Skip to main content

Metalloregulators: Arbiters of Metal Sufficiency

Part of the Microbiology Monographs book series (MICROMONO,volume 6)

Abstract

Metal homeostasis relies on the ability of metalloregulatory proteins to coordinate the expression of transport and storage functions. Metalloregulatory proteins can be divided into two major groups: those that regulate the uptake of essential metals (the Fur, DtxR/MntR, and NikR families) and those that regulate metal efflux and detoxification mechanisms (the ArsR/SmtB and MerR families). Within each metalloregulator protein family, there is a tremendous diversity in metal selectivity and the corresponding biological responses. The availability of at least one protein structure from each family is beginning to provide insights into the origins of metal selectivity. Biochemical measurements of metal ion selectivity and affinity provide a window into the ambient metal ion conditions within the cytosol: metalloregulators that sense nutrient metals must be poised to bind the metal ion once the essential functional sites are saturated, but before adventitious associations begin to interfere with cellular function. Similarly, sensors of metal ion excess, whether for non-essential toxic metals or nutrient metals, must respond to metals, at levels below those that will inhibit or prevent cell growth, to activate appropriate defensive measures. Recent insights highlight the global nature of stress responses elicited by metal ion deficiency. In addition to the expected derepression of high affinity uptake systems, metal ion starvation leads to a large-scale remodeling of the proteome that includes: (i) metal-sparing, (ii) metal-substitution, and (iii) metal-mobilization responses.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Tehrani H, Hudson AJ, Chang YS, Timms AR, Hawkins C, Williams JM, Harrison PM, Guest JR, Andrews SC (1999) Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428

    PubMed  CAS  Google Scholar 

  2. Adrait A, Jacquamet L, Le Pape L, Gonzalez de Peredo A, Aberdam D, Hazemann JL, Latour JM, Michaud-Soret I (1999) Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein from Escherichia coli. Biochemistry 38:6248–6260

    PubMed  CAS  Google Scholar 

  3. Agnoli K, Lowe CA, Farmer KL, Husnain SI, Thomas MS (2006) The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. J Bacteriol 188:3631–3644

    PubMed  CAS  Google Scholar 

  4. Ahn BE, Cha J, Lee EJ, Han AR, Thompson CJ, Roe JH (2006) Nur, a nickel-responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 59:1848–1858

    PubMed  CAS  Google Scholar 

  5. Akanuma G, Nanamiya H, Natori Y, Nomura N, Kawamura F (2006) Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis. J Bacteriol 188:2715–2720

    PubMed  CAS  Google Scholar 

  6. Alen C, Sonenshein AL (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc Natl Acad Sci USA 96:10412–10417

    PubMed  CAS  Google Scholar 

  7. Althaus EW, Outten CE, Olson KE, Cao H, O'Halloran TV (1999) The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry 38:6559–6569

    PubMed  CAS  Google Scholar 

  8. Ando M, Manabe YC, Converse PJ, Miyazaki E, Harrison R, Murphy JR, Bishai WR (2003) Characterization of the role of the divalent metal ion-dependent transcriptional repressor MntR in the virulence of Staphylococcus aureus. Infect Immun 71:2584–2590

    PubMed  CAS  Google Scholar 

  9. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    PubMed  CAS  Google Scholar 

  10. Ansari AZ, Bradner JE, O'Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374:371–375

    PubMed  CAS  Google Scholar 

  11. Bagg A, Neilands JB (1987) Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477

    PubMed  CAS  Google Scholar 

  12. Baichoo N, Helmann JD (2002) Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol 184:5826–5832

    PubMed  CAS  Google Scholar 

  13. Baichoo N, Wang T, Ye R, Helmann JD (2002) Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629

    PubMed  CAS  Google Scholar 

  14. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    PubMed  CAS  Google Scholar 

  15. Bellini P, Hemmings AM (2006) In vitro characterization of a bacterial manganese uptake regulator of the Fur superfamily. Biochemistry 45:2686–2698

    PubMed  CAS  Google Scholar 

  16. Bloom SL, Zamble DB (2004) Metal-selective DNA-binding response of Escherichia coli NikR. Biochemistry 43:10029–10038

    PubMed  CAS  Google Scholar 

  17. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163

    PubMed  CAS  Google Scholar 

  18. Bsat N, Herbig A, Casillas-Martinez L, Setlow P, Helmann JD (1998) Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198

    PubMed  CAS  Google Scholar 

  19. Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143

    PubMed  CAS  Google Scholar 

  20. Carrington PE, Chivers PT, Al-Mjeni F, Sauer RT, Maroney MJ (2003) Nickel coordination is regulated by the DNA-bound state of NikR. Nat Struct Biol 10:126–130

    PubMed  CAS  Google Scholar 

  21. Cavet JS, Meng W, Pennella MA, Appelhoff RJ, Giedroc DP, Robinson NJ (2002) A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem 277:38441–38448

