Skip to main content

Mercury Microbiology: Resistance Systems, Environmental Aspects, Methylation, and Human Health

Part of the Microbiology Monographs book series (MICROMONO,volume 6)

Abstract

Mercury has no beneficial biological role, and is highly toxic to all forms of life. Bacteria are involved in the global environmental cycling of mercury, both by reducing Hg2+ to metallic Hg0, which is less soluble in aqueous systems and therefore less bioavailable, and by oxidizing and methylating Hg species, and in the process making Hg more bioavailable and more highly toxic. The most thoroughly studied bacterial biotransformation of mercury is reduction by the widely distributed mer resistance operons found on plasmids and transposons in Gram-negative and -positive bacteria. The products of these resistance operons transport ionic Hg2+ from outside the cell to the cellular cytoplasm, where mercuric reductase reduces divalent Hg2+ to Hg0, which is less toxic than Hg2+. Metallic mercury vapor, Hg0, is volatile under aerobic conditions, leaves the cell by passive diffusion, and is volatilized from the growth environment. Sometimes, additional gene(s) determine organomercurial lyase, the enzyme that cleaves organomercurial compounds to inorganic Hg2+, which is then reduced to Hg0. Two types of mer operons (“narrow spectrum” with inorganic Hg2+ resistance and “broad spectrum” with both organomercurial and inorganic mercury resistances) confer high levels of resistance on host bacteria. The expression of mer resistance genes is primarily regulated by the MerR protein, which is the prototype of an increasing family of metal and other effector-responsive transcriptional activators. Methylation of inorganic Hg2+ to CH3Hg+ is thought to occur nonenzymatically (perhaps even extracellularly) with microbially synthesized S-adenosylmethionine as methyl donor.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi NY, Tikriti S, Dhahir HI, Clarkson TW, Smith JC, Doherty RA (1973) Methylmercury poisoning in Iraq. Science 181:230–241

    CrossRef  PubMed  CAS  Google Scholar 

  2. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    CrossRef  PubMed  CAS  Google Scholar 

  3. Begley TP, Ealick SE (2004) Enzymatic reactions involving novel mechanisms of carbanion stabilization. Curr Opin Chem Biol 8:508–515

    CrossRef  PubMed  CAS  Google Scholar 

  4. Benison GC, Di Lello P, Shokes JE, Cosper NJ, Scott RA, Legault P, Omichinski JG (2004) A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA. Biochemistry 43:8333–8345

    CrossRef  PubMed  CAS  Google Scholar 

  5. Black J (1999) The puzzle of pink disease. J R Soc Med 92:478–481

    PubMed  CAS  Google Scholar 

  6. Blayney MB (2001) The need for empirically derived permeation data for personal protective equipment: the death of Dr Karen E. Wetterhahn. Appl Occup Environ Hyg 16:233–236

    CrossRef  PubMed  CAS  Google Scholar 

  7. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    CrossRef  PubMed  CAS  Google Scholar 

  8. Champier L, Duarte V, Michaud-Soret I, Coves J (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52:1475–1485

    CrossRef  PubMed  CAS  Google Scholar 

  9. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    CrossRef  PubMed  CAS  Google Scholar 

  10. Choi SC, Bartha R (1993) Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol 59:290–295

    PubMed  CAS  Google Scholar 

  11. Clarkson TW, Magos L, Myers GJ (2003) Human exposure to mercury: the three modern dilemmas. J Trace Elem Exp Med 16:321–343

    CrossRef  CAS  Google Scholar 

  12. Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    PubMed  CAS  Google Scholar 

  13. Engst S, Miller SM (1998) Rapid reduction of Hg(II) by mercuric ion reductase does not require the conserved C-terminal cysteine pair using HgBr2 as the substrate. Biochemistry 37:11496–11507

    CrossRef  PubMed  CAS  Google Scholar 

  14. Engst S, Miller SM (1999) Alternative routes for entry of HgX2 into the active site of mercuric ion reductase depend on the nature of the X ligands. Biochemistry 38:3519–3529

