1997) Blood–brain barrier function of P-glycoprotein. Adv Drug Del Rev 25(2):287–298CrossRefGoogle Scholar
  7. 7.
    Cordon-Cardo C, O’Brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proc Natl Acad Sci USA 86:695–698CrossRefGoogle Scholar
  8. 8.
    Borst P, Evers R, Kool M et al (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302CrossRefGoogle Scholar
  9. 9.
    Sun H, Dai H, Shaik N et al (2003) Drug efflux transporters in the CNS. Adv Drug Deliv Rev 55:83–105CrossRefGoogle Scholar
  10. 10.
    Saito Y, Wright EM (1983) Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J Physiol 336:635–648Google Scholar
  11. 11.
    Yarchoan R, Broder S (1987) Development of antiretroviral therapy for the acquired immunodeficiency syndrome and related disorders. N Engl J Med 316:557–564CrossRefGoogle Scholar
  12. 12.
    Dykstra KH, Arya A, Arriola DM et al (1993) Microdialysis study of zidovudine (AZT) transport in rat brain. J Pharmacol Exp Ther 267:1227–1236Google Scholar
  13. 13.
    Mak M, Fung L, Strasser JF et al (1995) Distribution of drugs following controlled delivery to the brain interstitium. J Neurooncol 1995(26):91–102CrossRefGoogle Scholar
  14. 14.
    Oldendorf WH (1972) Cerebrospinal fluid formation and circulation. Prog Nuc Med 1:336–358Google Scholar
  15. 15.
    Davson H (1969) The cerebrospinal fluid. Handbook Neurochem 2:23–48CrossRefGoogle Scholar
  16. 16.
    Lorenzo AV, Hedley-Whyte ET, Eisenberg JM et al (1975) Increased penetration of horseradish peroxidase across the blood–brain barrier induced by Metrazol seizures. Brain Res 88:136–140CrossRefGoogle Scholar
  17. 17.
    Neuwelt EA, Dahlborg SA (1989) Blood–brain barrier disruption in the treatment of brain tumors: clinical implications. In: Neuwelt EA (ed) Implications of the blood brain barrier and its manipulation: clinical aspects, vol 2. Plenum, New York, pp 195–262CrossRefGoogle Scholar
  18. 18.
    Chio CC, Baba T, Black KL (1992) Selective blood–tumor pro-barrier disruption by leukotrienes. J Neurosurg 77:407–410CrossRefGoogle Scholar
  19. 19.
    Bodor N, Buchwald P (1997) Drug targeting via retrometabolic approaches. Pharmacol Ther 76:1–27CrossRefGoogle Scholar
  20. 20.
    Somogyi G, Nishitani S, Nomi D et al (1998) Targeted drug delivery to the brain via phosphonate derivatives. I: design, synthesis, and evaluation of an anionic chemical delivery system for testosterone. Int J Pharm 166:15–26CrossRefGoogle Scholar
  21. 21.
    Bahadur S, Pathak K (2012) Physicochemical and physiological considerations for efficient nose-to-brain targeting. Exp Opin Drug Del 9(1):19–31CrossRefGoogle Scholar
  22. 22.
    Sandberg DI, Bilsky MH, Souweidane MM et al (2000) Ommaya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 47(1):49–54Google Scholar
  23. 23.
    Harbaugh RE, Saunders RL, Reeder RF (1988) Use of implantable pumps for central nervous system drug infu- sions to treat neurological disease. Neurosurgery 23(6):693–698CrossRefGoogle Scholar
  24. 24.
    Bartneck M, Keul HA, Zwadlo-Klarwasser G et al (2010) Phagocytosis independent extracellular nanoparticles clearance by human immune cells. Nano Lett 10:59–63CrossRefGoogle Scholar
  25. 25.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Rel 132:171–183CrossRefGoogle Scholar
  26. 26.
