Abstract
Bacteria have evolved multiple mechanisms to cope with the extreme iron limitations in their natural environments. Fe3+ forms insoluble hydroxy aquo complexes. The free Fe3+ concentration lies orders of magnitude below the concentration required for microbial growth (0.1 μM). Bacteria synthesize and secrete low-molecular-weight compounds, called siderophores, which bind Fe3+ with very high affinity and specificity, and host organisms of bacteria bind Fe3+ to proteins that serve as iron sources for bacteria. Energy-coupled transport systems bring Fe3+, Fe3+-siderophores, and heme across the outer membrane, the periplasm, and the cytoplasmic membrane into the bacterial cytoplasm. There, iron is released from the carrier molecules and incorporated mostly into heme and iron-sulfur proteins. Intracellular iron metabolism is poorly understood. The transport systems and the biosynthesis of the siderophores are regulated by proteins, usually by Fur in Gram-negative bacteria, and DtxR and IdeR in Gram-positive bacteria. These proteins act as transcriptional repressors when loaded with Fe2+. Additional regulatory devices control siderophore biosynthesis and transport. The Fec-type of regulation is of particular interest because it involves a novel mechanism in which the ferric siderophore binds to the outer membrane transport protein and from there induces transcription of the transport and biosynthesis genes in the cytoplasm. Another recently detected device is the regulation of genes positively regulated by Fur via RhyB, a small regulatory RNA. RhyB facilitates degradation of positively regulated mRNAs, which does not occur when Fe2+-Fur represses RhyB synthesis.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR (2005) Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res 33:1678–1689
Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA (2004) The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 186:6220–6229
Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
Angerer A, Braun V (1998) Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins. Arch Microbiol 169:483–490
Angerer A, Enz S, Ochs M, Braun V (1995) Transcriptional regulation of ferric citrate transport in Escherichia coli K-12. Fecl belongs to a new subfamily of sigma 70-type factors that respond to extracytoplasmic stimuli. Mol Microbiol 18:163–174
Angerer A, Gaisser S, Braun V (1990) Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism. J Bacteriol 172:572–578
Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832
Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414
Beare PA, For RJ, Martin LW, Lamont IL (2003) Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207
Beaumont FC, Kang HY, Brickman TJ, Armstrong SK (1998) Identification and characterization of alcR, a gene encoding an AraC-like regulator of alcaligin siderophore biosynthesis and transport in Bordetella pertussis and Bordetella bronchiseptica. J Bacteriol 180:862–870
Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481
Boonjakuakul JK, Canfield DR, Solnick JV (2005) Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque. Infect Immun 73:4895–4904
Borths EL, Locher KP, Lee AT, Rees DC (2002) The structure of Escherichia coli BtuF and binding to its cognate ATP binding cassette transporter. Proc Natl Acad Sci USA 99:16642–16647
Boyd J, Oza MN, Murphy JR (1990) Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc Natl Acad Sci USA 87:5968–5972
Boyer E, Bergevin I, Malo D, Gros P, Cellier MF (2002) Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042
Braun M, Endriss F, Killmann H, Braun V (2003) In vivo reconstitution of the FhuA transport protein of Escherichia coli K-12. J Bacteriol 185:5508–5518
Braun V, Hantke K, Köster W (1998) Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145
Braun V, Mahren S (2005) Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol Rev 29:673–684
Breidenstein E, Mahren S, Braun V (2006) Residues involved in FecR binding are localized on one side of the FecA signaling domain in Escherichia coli. J Bacteriol 188:6440–6442