    CrossRef  PubMed  CAS  Google Scholar 

  15. Gochfeld M (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 56:174–179

    CrossRef  PubMed  CAS  Google Scholar 

  16. Helmann JD, Soonsanga S, Gabriel S (2007) Metalloregulators: Arbiters of Metal Sufficiency. Microbiol Monogr, Springer, Heidelberg, (in this volume)

    Google Scholar 

  17. Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18:429–436

    CrossRef  PubMed  CAS  Google Scholar 

  18. Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers AO, Pai EF, Miller SM (2005) NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+from proteins, delivers it to the catalytic core, and protects cells under glutathione-depleted conditions. Biochemistry 44:11402–11416

    CrossRef  PubMed  CAS  Google Scholar 

  19. Lenihan J (1988) Mercury and Venus. In: The crumbs of creation. Taylor and Francis, Oxford (ISBN: 0852743904, p 388)

    Google Scholar 

  20. Lenihan J (1988) Mercury and Venus. In: The crumbs of creation. Taylor and Francis, Oxford (ISBN: 0852743904, pp 76–94)

    Google Scholar 

  21. Miller SM (1999) Bacterial detoxification of Hg(II) and organomercurials. Essays Biochem 34:17–30

    PubMed  CAS  Google Scholar 

  22. Narita M, Chiba K, Nishizawa H, Ishii H, Huang CC, Kawabata Z, Silver S, Endo G (2003) Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 223:73–82

    CrossRef  PubMed  CAS  Google Scholar 

  23. Nierenberg DW, Nordgren RE, Chang MB, Siegler RW, Blayney MB, Hochberg F, Toribara TY, Cernichiari E, Clarkson T (1998) Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N Engl J Med 338:1672–1676

    CrossRef  PubMed  CAS  Google Scholar 

  24. Permina EA, Kazakov AE, Kalinina OV, Gelfand MS (2006) Comparative genomics of regulation of heavy metal resistance in eubacteria. BMC Microbiol 6:49

    CrossRef  PubMed  CAS  Google Scholar 

  25. Pitts KE, Summers AO (2002) The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry 41:10287–10296

    CrossRef  PubMed  CAS  Google Scholar 

  26. Schiering N, Kabsch W, Moore MJ, Distefano MD, Walsh CT, Pai EF (1991) Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature 352:168–172

    CrossRef  PubMed  CAS  Google Scholar 

  27. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    CrossRef  PubMed  CAS  Google Scholar 

  28. Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapor, Hg(0). J Bacteriol 64:1328–1332

    CAS  Google Scholar 

  29. Song L, Caguiat J, Li Z, Shokes J, Scott RA, Olliff L, Summers AO (2004) Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J Bacteriol 186:1861–1868

    CrossRef  PubMed  CAS  Google Scholar 

  30. Steele RA, Opella SJ (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36:6885–6895

    CrossRef  PubMed  CAS  Google Scholar 

  31. Tottey S, Harvie DR, Robinson NJ (2007) Understanding How Cells Allocate Metals. Microbiol Monogr, Springer, Heidelberg (in this volume)

    Google Scholar 

  32. Weinstein M, Bernstein S (2003) Pink ladies: mercury poisoning in twin girls. Can Med Assoc J 168:201

    Google Scholar 

  33. Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472:78–82

    CrossRef  PubMed  CAS  Google Scholar 

  34. Wood JM, Scott-Kennedy F, Rosen CG (1968) Synthesis of methylmercury compounds by extracts of a methanogenic bacterium. Nature 220:173–174

    CrossRef  PubMed  CAS  Google Scholar 

  35. Yoong KPC (2006) Heavy metal-meals of mercury. N Engl J Med 354:e3

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Silver or Jon L. Hobman .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Silver, S., Hobman, J.L. (2007). Mercury Microbiology: Resistance Systems, Environmental Aspects, Methylation, and Human Health. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_085

Download citation

Publish with us

Policies and ethics