    Chonn A, Cullis PR, Devine DV (1991) The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol 146:234–4241Google Scholar
  27. 27.
    Bertrand N, Leroux JC (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Rel 161(2):152–163Google Scholar
  28. 28.
    Tosi G, Costantino L, Ruozi B et al (2008) Polymeric nanoparticles for the drug delivery to the central nervous system. Exp Opin Drug Del 5:155–174CrossRefGoogle Scholar
  29. 29.
    Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. Prot Natl Acad Sci USA 97:7567–7572CrossRefGoogle Scholar
  30. 30.
    Lockman PR, Mumper RJ, Khan MA et al (2002) Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev Ind Pharm 28(1):1–13CrossRefGoogle Scholar
  31. 31.
    Alyautidin RN, Gother D, Petrov V (1995) Analgesic activity of the hexapeptide dalagrin adsorbed on the surface of polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Eur J Pharm Biopharm 41:44–48Google Scholar
  32. 32.
    Kreuter J (2004) Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 4:484–488CrossRefGoogle Scholar
  33. 33.
    Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1:131–139CrossRefGoogle Scholar
  34. 34.
    Ji B, Maeda J, Higuchi M et al (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855CrossRefGoogle Scholar
  35. 35.
    Scherrmann JM, Temsamani J (2005) The use of Pep: trans vectors for the delivery of drugs into the central nervous system. Int Congr Ser 1277:199–211CrossRefGoogle Scholar
  36. 36.
    Gabathuler R, Arthur G, Kennard M et al (2005) Development of a potential protein vector (NeuroTrans) to deliver drugs across the bloodbrain barrier. Int Congr Ser 1277:171–184CrossRefGoogle Scholar
  37. 37.
    Chakraborty C, Sarkar B, Hsu CH et al (2009) Future prospects of nanoparticles on brain targeted drug delivery. J Neurooncol 93:285–286CrossRefGoogle Scholar
  38. 38.
    Umezawa F, EtoY (1988) Liposomes targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Comm153:1038–1044Google Scholar
  39. 39.
    Wu D, Pardridge WM (1999) Blood–brain barrier transport of reduced folic acid. Pharm Res 16:415–419CrossRefGoogle Scholar
  40. 40.
    Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57CrossRefGoogle Scholar
  41. 41.
    Panyam J, Labhasetwar V (2004) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1:77–84CrossRefGoogle Scholar
  42. 42.
    Dubowchik GM, Walker MA (1999) Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharm Ther 83:67–123CrossRefGoogle Scholar
  43. 43.
    Savic R, Luo L, Eisenberg A et al (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618CrossRefGoogle Scholar
  44. 44.
    Cengelli F, Maysinger D, Tschudi-Monnet F et al (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharm Exp Therap 318:108–116CrossRefGoogle Scholar
  45. 45.
    Tosi G, Fano RA, Badiali L et al (2010) Peptide-engineered polylactide-co-glycolide (PLGA) nanoparticles for brain delivery of drugs: in vivo experiments and proof of concept. SfN Neurosci San Diego (USA) 1:84Google Scholar
  46. 46.
    Tosi G, Ruozi B, Belletti D (2012) Nanomedicine: the future for advancing medicine and neuroscience. Nanomedicine (Lond) 7(8):1113–1116CrossRefGoogle Scholar
  47. 47.
    Grislain L, Couvrer P, Lenaerts V (1983) Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 15:333–345Google Scholar
  48. 48.
    Tröster SD, Kreuter J (1988) Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces. Int J Pharm 45:91–100CrossRefGoogle Scholar
  49. 49.
    Silva GA (2008) Nanotechnology approaches to crossing the blood–brain barrier and drug delivery to the CNS. BMC Neurosci 9(Suppl 3):S4Google Scholar
  50. 50.
    Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569Google Scholar
  51. 51.
    Steiniger SC, Kreuter J, Khalansky AS et al (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767CrossRefGoogle Scholar
  52. 52.
