Skip to main content

Microbiology of the Toxic Noble Metal Silver

Part of the Microbiology Monographs book series (MICROMONO,volume 6)

Abstract

One of the transition metals without a function in biological systems is silver. Silver interferes with the normal protein function of the organism and is extremely toxic because of its ability to bind to the metal binding sites in proteins. The use of silver as a biocide has long been known and today there is an increasing number of applications for silver, not only in hospitals but also in everyday life. In addition, silver resistant bacteria have been isolated from hospitals, silver mines, and silver-contaminated areas. There are different resistance mechanisms, as strains of Pseudomonas appear to precipitate silver to remove it from the medium. In contrast, silver resistance in Salmonella typhimurium is plasmid-encoded and based on silver binding and export. Genome sequencing projects increasingly reveal the presence of this sil determinant, indicating a more widespread occurrence than previously expected.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arguello JM, Mandal AK, Mana-Capelli S (2003) Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus. Ann NY Acad Sci 986:212–218

    CrossRef  PubMed  CAS  Google Scholar 

  2. Bowler PG, Jones SA, Walker M, Parsons D (2004) Microbicidal properties of silver-containing Hydrofiber(R) dressing against a variety of burn wound pathogens. J Burn Care Rehabil 25:192–196

    CrossRef  PubMed  CAS  Google Scholar 

  3. Brady MJ, Lisay CM, Yurkovetskiy AV, Sawan SP (2003) Persistent silver disinfectant for the environmental control of pathogenic bacteria. Am J Infect Control 31:208–214

    CrossRef  PubMed  Google Scholar 

  4. Bragg PD, Rainnie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    CrossRef  PubMed  CAS  Google Scholar 

  5. Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage 52:34–41

    PubMed  Google Scholar 

  6. Bridges K, Kidson A, Lowbury EJ, Wilkins MD (1979) Gentamicin- and silver-resistant Pseudomonas in a burns unit. Br Med J 1:446–449

    CrossRef  PubMed  CAS  Google Scholar 

  7. Brooks WE (2004) In: Silver S (ed) Minerals yearbook, Vol I: Metals and minerals. US Government Printing Office, pp 68.1–68.3

    Google Scholar 

  8. Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166

    CrossRef  PubMed  CAS  Google Scholar 

  9. Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123:239–244

    CrossRef  PubMed  CAS  Google Scholar 

  10. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198

    CrossRef  PubMed  CAS  Google Scholar 

  11. Choudhury P, Kumar R (1998) Multidrug- and metal-resistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sandarban. Can J Microbiol 44:186–189

    CrossRef  PubMed  CAS  Google Scholar 

  12. Cooper R (2004) A review of the evidence for the use of topical antimicrobial agents in wound care. http://www.worldwidewounds.com/2004/february/Cooper/Topical-Antimicrobial-Agents.html

  13. Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20:191–194

    CrossRef  PubMed  CAS  Google Scholar 

  14. Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. BioMetals 7:49–56

    CrossRef  PubMed  CAS  Google Scholar 

  15. Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    CrossRef  PubMed  CAS  Google Scholar 

  16. Fan B, Rosen BP (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 277:46987–46992

    CrossRef  PubMed  CAS  Google Scholar 

  17. Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  18. George N, Faoagali J, Muller M (1997) Silvazine(TM) (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23:493–495

    CrossRef  PubMed  CAS  Google Scholar 

  19. Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE (2004) The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52:182–202

    CrossRef  PubMed  CAS  Google Scholar 

  20. Graham C (2005) The role of silver in wound healing. Br J Nurs 14:S22–S26

    PubMed  Google Scholar 

  21. Gupta A, Matsui K, Lo J-F, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188

    CrossRef  PubMed  CAS  Google Scholar 

  22. Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402

    PubMed  CAS  Google Scholar 

  23. Gupta LK, Jindal R, Beri HK, Chhibber S (1992) Virulence of silver-resistant mutant of Klebsiella pneumoniae in burn wound model. Folia Microbiol (Praha) 37:245–248

