Skip to main content

Biosensing of Heavy Metals

Part of the Microbiology Monographs book series (MICROMONO,volume 6)

Abstract

Naturally occurring, regulated resistance mechanisms of bacteria against various heavy metals and metalloids have been used to construct whole-cell living biosensors or bioreporters. Molecular fusions of regulatory circuits with reporter genes encoding easily detectable reporter proteins enable bioreporters to sense metal targets, typically at concentrations in the nanomolar to micromolar range, although more sensitive sensors also exist. The biological components of extant bioreporter constructs and the target ranges and sensitivities of bioreporter constructs are presented. An outlook on developments using novel molecular interactions as triggers of the biological responses and strategies for the improvement of bioreporters is given. Application examples are presented that illustrate the capability of bioreporters to measure bioavailable fractions of the target species rather than total loads.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cai J, DuBow MM (1996) Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol 42662–671

    Google Scholar 

  2. Condee CW, Summer AO (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101

    PubMed  CAS  Google Scholar 

  3. Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238

    CrossRef  PubMed  CAS  Google Scholar 

  4. Corbisier P, Thiry E, Masolijn A, Diels L (1994) Construction and development of metal ion biosensors. In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: fundamentals and applied aspects. Wiley, Chichester, pp 151–155

    Google Scholar 

  5. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244

    CrossRef  CAS  Google Scholar 

  6. Daunert S, Barrett G, Feliciano JS, Shetty RS, Shresta S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem Rev 100:2705–2738

    CrossRef  PubMed  CAS  Google Scholar 

  7. Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Prot Sci 14:2304–2314

    CrossRef  CAS  Google Scholar 

  8. Diorio C, Cai J, Marmor JS, Shinder R, DuBow MS (1995) An Escherichia coli ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J Bacteriol 177:2050–2056

    PubMed  CAS  Google Scholar 

  9. Durham KA, Porta D, Twiss MR, McKay RML, Bullerjahn GS (2002) Construction and initial characterization of a luminescent Synchococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol Lett 209:215–221

    CrossRef  PubMed  CAS  Google Scholar 

  10. Erbe JL, Adams AC, Taylor KB, Hall LM (1996) Cyanobacteria carrying and smt-lux transcriptional fusion as biosensor for the detection of heavy metal cations. J Ind Microbiol Biotechnol 17:80–83

    CAS  Google Scholar 

  11. Flynn HC, Meharg AA, Bowyer PK, Paton GI (2003) Antimony bioavailability in mine soils. Environ Poll 124:93–100

    CrossRef  CAS  Google Scholar 

  12. Gilis A, Corbisier P, Baeyens W, Taghavi S, Mergeay M, van der Lelie D (1998) Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J Ind Microbiol Biotechnol 20:61–68

    CrossRef  PubMed  CAS  Google Scholar 

  13. Grass G, Grosse C, Nies D (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398

    CrossRef  PubMed  CAS  Google Scholar 

  14. Guzzo A, Diorio C, DuBow MS (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl Environ Microbiol 57:2255–2259

    PubMed  CAS  Google Scholar 

  15. Guzzo J, Guzzo A, DuBow MS (1992) Characterization of the effects of aluminum on luciferase biosensors for the detection of ecotoxicity. Toxicol Lett 64/65:687–693

    CrossRef  Google Scholar 

  16. Guzzo A, DuBow MS (1994) A luxAB transcriptional fusion to the cryptic celF gene of Escherichia coli displays increased luminescence in the presence of nickel. Mol Gen Genet 242:455–460

    CrossRef  PubMed  CAS  Google Scholar 

  17. Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342

    CrossRef  PubMed  CAS  Google Scholar 

  18. Hansen LH, Sørensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193:123–127

    CrossRef  PubMed  CAS  Google Scholar 

  19. Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494

    CrossRef  PubMed  CAS  Google Scholar 

  20. Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of groundwater composition on arsenic detection by bacterial biosensors. Microchim Acta 151:217–222

    CrossRef  CAS  Google Scholar 

  21. Harms H, Wells M, van der Meer JR (2006) Whole-cell living biosensors – are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280

    CrossRef  PubMed  CAS  Google Scholar 

  22. Holmes DS, Dubey SK, Gangolli S (1994) Development of biosensors for the detection of mercury and copper ions. Environ Geochem Health 16:229–233