    Alyaudtin RN, Reichel A, Lobenberg R et al (2001) Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–brain barrier in vivo and in vitro. J Drug Target 9:209–221CrossRefGoogle Scholar
  53. 53.
    Schroeder U, Sommerfeld P, Ulrich S et al (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87:1305–1307CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Calon F, Zhu C et al (2003) Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther 14:1–12CrossRefGoogle Scholar
  55. 55.
    Liu G, Men P, Peggy LR et al (2006) Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett 406(3):189–193CrossRefGoogle Scholar
  56. 56.
    Weiss N, Miller F, Cazaubon S et al (2009) The blood–brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857CrossRefGoogle Scholar
  57. 57.
    Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13(23–24):1099–1106CrossRefGoogle Scholar
  58. 58.
    Beduneau A, Saulnier P, Benoit JP (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967CrossRefGoogle Scholar
  59. 59.
    Koo YEL, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 85:1556–1577CrossRefGoogle Scholar
  60. 60.
    Juillerat-Jeanneret L (2006) Critical analysis of cancer therapy using nanomaterials. In: Kumar CSSR (ed) Nanomaterials for cancer therapy and diagnosis. Wiley-VCH, Weinheim, pp 199–232Google Scholar
  61. 61.
    Kreuter J, Alyautdin RN, Kharkevich DA et al (1995) Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174CrossRefGoogle Scholar
  62. 62.
    Alyautdin RN, Tezikov EB, Ramge P et al (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74CrossRefGoogle Scholar
  63. 63.
    Alyautdin RN, Petrov VE, Langer K et al (1997) Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328CrossRefGoogle Scholar
  64. 64.
    Friese A, Seiller E, Quack G et al (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcya-noacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 49:103–109CrossRefGoogle Scholar
  65. 65.
    Kreuter J (1995) Nanoparticulate systems in drug delivery and targeting. J Drug Target 3:171–173CrossRefGoogle Scholar
  66. 66.
    Aliautdin RN, Petrov VE, Ivanov AA et al (1996) Transport of the hexapeptide dalargin across the hematoencephalic barrier into the brain using polymer nanoparticles. Eksp Klin Farmakol 59:57–60Google Scholar
  67. 67.
    Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47:65–81CrossRefGoogle Scholar
  68. 68.
    Olivier JC, Fenart L, Chauvet R et al (1999) Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 16:1836–1842CrossRefGoogle Scholar
  69. 69.
    Troster SD, Muller U, Kreuter J (1990) Modification of the body distribution of poly(methyl methyl methyl-acrylate) nanoparticles by coating with surfactants. Int J Pharm 61:85–100CrossRefGoogle Scholar
  70. 70.
    Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT, Spires-Jones TL (2011) Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA 108(46):18837–18842Google Scholar
  71. 71.
    Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2(1):108–119CrossRefGoogle Scholar
  72. 72.
    Emerich DF, Tracy MA, Ward KL et al (1999) Biocompatibility of poly (dl-lactide-co-glycolide) microspheres implanted into the brain. Cell Transplant 8:47–58Google Scholar
  73. 73.
    Menei P, Daniel V, Montero-Menei C et al (1993) Biodegradation and brain tissue reaction to poly(d, l-lactide-co-glycolide) microspheres. Biomaterials 14:470–478CrossRefGoogle Scholar
  74. 74.
    Garcia-Garcia E, Andrieux K, Gil S et al (2007) Colloidal carriers and blood–brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298:274–923CrossRefGoogle Scholar
  75. 75.
    Tosi G, Bortot B, Ruozi B et al (2013) Potential use of polymeric nanoparticles for drug delivery across the blood–brain barrier. Curr Med Chem 20(17):2212–2225Google Scholar
  76. 76.
    Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48:342–353CrossRefGoogle Scholar
  77. 77.
    Costantino L, Gandolfi F, Tosi G et al (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Control Rel 108:84–96CrossRefGoogle Scholar
  78. 78.
    Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F (2007) Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Rel 122:1–9Google Scholar
  79. 79.
    Vergoni AV, Tosi G, Tacchi R et al (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed Nanotechnol Biol Med 5:369–377CrossRefGoogle Scholar
  80. 80.
    Tosi G, Fano RA, Bondioli L et al (2011) Investigation on mechanisms of glycopeptide nanoparticles for drug delivery across the blood–brain barrier. Nanomedicine 6(3):423–436CrossRefGoogle Scholar
  81. 81.
    Grabrucker AM, Garner CC, Boeckers TM et al (2011) Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One 6(3):e17851CrossRefGoogle Scholar
  82. 82.
    Tosi G, Badiali L, Ruozi B et al (2012) Can Leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine 7(3):365–382CrossRefGoogle Scholar
  83. 83.
    Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93:14164–14169CrossRefGoogle Scholar
  84. 84.
    Zhang Y, Schlachetzki F, Pardridge WM (2003) Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 7:11–18CrossRefGoogle Scholar
  85. 85.
    Shi N, Zhang Y, Zhu C et al (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98:12754–12759CrossRefGoogle Scholar
  86. 86.
    Huwyler J, Yang J, Pardridge WM (1997) Targeted delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282:1541–1546Google Scholar
  87. 87.
    Qin J, Chen D, Hu H et al (2007) Body distribution of RGD-mediated liposome in brain-targeting drug delivery. Yakugaku Zasshi 127(9):1497–1501CrossRefGoogle Scholar
  88. 88.
    Koziara JM, Lockman PR, Allen DD et al (2003) In situ blood–brain barrier transport of nanoparticles. Pharm Res 20:1772–1778CrossRefGoogle Scholar
  89. 89.
    Nicolas J, Mura S, Brambilla D et al (2013) Design, functionalization strategies and biomedical applications of targeted biodegradable /biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 42:1147–1235CrossRefGoogle Scholar
  90. 90.
    Xu G, Yong KT, Roy I et al (2008) Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood–brain barrier. Bioconjug Chem 19(6):1179–1185CrossRefGoogle Scholar
  91. 91.
    Yim YS, Choi JS, Kim GT et al (2012) A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood–brain barrier (BBB). Chem Commun (Camb) 48(1):61–63CrossRefGoogle Scholar
  92. 92.
    Barandeh F, Nguyen PL, Kumar R etal (2012) Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo. PLoS One 7(1):e29424Google Scholar
  93. 93.
    Knezevic NZ, Slowing II, Lin VS-Y (2012) Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles. ChemPlusChem 77:48–55CrossRefGoogle Scholar
  94. 94.
    Gupta PK, Hung CT (1990) Targeted delivery of low dose doxorubicin hydrochloride administered via magnetic albumin microspheres in rats. J Micro- encaps 7:85–94Google Scholar
  95. 95.
    Pulfer SK, Gallo JM (1998) Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. J. Drug Target 6:215–227CrossRefGoogle Scholar
  96. 96.
    Xie Y, Wang Y, Zhang T et al (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19:14CrossRefGoogle Scholar
  97. 97.
    Grabrucker AM, Rowan M, Garner CC (2011) Brain-delivery of zinc-ions as potential treatment for neurological diseases: mini review. Drug Deliv Lett 1(1):13–23Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas M. Grabrucker
    • 1
    Email author
  • Resham Chhabra
    • 1
  • Daniela Belletti
    • 2
  • Flavio Forni
    • 2
  • Maria Angela Vandelli
    • 2
  • Barbara Ruozi
    • 2
  • Giovanni Tosi
    • 2
    Email author
  1. 1.WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University & Anatomy and Cell BiologyUlm UniversityUlmGermany
  2. 2.Department of Life ScienceUniversity of Modena and ReggioEmiliaItaly

Personalised recommendations