Bruns CM, Nowalk AJ, Arvai AS, McTigue MA, Vaughan KG, Mietzner TA, McRee DE (1997) Structure of Haemophilus influenzae Fe(+3)-binding protein reveals convergent evolution within a superfamily. Nat Struct Biol 4:919–924
Buchanan SK, Smith BS, Venkatramani L, Xia D, Esser L, Palnitkar M, Chakraborty R, van der HD, Deisenhofer J (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6:56–63
Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo – transport of ferrous iron into bacteria. Biometals 19:143–157
Chimento DP, Kadner RJ, Wiener MC (2003) The Escherichia coli outer membrane cobalamin transporter BtuB: structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation. J Mol Biol 332:999–1014
Clancy A, Loar JW, Speziali CD, Oberg M, Heinrichs DE, Rubens CE (2006) Evidence for siderophore-dependent iron acquisition in group B Streptococcus. Mol Microbiol 59:707–721
Clarke TE, Rohrbach MR, Tari LW, Vogel HJ, Koster W (2002) Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions. Biometals 15:121–131
Cobessi D, Celia H, Folschweiller N, Schalk IJ, Abdallah MA, Pattus F (2005a) The crystal structure of the pyoverdine outer membrane receptor FpvA from Pseudomonas aeruginosa at 3.6 angstroms resolution. J Mol Biol 347:121–134
Cobessi D, Celia H, Pattus F (2005b) Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. J Mol Biol 352:893–904
Cornelissen CN (2003) Transferrin-iron uptake by Gram-negative bacteria. Front Biosci 8:d836–d847
Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336
Cwerman H, Wandersman C, Biville F (2006) Heme and a five-amino-acid hemophore region form the bipartite stimulus triggering the has signaling cascade. J Bacteriol 188:3357–3364
Dashper SG, Butler CA, Lissel JP, Paolini RA, Hoffmann B, Veith PD, O'Brien-Simpson NM, Snelgrove SL, Tsiros JT, Reynolds EC (2005) A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280:28095–28102
de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630
de Lorenzo V, Prez-Martin J, Escolar L, Pesole G, Bertoni G (2004) Mode of binding of the Fur protein to target DNA: negative regulation of iron-controlled gene expression. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, DC, pp 185–196
Dean CR, Neshat S, Poole K (1996) PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. J Bacteriol 178:5361–5369
Dhungana S, Anderson DS, Mietzner TA, Crumbliss AL (2005) Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+transport. Biochemistry 44:9606–9618
Diaz-Mireles E, Wexler M, Todd JD, Bellini D, Johnston AW, Sawers RG (2005) The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. Microbiology 151:4071–4078
Endriss F, Braun V (2004) Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli. J Bacteriol 186:4818–4823
Enz S, Brand H, Orellana C, Mahren S, Braun V (2003a) Sites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12. J Bacteriol 185:3745–3752
Enz S, Braun V, Crosa JH (1995) Transcription of the region encoding the ferric dicitrate-transport system in Escherichia coli: similarity between promoters for fecA and for extracytoplasmic function sigma factors. Gene 163:13–18
Enz S, Mahren S, Menzel C, Braun V (2003b) Analysis of the ferric citrate transport gene promoter of Escherichia coli. J Bacteriol 185:2387–2391
Enz S, Mahren S, Stroeher UH, Braun V (2000) Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR, and FecI regulatory proteins. J Bacteriol 182:637–646
Faraldo-Gomez JD, Sansom MS (2003) Acquisition of siderophores in Gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116
Ferguson AD, Chakraborty R, Smith BS, Esser L, van der HD, Deisenhofer J (2002) Structural basis of gating by the outer membrane transporter FecA. Science 295:1715–1719
Ferguson AD, Deisenhofer J (2004) Metal import through microbial membranes. Cell 116:15–24
Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220
Garcia-Herrero A, Vogel HJ (2005) Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol Microbiol 58:1226–1237
Geissmann TA, Touati D (2004) Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J 23:396–405
Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD (2001) Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69:2829–2837