    CrossRef  CAS  Google Scholar 

  23. Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by metal ions. Mol Microbiol 7:177–187

    CrossRef  PubMed  CAS  Google Scholar 

  24. Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73:5168–5171

    CrossRef  PubMed  CAS  Google Scholar 

  25. Ivask A, Virta M, Kahru A (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium. Soil Biol Biochem 34:1439–1447

    CrossRef  CAS  Google Scholar 

  26. Ivask A, Francois M, Kahru A, Dubourguier H-C, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156

    CrossRef  PubMed  CAS  Google Scholar 

  27. Jaspers MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS-alkB::gfp-tagged Escherichia coli. Environ Microbiol 3:512–524

    CrossRef  PubMed  CAS  Google Scholar 

  28. Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445

    PubMed  CAS  Google Scholar 

  29. Karlén C, Wallinder IO, Heijerick D, Leygraf C (2002) Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environ Poll 120:691–700

    Google Scholar 

  30. Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779

    CrossRef  PubMed  Google Scholar 

  31. Liao VHC, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24:1624–1631

    CrossRef  PubMed  CAS  Google Scholar 

  32. Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–189

    CrossRef  PubMed  CAS  Google Scholar 

  33. Loper JE, Lindow SE (1994) A biological sensor for iron availability to bacteria in their habitats on plant surfaces. Appl Environ Microbiol 60:1934–1941

    PubMed  CAS  Google Scholar 

  34. Mioni CE, Howard AM, DeBruyn JM, Bright NG, Twiss MR, Applegate BM, Wilhelm SW (2003) Characterization and field trials of a bioluminescent bacterial reporter of iron bioavailability. Mar Chem 83:31–46

    CrossRef  CAS  Google Scholar 

  35. Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    PubMed  CAS  Google Scholar 

  36. Pepi M, Reniero D, Baldi F, Barbieri P (2006) A comparison of mer::lux whole cell biosensors and moss, a bioindicator, for estimating mercury pollution. Water Air Soil Poll 173:163–175

    CrossRef  CAS  Google Scholar 

  37. Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC 7942 iron-dependent bioreporter for freshwater environments. J Phycol 39:64–73

    CrossRef  CAS  Google Scholar 

  38. Ramanathan S, Shi WP, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384

    CrossRef  PubMed  CAS  Google Scholar 

  39. Ramanathan S, Shi W, Rosen BP, Daunert S (1998) Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369:189–195

    CrossRef  CAS  Google Scholar 

  40. Rasmussen LD, Turner RR, Barkay T (1997) Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293

    PubMed  CAS  Google Scholar 

  41. Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646

    CrossRef  CAS  Google Scholar 

  42. Riether KB, Dollars M-A, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716

    CrossRef  PubMed  CAS  Google Scholar 

  43. Rouch DA, Parkhill J, Brown NL (1997) Induction of bacterial mercury- and copper-responsive promoters: Functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. J Ind Microbiol Biotechnol 14:349–353

    Google Scholar 

  44. Selifonova O, Burlage R, Barkay T (1993) Bioluminscent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090

    PubMed  CAS  Google Scholar 

  45. Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A-231A

    CrossRef  Google Scholar 

  46. Stocker J, Balluch D, Gsell M, Harms H, Feliciano JS, Malik KA, Daunert S, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750

    CrossRef  PubMed  CAS  Google Scholar 

  47. Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461

    PubMed  CAS  Google Scholar 

  48. Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938

    CrossRef  PubMed  CAS  Google Scholar 

  49. Tauriainen SM, Virta MPJ, Karp MT (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661–2666

    CrossRef  CAS  Google Scholar 

  50. Temple TN, Stockwell VO, Loper JE, Johnson KB (2004) Bioavailability of iron to Pseudomonas fluorescens strain A506 on flowers of pear and apple. Phytopathol 94:1286–1293

    CrossRef  CAS  Google Scholar 

  51. Tibarzawa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Poll 113:19–26

    CrossRef  Google Scholar 

  52. Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:3625–3630

    CrossRef  CAS  Google Scholar 

  53. Van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020

    CrossRef  PubMed  CAS  Google Scholar 

  54. Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669

    CrossRef  CAS  Google Scholar 

  55. Wells M, Gosch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasensitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689

    CrossRef  PubMed  CAS  Google Scholar 

  56. Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Harms .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harms, H. (2007). Biosensing of Heavy Metals. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_076

Download citation

Publish with us

Policies and ethics