Abstract
Naturally occurring, regulated resistance mechanisms of bacteria against various heavy metals and metalloids have been used to construct whole-cell living biosensors or bioreporters. Molecular fusions of regulatory circuits with reporter genes encoding easily detectable reporter proteins enable bioreporters to sense metal targets, typically at concentrations in the nanomolar to micromolar range, although more sensitive sensors also exist. The biological components of extant bioreporter constructs and the target ranges and sensitivities of bioreporter constructs are presented. An outlook on developments using novel molecular interactions as triggers of the biological responses and strategies for the improvement of bioreporters is given. Application examples are presented that illustrate the capability of bioreporters to measure bioavailable fractions of the target species rather than total loads.
Keywords
- Bioavailable Fraction
- Appl Environ
- Bacterial Biosensor
- Inorganic Arsenic Species
- Organic Mercury Compound
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Cai J, DuBow MM (1996) Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol 42662–671
Condee CW, Summer AO (1992) A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101
Corbisier P, Ji G, Nuyts G, Mergeay M, Silver S (1993) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238
Corbisier P, Thiry E, Masolijn A, Diels L (1994) Construction and development of metal ion biosensors. In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: fundamentals and applied aspects. Wiley, Chichester, pp 151–155
Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235–244
Daunert S, Barrett G, Feliciano JS, Shetty RS, Shresta S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem Rev 100:2705–2738
Deuschle K, Okumoto S, Fehr M, Looger LL, Kozhukh L, Frommer WB (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Prot Sci 14:2304–2314
Diorio C, Cai J, Marmor JS, Shinder R, DuBow MS (1995) An Escherichia coli ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J Bacteriol 177:2050–2056
Durham KA, Porta D, Twiss MR, McKay RML, Bullerjahn GS (2002) Construction and initial characterization of a luminescent Synchococcus sp. PCC 7942 Fe-dependent bioreporter. FEMS Microbiol Lett 209:215–221
Erbe JL, Adams AC, Taylor KB, Hall LM (1996) Cyanobacteria carrying and smt-lux transcriptional fusion as biosensor for the detection of heavy metal cations. J Ind Microbiol Biotechnol 17:80–83
Flynn HC, Meharg AA, Bowyer PK, Paton GI (2003) Antimony bioavailability in mine soils. Environ Poll 124:93–100
Gilis A, Corbisier P, Baeyens W, Taghavi S, Mergeay M, van der Lelie D (1998) Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34. J Ind Microbiol Biotechnol 20:61–68
Grass G, Grosse C, Nies D (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398
Guzzo A, Diorio C, DuBow MS (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl Environ Microbiol 57:2255–2259
Guzzo J, Guzzo A, DuBow MS (1992) Characterization of the effects of aluminum on luciferase biosensors for the detection of ecotoxicity. Toxicol Lett 64/65:687–693
Guzzo A, DuBow MS (1994) A luxAB transcriptional fusion to the cryptic celF gene of Escherichia coli displays increased luminescence in the presence of nickel. Mol Gen Genet 242:455–460
Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24:333–342
Hansen LH, Sørensen SJ (2000) Versatile biosensor vectors for detection and quantification of mercury. FEMS Microbiol Lett 193:123–127
Hansen LH, Sørensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:483–494
Harms H, Rime J, Leupin O, Hug SJ, van der Meer JR (2005) Influence of groundwater composition on arsenic detection by bacterial biosensors. Microchim Acta 151:217–222
Harms H, Wells M, van der Meer JR (2006) Whole-cell living biosensors – are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280
Holmes DS, Dubey SK, Gangolli S (1994) Development of biosensors for the detection of mercury and copper ions. Environ Geochem Health 16:229–233
Huckle JW, Morby AP, Turner JS, Robinson NJ (1993) Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by metal ions. Mol Microbiol 7:177–187
Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73:5168–5171
Ivask A, Virta M, Kahru A (2002) Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium. Soil Biol Biochem 34:1439–1447
Ivask A, Francois M, Kahru A, Dubourguier H-C, Virta M, Douay F (2004) Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55:147–156
