Skip to main content

Reduction and Efflux of Chromate by Bacteria

  • Chapter
  • First Online:
Book cover Molecular Microbiology of Heavy Metals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 6))

Abstract

The widespread industrial use of chromium has caused this heavy metal to be considered as a serious environmental pollutant. The most common forms of chromium in nature are the relatively innocuous trivalent form, Cr(III), and the more toxic hexavalent species, Cr(VI). Cr(VI) is usually present as the oxyanion chromate. Toxic effects of chromate for bacteria are associated with the inhibition of sulfate transport and with oxidative damage to biomolecules. The best studied bacterial mechanisms of resistance to chromate include reduction of Cr(VI) to the Cr(III) species and efflux of chromate from cell cytoplasm. Several chromate reductases have been identified in diverse bacterial species. Most characterized enzymes belong to the NAD(P)H-dependent flavoprotein family of reductases. Efflux of chromate by the ChrA membrane transporter, a plasmid-encoded protein, has been demonstrated in Pseudomonas and Cupriavidus species. Chromate efflux by ChrA consists of an energy-dependent process driven by the membrane potential. The CHR protein family, which includes putative ChrA homologs, currently contains about 135 sequences from all three domains of life. Other mechanisms of bacterial resistance to chromate involve the expression of components of the machinery for repair of DNA damage as well as free-radical scavenging enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan M, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–882

    Article  PubMed  CAS  Google Scholar 

  2. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188:3371–3381

    Article  PubMed  CAS  Google Scholar 

  3. Aguilera S, Aguilar ME, Chávez MP, López-Meza JE, Pedraza-Reyes M, Campos-García J, Cervantes C (2004) Essential residues in the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 232:107–112

    Article  PubMed  CAS  Google Scholar 

  4. Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    PubMed  CAS  Google Scholar 

  5. Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    PubMed  CAS  Google Scholar 

  6. Bopp LH, Erlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  7. Bridgewater LC, Manning FC, Woo ES, Patierno SR (1994) DNA polymerase arrest by adducted trivalent chromium. Mol Carcinog 9:122–133

    Article  PubMed  CAS  Google Scholar 

  8. Brown SD, Thompson MR, VerBerkmoes NC, Chourey K, Shah M, Zhou J, Hettich RL, Thompson DK (2006) Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5:1054–1071

    Article  PubMed  CAS  Google Scholar 

  9. Campos J, Martínez-Pacheco M, Cervantes C (1995) Hexavalent chromium reduction by a chromate-resistant Bacillus sp strain. Antonie van Leeuwenhoek 68:203–208

    Article  PubMed  CAS  Google Scholar 

  10. Cary EE (1982) Chromium in air, soil and natural waters. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier, Amsterdam, pp 48–64

    Google Scholar 

  11. Cervantes C, Ohtake H, Chu L, Misra T, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    PubMed  CAS  Google Scholar 

  12. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    Article  PubMed  CAS  Google Scholar 

  14. Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  PubMed  CAS  Google Scholar 

  15. Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    PubMed  CAS  Google Scholar 

  16. Itoh M, Nakamura M, Suzuki T, Kawai K, Horitsu H, Takamizawa K (1995) Mechanism of chromium(VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr(VI) toxicity. J Biochem 117:780–786

    PubMed  CAS  Google Scholar 

  17. Jiménez-Mejía R, Campos-García J, Cervantes C (2006) Membrane topology of the chromate transporter ChrA of Pseudomonas aeruginosa. FEMS Microbiol Lett 262:178–184

    Article  PubMed  CAS  Google Scholar 

  18. Juhnke S, Peitzsch N, Hubener N, Große C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  PubMed  CAS  Google Scholar 

  19. Kadiiska MB, Xiang QH, Mason RP (1994) In vivo free radical generation by chromium (VI): An electron resonance spin-trapping investigation. Chem Res Toxicol 7:800–805

    Article  PubMed  CAS  Google Scholar 

  20. Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  PubMed  CAS  Google Scholar 

  21. Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69:4390–4395

    Article  PubMed  CAS  Google Scholar 

  22. Levis AG, Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier, Amsterdam, pp 171–208

    Google Scholar 

  23. Llangostera M, Garrido S, Guerrero R, Barbé J (1986) Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen 8:571–577

    Article  Google Scholar 

  24. Lovley DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    PubMed  CAS  Google Scholar 

  25. Luo H, Lu Y, Shi X, Mao Y, Dalal NS (1996) Chromium (IV)-mediated Fenton-like reaction causes DNA damage: Implication to genotoxicity of chromate. Ann Clin Lab Sci 26:185–191

    PubMed  CAS  Google Scholar 

  26. Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron (III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562

    Article  PubMed  CAS  Google Scholar 

  27. McGrath SP, Smith S (1990) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. Wiley, New York, pp 125–150

    Google Scholar 

  28. Miranda AT, González MV, González G, Vargas E, Campos-García J, Cervantes C (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res 578:202–209

    PubMed  CAS  Google Scholar 

  29. Moshtaghie AA, Ani M, Bazrafshan MR (1992) Comparative binding study of aluminum and chromium to human transferrin. Effect of iron. Biol Trace Elem Res 32:39–46

    PubMed  CAS  Google Scholar 

  30. Nicholson ML, Laudenbach DE (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR. J Bacteriol 177:2143–2150

    PubMed  CAS  Google Scholar 

  31. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  PubMed  CAS  Google Scholar 

  32. Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    PubMed  CAS  Google Scholar 

  33. Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    PubMed  CAS  Google Scholar 

  34. Ohtake H, Fujii E, Toda K (1990) Bacterial reduction of hexavalent chromium: Kinetic aspects of chromate reduction by Enterobacter cloacae HO1. Biocatalysis 4:227–235

    CAS  Google Scholar 

  35. Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides, Portland, OR, pp 403–415

    Google Scholar 

  36. Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  PubMed  CAS  Google Scholar 

  37. Pimentel BE, Moreno-Sánchez R, Cervantes C (2002) Efflux of chromate by cells of Pseudomonas aeruginosa expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    Article  PubMed  CAS  Google Scholar 

  38. Plaper A, Jenko-Brinovec S, Premzl A, Kos J, Raspor P (2002) Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chem Res Toxicol 15:943–949

    Article  PubMed  CAS  Google Scholar 

  39. Saier MH Jr (2003) Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156

    Article  PubMed  CAS  Google Scholar 

  40. Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr(VI) to Cr(III). J Bacteriol 174:5340–5345

    PubMed  CAS  Google Scholar 

  41. Tauch A, Schluter A, Bischoff N, Goesmann A, Meyer F, Puhler A (2003) The - 79370bp conjugative plasmid pB4 consists of an IncP-1βbackbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268:570–584

    CAS  Google Scholar 

  42. Wang P, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cervantes .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cervantes, C., Campos-García, J. (2007). Reduction and Efflux of Chromate by Bacteria. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_087

Download citation

Publish with us

Policies and ethics