    PubMed  CAS  Google Scholar 

  22. Champier L, Duarte V, Michaud-Soret I, Coves J (2004) Characterization of the MerD protein from Ralstonia metallidurans CH34: a possible role in bacterial mercury resistance by switching off the induction of the mer operon. Mol Microbiol 52:1475–1485

    PubMed  CAS  Google Scholar 

  23. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, Mondragon A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387

    PubMed  CAS  Google Scholar 

  24. Chen L, James LP, Helmann JD (1993) Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175:5428–5437

    PubMed  CAS  Google Scholar 

  25. Chivers PT, Sauer RT (1999) NikR is a ribbon-helix-helix DNA-binding protein. Protein Sci 8:2494–2500

    PubMed  CAS  Google Scholar 

  26. Chivers PT, Sauer RT (2002) NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148

    PubMed  CAS  Google Scholar 

  27. Chou CJ, Wisedchaisri G, Monfeli RR, Oram DM, Holmes RK, Hol WG, Beeson C (2004) Functional studies of the Mycobacterium tuberculosis iron-dependent regulator. J Biol Chem 279:53554–53561

    PubMed  CAS  Google Scholar 

  28. Chung HJ, Choi JH, Kim EJ, Cho YH, Roe JH (1999) Negative regulation of the gene for Fe-containing superoxide dismutase by an Ni-responsive factor in Streptomyces coelicolor. J Bacteriol 181:7381–7384

    PubMed  CAS  Google Scholar 

  29. Coy M, Doyle C, Besser J, Neilands JB (1994) Site-directed mutagenesis of the ferric uptake regulation gene of Escherichia coli. Biometals 7:292–298

    PubMed  CAS  Google Scholar 

  30. Cromie MJ, Shi Y, Latifi T, Groisman EA (2006) An RNA sensor for intracellular Mg(2+). Cell 125:71–84

    PubMed  CAS  Google Scholar 

  31. de Lorenzo V, Wee S, Herrero M, Neilands JB (1987) Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630

    PubMed  Google Scholar 

  32. Delany I, Rappuoli R, Scarlato V (2004) Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 52:1081–1090

    PubMed  CAS  Google Scholar 

  33. Delany I, Spohn G, Rappuoli R, Scarlato V (2001) The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol 42:1297–1309

    PubMed  CAS  Google Scholar 

  34. Diaz-Mireles E, Wexler M, Sawers G, Bellini D, Todd JD, Johnston AW (2004) The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator. Microbiology 150:1447–1456

    PubMed  CAS  Google Scholar 

  35. Diaz-Mireles E, Wexler M, Todd JD, Bellini D, Johnston AW, Sawers RG (2005) The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. Microbiology 151:4071–4078

    PubMed  CAS  Google Scholar 

  36. Dosanjh NS, Michel SL (2006) Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol 10:123–130

    PubMed  CAS  Google Scholar 

  37. Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR Jr, Smith I (1999) Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181:3402–3408

    PubMed  CAS  Google Scholar 

  38. Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  39. Feese MD, Ingason BP, Goranson-Siekierke J, Holmes RK, Hol WG (2001) Crystal structure of the iron-dependent regulator from Mycobacterium tuberculosis at - 2.0Å resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J Biol Chem 276:5959–5966

    PubMed  CAS  Google Scholar 

  40. Finney LA, O'Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    PubMed  CAS  Google Scholar 

  41. Frantz B, O'Halloran TV (1990) DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. Biochemistry 29:4747–4751

    PubMed  CAS  Google Scholar 

  42. Friedman YE, O'Brian MR (2004) The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum is an iron-responsive transcriptional repressor in vitro. J Biol Chem 279:32100–32105

    PubMed  CAS  Google Scholar 

  43. Fuangthong M, Helmann JD (2003) Recognition of DNA by three ferric uptake regulator (Fur) homologs in Bacillus subtilis. J Bacteriol 185:6348–6357

    PubMed  CAS  Google Scholar 

  44. Fuangthong M, Herbig AF, Bsat N, Helmann JD (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–3286

    PubMed  CAS  Google Scholar 

  45. Funahashi T, Fujiwara C, Okada M, Miyoshi S, Shinoda S, Narimatsu S, Yamamoto S (2000) Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 44:963–970

    PubMed  CAS  Google Scholar 

  46. Gaballa A, Helmann JD (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–5821

    PubMed  CAS  Google Scholar 

  47. Gaballa A, Helmann JD (2002) A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45:997–1005

    PubMed  CAS  Google Scholar 

  48. Gaballa A, Wang T, Ye RW, Helmann JD (2002) Functional analysis of the Bacillus subtilis Zur regulon. J Bacteriol 184:6508–6514