Grass G, Franke S, Taudte N, Nies DH, Kucharski LM, Maguire ME, Rensing C (2005) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611
Grass G, Wong MD, Rosen BP, Smith RL, Rensing C (2002) ZupT is a Zn(II) uptake system in Escherichia coli. J Bacteriol 184:864–866
Hantke K (1987a) Ferrous iron transport mutants in Escherichia coli K-12. FEMS Microbiol Lett 44:53–57
Hantke K (1987b) Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K-12: fur not only affects iron metabolism. Mol Gen Genet 210:135–139
Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177
Heinrichs DE, Poole K (1996) PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol 178:2586–2592
Hoegy F, Celia H, Mislin GL, Vincent M, Gallay J, Schalk IJ (2005) Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa. J Biol Chem 280:20222–20230
James HE, Beare PA, Martin LW, Lamont IL (2005) Mutational analysis of a bifunctional ferrisiderophore receptor and signal-transducing protein from Pseudomonas aeruginosa. J Bacteriol 187:4514–4520
Jin B, Newton SM, Shao Y, Jiang X, Charbit A, Klebba PE (2006) Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol 59:1185–1198
Kammler M, Schön C, Hantke K (1993) Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219
Katoh H, Hagino N, Grossman AR, Ogawa T (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183:2779–2784
Kehres DG, Janakiraman A, Slauch JM, Maguire ME (2002) SitABCD is the alkaline Mn(2+) transporter of Salmonella enterica serovar Typhimurium. J Bacteriol 184:3159–3166
Kempf B, Gade J, Bremer E (1997) Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179:6213–6220
Kim I, Stiefel A, Plantor S, Angerer A, Braun V (1997) Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol Microbiol 23:333–344
Kirby AE, King ND, Connell TD (2004) RhuR, an extracytoplasmic function sigma factor activator, is essential for heme-dependent expression of the outer membrane heme and hemoprotein receptor of Bordetella avium. Infect Immun 72:896–907
Klebba PE (2003) Three paradoxes of ferric enterobactin uptake. Front Biosci 8:s1422–s1436
Ködding J, Killig F, Polzer P, Howard SP, Diedrichs K, Welte W (2005) Crystal structure of a 92-residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments. J Biol Chem 280:3022–3028
Koster M, van Klompenburg W, Bitter W, Leong J, Weisbeek P (1994) Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope. EMBO J 13:2805–2813
Köster W (2001) ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 152:291–301
Krewulak KD, Shepherd CM, Vogel HJ (2005) Molecular dynamics simulations of the periplasmic ferric-hydroxamate binding protein FhuD. Biometals 18:375–386
Letoffe S, Delepelaire P, Wandersman C (2004) Free and hemophore-bound heme acquisitions through the outer membrane receptor HasR have different requirements for the TonB-ExbB-ExbD complex. J Bacteriol 186:4067–4074
Letoffe S, Wecker K, Delepierre M, Delepelaire P, Wandersman C (2005) Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel. J Bacteriol 187:4637–4645
Leveille S, Caza M, Johnson JR, Clabots C, Sabri M, Dozois CM (2006) Iha from an Escherichia coli urinary tract infection outbreak clonal group A strain is expressed in vivo in the mouse urinary tract and functions as a catecholate siderophore receptor. Infect Immun 74:3427–3436
Liu M, Lei B (2005) Heme transfer from streptococcal cell surface protein Shp to HtsA of transporter HtsABC. Infect Immun 73:5086–5092
Llamas MA, Sparrius M, Kloet R, Jimenez CR, Vandenbroucke-Grauls C, Bitter W (2006) The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188:1882–1891
Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098
Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778
Louvel H, Saint GI, Picardeau M (2005) Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187:3249–3254
Lu G, Westbrooks JM, Davidson AL, Chen J (2005) ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc Natl Acad Sci USA 102:17969–17974
Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B (2001) Ferric dicitrate transport system (Fec) of Shigella flexneri2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun 69:6012–6021
Mahren S, Schnell H, Braun V (2005) Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Arch Microbiol 184:175–186