Jaspers MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS-alkB::gfp-tagged Escherichia coli. Environ Microbiol 3:512–524
Joyner DC, Lindow SE (2000) Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. Microbiology 146:2435–2445
Karlén C, Wallinder IO, Heijerick D, Leygraf C (2002) Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environ Poll 120:691–700
Köhler S, Belkin S, Schmid RD (2000) Reporter gene bioassays in environmental analysis. Fresenius J Anal Chem 366:769–779
Liao VHC, Ou KL (2005) Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem 24:1624–1631
Looger LL, Dwyer MA, Smith JJ, Hellinga HW (2003) Computational design of receptor and sensor proteins with novel functions. Nature 423:185–189
Loper JE, Lindow SE (1994) A biological sensor for iron availability to bacteria in their habitats on plant surfaces. Appl Environ Microbiol 60:1934–1941
Mioni CE, Howard AM, DeBruyn JM, Bright NG, Twiss MR, Applegate BM, Wilhelm SW (2003) Characterization and field trials of a bioluminescent bacterial reporter of iron bioavailability. Mar Chem 83:31–46
Peitzsch N, Eberz G, Nies DH (1998) Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458
Pepi M, Reniero D, Baldi F, Barbieri P (2006) A comparison of mer::lux whole cell biosensors and moss, a bioindicator, for estimating mercury pollution. Water Air Soil Poll 173:163–175
Porta D, Bullerjahn GS, Durham KA, Wilhelm SW, Twiss MR, McKay RML (2003) Physiological characterization of a Synechococcus sp. (Cyanophyceae) strain PCC 7942 iron-dependent bioreporter for freshwater environments. J Phycol 39:64–73
Ramanathan S, Shi WP, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384
Ramanathan S, Shi W, Rosen BP, Daunert S (1998) Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Anal Chim Acta 369:189–195
Rasmussen LD, Turner RR, Barkay T (1997) Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293
Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–646
Riether KB, Dollars M-A, Billard P (2001) Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl Microbiol Biotechnol 57:712–716
Rouch DA, Parkhill J, Brown NL (1997) Induction of bacterial mercury- and copper-responsive promoters: Functional differences between inducible systems and implications for their use in gene-fusions for in vivo metal biosensors. J Ind Microbiol Biotechnol 14:349–353
Selifonova O, Burlage R, Barkay T (1993) Bioluminscent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090
Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A-231A
Stocker J, Balluch D, Gsell M, Harms H, Feliciano JS, Malik KA, Daunert S, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arsenate in potable water. Environ Sci Technol 37:4743–4750
Tauriainen S, Karp M, Chang W, Virta M (1997) Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol 63:4456–4461
Tauriainen S, Karp M, Chang W, Virta M (1998) Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 13:931–938
Tauriainen SM, Virta MPJ, Karp MT (2000) Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria. Water Res 34:2661–2666
Temple TN, Stockwell VO, Loper JE, Johnson KB (2004) Bioavailability of iron to Pseudomonas fluorescens strain A506 on flowers of pear and apple. Phytopathol 94:1286–1293
Tibarzawa C, Corbisier P, Mench M, Bossus A, Solda P, Mergeay M, Wyns L, van der Lelie D (2001) A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Poll 113:19–26
Trang PTK, Berg M, Viet PH, Mui NV, van der Meer JR (2005) Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ Sci Technol 39:3625–3630
Van der Meer JR, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6:1005–1020
Virta M, Lampinen J, Karp M (1995) A luminescence-based mercury biosensor. Anal Chem 67:667–669
Wells M, Gosch M, Rigler R, Harms H, Lasser T, van der Meer JR (2005) Ultrasensitive reporter protein detection in genetically engineered bacteria. Anal Chem 77:2683–2689
Yoon KP, Misra TK, Silver S (1991) Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258. J Bacteriol 173:7643–7649
Author information
Authors and Affiliations
Corresponding author
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Harms, H. (2007). Biosensing of Heavy Metals. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_076
Download citation
DOI: https://doi.org/10.1007/7171_2006_076
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69770-1
Online ISBN: 978-3-540-69771-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