    CrossRef  CAS  Google Scholar 

  24. Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392

    PubMed  CAS  Google Scholar 

  25. Ibrahim Z, Ahmad WA, Baba AB (2001) Bioaccumulation of silver and the isolation of metal-binding protein from P. diminuta. Braz Arch Biol Technol 44:223–225

    CrossRef  CAS  Google Scholar 

  26. Jelenko C 3rd (1969) Silver nitrate resistant E. coli: report of case. Ann Surg 170:296–299

    CrossRef  PubMed  Google Scholar 

  27. Johnson TJ, Siek KE, Johnson SJ, Nolan LK (2005) DNA sequence and comparative genomics of pAPEC-O2-R, an avian pathogenic Escherichia coli transmissible R plasmid. Antimicrob Agents Chemother 49:4681–4688

    CrossRef  PubMed  CAS  Google Scholar 

  28. Kaur P, Vadehra DV (1986) Mechanism of resistance to silver ions in Klebsiella pneumoniae. Antimicrob Agents Chemother 29:165–167

    PubMed  CAS  Google Scholar 

  29. Klasen HJ (2000a) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    CrossRef  PubMed  CAS  Google Scholar 

  30. Klasen HJ (2000b) Historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138

    CrossRef  PubMed  CAS  Google Scholar 

  31. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    CrossRef  PubMed  CAS  Google Scholar 

  32. Lacorte JG, Loures JC, Monteiro E (1955) Resistance of influenza virus to the oligodynamic action of silver. Mem Inst Oswaldo Cruz 53:537–544

    CrossRef  PubMed  CAS  Google Scholar 

  33. Ledrich M-L, Stemmler S, Laval-Gilly P, Foucaud L, Falla J (2005) Precipitation of silver thiosulfate complex and immobilization of silver by Cupriavidus metallidurans CH34. BioMetals 18:643–650

    CrossRef  PubMed  CAS  Google Scholar 

  34. Li X, Nikaido H, Williams K (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    PubMed  CAS  Google Scholar 

  35. Lobo MB, Vasconcelos JV (1950) Resistance of Mycobacterium tuberculosis to oligodynamic action of silver. Rev Bras Tuberc Doencas Torac 18:647–654

    PubMed  CAS  Google Scholar 

  36. Magnani D, Solioz M (2007) How Bacteria Handle Copper, in this volume. Springer, Heidelberg

    Google Scholar 

  37. McHugh GL, Moellering R, Hopkins C, Swartz M (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol and ampicillin: a new threat in burn units? Lancet 305:235–240

    CrossRef  Google Scholar 

  38. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    CrossRef  PubMed  CAS  Google Scholar 

  39. Mitra B, Rensing C (2007) Zinc, Cadmium and Lead Resistance and Homeostasis, in this volume. Springer, Heidelberg

    Google Scholar 

  40. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    CrossRef  PubMed  CAS  Google Scholar 

  41. Nies DH (2007) Bacterial Transition Metal Homeostasis, in this volume. Springer, Heidelberg

    Google Scholar 

  42. Outten FW, Huffman DL, Hale JA, O'Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677

    CrossRef  PubMed  CAS  Google Scholar 

  43. Patil YB, Paknikar KM (2000) Biodetoxification of silver cyanide from electroplating industry wastewater. Lett Appl Microbiol 30:33–37

    CrossRef  PubMed  CAS  Google Scholar 

  44. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608

    PubMed  CAS  Google Scholar 

  45. Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    CrossRef  PubMed  CAS  Google Scholar 

  46. Pirnay J-P, De Vos D, Cochez C, Bilocq F, Pirson J, Struelens M, Duinslaeger L, Cornelis P, Zizi M, Vanderkelen A (2003) Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 41:1192–1202

    CrossRef  PubMed  CAS  Google Scholar 

  47. Pooley FD (1982) Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296:642–643

    CrossRef  CAS  Google Scholar 

  48. Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion-transporting ATPases. J Bacteriol 181:5891–5897