Marlovits TC, Haase W, Herrmann C, Aller SG, Unger VM (2002) The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria. Proc Natl Acad Sci USA 99:16243–16248
Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol Mol Biol Rev 70:192–221
Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625
Merrell DS, Thompson LJ, Kim CC, Mitchell H, Tompkins LS, Lee A, Falkow S (2003) Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect Immun 71:6510–6525
Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM (2005) Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 73:8167–8178
Mietzner TA, Tencza SB, Adhikari P, Vaughan KG, Nowalk AJ (1998) Fe(III) periplasm-to-cytosol transporters of Gram-negative pathogens. Curr Top Microbiol Immunol 225:113–135
Oakhill JS, Sutton BJ, Gorringe AR, Evans RW (2005) Homology modelling of transferrin-binding protein A from Neisseria meningitidis. Protein Eng Des Sel 18:221–228
Page RDM (2005) Inferring evolutionary relationships. In: Baxevanis AD, Davison DB, Paghe RDM, Petsko GA, Stein LD, Stormo GD (eds) Current protocols in bioinformatics, Chap. 6. Wiley, New York
Patzer SI, Hantke K (2001) Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli. J Bacteriol 183:4806–4813
Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW (2006) Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1399–1402
Peacock RS, Weljie AM, Peter Howard S, Price FD, Vogel HJ (2005) The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. J Mol Biol 345:1185–1197
Pecqueur L, D'Autreaux B, Dupuy J, Nicolet Y, Jacquamet L, Brutscher B, Michaud-Soret I, Bersch B (2006) Structural changes of E. coli Fur during metal dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281:21286–21295
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I (2004) Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 68:154–171
Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915
Pohl E, Holmes RK, Hol WG (1999) Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 292:653–667
Postle K, Kadner RJ (2003) Touch and go: tying TonB to transport. Mol Microbiol 49:869–882
Prakash S, Cooper G, Singhi S, Saier MH Jr (2003) The ion transporter superfamily. Biochim Biophys Acta 1618:79–92
Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878–3886
Qi Z, Hamza I, O'Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96:13056–13061
Raphael BH, Joens LA (2003) FeoB is not required for ferrous iron uptake in Campylobacter jejuni. Can J Microbiol 49:727–731
Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci USA 100:3584–3588
Redly GA, Poole K (2005) FpvIR control of fpvA ferric pyoverdine receptor gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction. J Bacteriol 187:5648–5657
Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, an essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381
Rohde KH, Dyer DW (2003) Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Front Biosci 8:d1186–d1218
Rohrbach MR, Braun V, Köster W (1995) Ferrichrome transport in Escherichia coli K-12: altered substrate specificity of mutated periplasmic FhuD and interaction of FhuD with the integral membrane protein FhuB. J Bacteriol 177:7186–7193
Rudolph G, Hennecke H, Fischer HM (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648
Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM (2003) Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 71:1919–1928
Sabri M, Leveille S, Dozois CM (2006) A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758
Saken E, Rakin A, Heesemann J (2000) Molecular characterization of a novel siderophore-independent iron transport system in Yersinia. Int J Med Microbiol 290:51–60
Sauter A, Braun V (2004) Defined inactive FecA derivatives mutated in functional domains of the outer membrane transport and signaling protein of Escherichia coli K-12. J Bacteriol 186:5303–5310
Schalk IJ, Yue WW, Buchanan SK (2004) Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54:14–22
Schneider R, Hantke K (1993) Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as a part of a binding protein-dependent transport system. Mol Microbiol 8:111–121
Scott DC, Cao Z, Qi Z, Bauler M, Igo JD, Newton SM, Klebba PE (2001) Exchangeability of N-termini in the ligand-gated porins of Escherichia coli. J Biol Chem 276:13025–13033
Scott DC, Newton SM, Klebba PE (2002) Surface loop motion in FepA. J Bacteriol 184:4906–4911
Sebulsky MT, Speziali CD, Shilton BH, Edgell DR, Heinrichs DE (2004) FhuD1, a ferric hydroxamate-binding lipoprotein in Staphylococcus aureus: a case of gene duplication and lateral transfer. J Biol Chem 279:53152–53159
Shen J, Meldrum A, Poole K (2002) FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 184:3268–3275
Shouldice SR, Dougan DR, Skene RJ, Tari LW, McRee DE, Yu RH, Schryvers AB (2003) High-resolution structure of an alternate form of the ferric ion-binding protein from Haemophilus influenzae. J Biol Chem 278:11513–11519
Shultis DD, Purdy MD, Banchs CN, Wiener MC (2006) Outer membrane active transport: structure of the BtuB:TonB complex. Science 312:1396–1399
Stiefel A, Mahren S, Ochs M, Schindler PT, Enz S, Braun V (2001) Control of the ferric citrate transport system of Escherichia coli: mutations in region 2.1 of the FecI extracytoplasmic-function sigma factor suppress mutations in the FecR transmembrane regulatory protein. J Bacteriol 183:162–170
Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279
Tarr PI, Bilge SS, Vary JC Jr., Jelacic S, Habeeb RL, Ward TR, Baylor MR, Besser TE (2000) Iha: a novel Escherichia coli O157: H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun 68:1400–1407
Todd JD, Wexler M, Sawers G, Yeoman KH, Poole PS, Johnston AW (2002) RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 148:4059–4071
Van Gelder P, Dumas F, Bartoldus I, Saint N, Prilipov A, Winterhalter M, Wang Y, Philippsen A, Rosenbusch JP, Schirmer T (2002) Sugar transport through maltoporin of Escherichia coli: role of the greasy slide. J Bacteriol 184:2994–2999
Vanderpool CK, Armstrong SK (2004) Integration of environmental signals controls expression of Bordetella heme utilization genes. J Bacteriol 186:938–948
Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286
Waidner B, Greiner S, Odenbreit S, Kavermann H, Velayudhan J, Stahler F, Guhl J, Bisse E, van Vliet AH, Andrews SC, Kusters JG, Kelly DJ, Haas R, Kist M, Bereswill S (2002) Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun 70:3923–3929
Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647
Watnick PI, Butterton JR, Calderwood SB (1998) The interaction of the Vibrio cholerae transcription factors, Fur and IrgB, with the overlapping promoters of two virulence genes, irgA and irgB. Gene 209:65–70
Wexler M, Todd JD, Kolade O, Bellini D, Hemmings AM, Sawers G, Johnston AW (2003) Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology 149:1357–1365
Wilson MJ, Lamont IL (2006) Mutational analysis of an extracytoplasmic-function sigma factor to investigate its interactions with RNA polymerase and DNA. J Bacteriol 188:1935–1942
Winkelmann et al. (1991) CRC handbook of microbial iron chelates. CRC Press, Boca Raton, FL
Wyckoff EE, Lopreato GF, Tipton KA, Payne SM (2005) Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J Bacteriol 187:5658–5664
Wyckoff EE, Schmitt M, Wilks A, Payne SM (2004) HutZ is required for efficient heme utilization in Vibrio cholerae. J Bacteriol 186:4142–4151
Yang J, Sangwan I, Lindemann A, Hauser F, Hennecke H, Fischer HM, O'Brian MR (2006) Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism. Mol Microbiol 60:427–437
Yue WW, Grizot S, Buchanan SK (2003) Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J Mol Biol 332:353–368
Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67:1974–1981
Zimmermann L, Angerer A, Braun V (1989) Mechanistically novel iron(III) transport system in Serratia marcescens. J Bacteriol 171:238–243
Author information
Authors and Affiliations
Corresponding author
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Braun, V., Hantke, K. (2007). Acquisition of Iron by Bacteria. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_078
Download citation
DOI: https://doi.org/10.1007/7171_2006_078
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69770-1
Online ISBN: 978-3-540-69771-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