    PubMed  CAS  Google Scholar 

  49. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656

    CrossRef  PubMed  CAS  Google Scholar 

  50. Richards RM, Odelola HA, Anderson B (1984) Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39:151–157

    PubMed  CAS  Google Scholar 

  51. Riggle PJ, Kumamoto CA (2000) Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182:4899–4905

    CrossRef  PubMed  CAS  Google Scholar 

  52. Rogers J, Dowsett AB, Keevil CW (1995) A paint incorporating silver to control mixed biofilms containing Legionella pneumophila. J Ind Microbiol 15:377–383

    CrossRef  PubMed  CAS  Google Scholar 

  53. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847

    CrossRef  PubMed  CAS  Google Scholar 

  54. Shakibaie MR, Kapadnis BP, Dhakephalker P, Chopade BA (1999) Removal of silver from photographic wastewater effluent using Acinetobacter baumannii BL54. Can J Microbiol 45:995–1000

    CrossRef  PubMed  CAS  Google Scholar 

  55. Shakibaie MR, Dhakephalker BA, Kapadnis BP, Chopade BA (2003) Silver resistance in Acinetobacter baumannii BL54 occurs through binding to a Ag-binding protein. Ind J Biotechnol 1:41–46

    CAS  Google Scholar 

  56. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    CrossRef  PubMed  CAS  Google Scholar 

  57. Silver S, Phung L, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    CrossRef  PubMed  CAS  Google Scholar 

  58. Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221

    CrossRef  PubMed  CAS  Google Scholar 

  59. Solioz M, Vulpe C (1996) CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    CrossRef  PubMed  CAS  Google Scholar 

  60. Spencer RC (1999) Novel methods for the prevention of infection of intravascular devices. J Hosp Infect 43:S127-S135

    CrossRef  PubMed  Google Scholar 

  61. Starodub ME, Trevors JT (1990) Silver accumulation and resistance in Escherichia coli R1. J Inorg Biochem 39:317–325

    CrossRef  PubMed  CAS  Google Scholar 

  62. Stoyanov JV, Magnani D, Solioz M (2003) Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli. FEBS Lett 546:391–394

    CrossRef  PubMed  CAS  Google Scholar 

  63. Tobin EJ, Bambauer R (2003) Silver coating of dialysis catheters to reduce bacterial colonization and infection. Ther Apher Dial 7:504–509

    CrossRef  PubMed  Google Scholar 

  64. Tong L, Nakashima S, Shibasaka M, Katsuhara M, Kasamo K (2002) A novel histidine-rich CPx-ATPase from the filamentous cyanobacterium Oscillatoria brevis related to multiple-heavy-metal cotolerance. J Bacteriol 184:5027–5035

    CrossRef  PubMed  CAS  Google Scholar 

  65. Tsai HC, Wu KM, Liao TL, Liu YM, Chen HJ, Chang YC, Chang CH, Kirby R, Chen C, Chen CWS, Chang HY, Fung CP, Wang JT, Tsai SF (2005) Klebsiella pneumoniae plasmid pK2044, complete sequence. Direct submission: http://www.ncbi.nlm.nih.gov/entrez/viewerfcgi?val=NC_006625

  66. Tseng TT, Gratwick KS, Kollman J, Park D, Nies DH, Goffeau A, Saier MH Jr (1999) The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1:107–125

    PubMed  CAS  Google Scholar 

  67. Vasishta R, Saxena M, Chhibber S (1991) Contribution of silver ion resistance to the pathogenicity of Pseudomonas aeruginosa with special reference to burn wound sepsis. Folia Microbiol (Praha) 36:498–501

    CrossRef  CAS  Google Scholar 

  68. Wright JB, Lam K, Burrell RE (1998) Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment. Am J Infect Control 26:572–577

    CrossRef  PubMed  CAS  Google Scholar 

  69. Yudkins J (1937) The effect of silver ions on some enzymes of Bacterium coli. Enzymologia 2:161–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Franke .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franke, S. (2007). Microbiology of the Toxic Noble Metal Silver. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_084

Download citation

Publish with us

Policies and ethics