    PubMed  CAS  Google Scholar 

  49. Glasfeld A, Guedon E, Helmann JD, Brennan RG (2003) Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Nat Struct Biol 10:652–657

    PubMed  CAS  Google Scholar 

  50. Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865

    PubMed  CAS  Google Scholar 

  51. Golynskiy MV, Davis TC, Helmann JD, Cohen SM (2005) Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. Biochemistry 44:3380–3389

    PubMed  CAS  Google Scholar 

  52. Griggs DW, Konisky J (1989) Mechanism for iron-regulated transcription of the Escherichia coli cir gene: metal-dependent binding of Fur protein to the promoters. J Bacteriol 171:1048–1054

    PubMed  CAS  Google Scholar 

  53. Guedon E, Helmann JD (2003) Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol 48:495–506

    PubMed  CAS  Google Scholar 

  54. Guedon E, Moore CM, Que Q, Wang T, Ye RW, Helmann JD (2003) The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigmaB regulons. Mol Microbiol 49:1477–1491

    PubMed  CAS  Google Scholar 

  55. Hamed MY (1993) Binding of the ferric uptake regulation repressor protein (Fur) to Mn(II), Fe(II), Co(II), and Cu(II) ions as co-repressors: electronic absorption, equilibrium, and 57Fe Mossbauer studies. J Inorg Biochem 50:193–210

    PubMed  CAS  Google Scholar 

  56. Hamza I, Chauhan S, Hassett R, O'Brian MR (1998) The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–21674

    PubMed  CAS  Google Scholar 

  57. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292

    PubMed  CAS  Google Scholar 

  58. Hantke K (1987) Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: Fur not only affects iron metabolism. Mol Gen Genet 210:135–139

    PubMed  CAS  Google Scholar 

  59. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    PubMed  CAS  Google Scholar 

  60. Hantke K (2005) Bacterial zinc uptake and regulators. Curr Opin Microbiol 8:196–202

    PubMed  CAS  Google Scholar 

  61. Harvie DR, Andreini C, Cavallaro G, Meng W, Connolly BA, Yoshida K, Fujita Y, Harwood CR, Radford DS, Tottey S, Cavet JS, Robinson NJ (2006) Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Mol Microbiol 59:1341–1356

    PubMed  CAS  Google Scholar 

  62. Hazlett KR, Rusnak F, Kehres DG, Bearden SW, La Vake CJ, La Vake ME, Maguire ME, Perry RD, Radolf JD (2003) The Treponema pallidum tro operon encodes a multiple metal transporter, a zinc-dependent transcriptional repressor, and a semi-autonomously expressed phosphoglycerate mutase. J Biol Chem 278:20687–20694

    PubMed  CAS  Google Scholar 

  63. Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247:946–948

    PubMed  CAS  Google Scholar 

  64. Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, Fawcett P, Paddon C (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185:243–253

    PubMed  CAS  Google Scholar 

  65. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297

    PubMed  CAS  Google Scholar 

  66. Herbig AF, Helmann JD (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–859

    PubMed  CAS  Google Scholar 

  67. Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P (1998) SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 66:4123–4129

    PubMed  CAS  Google Scholar 

  68. Hobman JL, Wilkie J, Brown NL (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18:429–436

    PubMed  CAS  Google Scholar 

  69. Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    PubMed  CAS  Google Scholar 

  70. Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181 Suppl 1:S156–167

    Google Scholar 

  71. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ (2002) MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286

    PubMed  CAS  Google Scholar 

  72. Jacquamet L, Aberdam D, Adrait A, Hazemann JL, Latour JM, Michaud-Soret I (1998) X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37:2564–2571

    PubMed  CAS  Google Scholar 

  73. Kaplan J, McVey Ward D, Crisp RJ, Philpott CC (2006) Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta

    Google Scholar 

  74. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA 93:13635–13640

    PubMed  CAS  Google Scholar 

  75. Kliegman JI, Griner SL, Helmann JD, Brennan RG, Glasfeld A (2006) Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis. Biochemistry 45:3493–3505

    PubMed  CAS  Google Scholar 

  76. Kojetin DJ, Thompson RJ, Benson LM, Naylor S, Waterman J, Davies KG, Opperman CH, Stephenson K, Hoch JA, Cavanagh J (2005) Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation. Biometals 18:449–466

    PubMed  CAS  Google Scholar 

  77. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani JJ, Connerton IF, Danchin A, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    PubMed  CAS  Google Scholar 

  78. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM (2005) Biochemistry: a cadmium enzyme from a marine diatom. Nature 435:42

    PubMed  CAS  Google Scholar 

  79. Lavrrar JL, McIntosh MA (2003) Architecture of a Fur binding site: a comparative analysis. J Bacteriol 185:2194–2202

    PubMed  CAS  Google Scholar 

  80. Lee JW, Helmann JD (2006) The PerR transcription factor senses H2O2by metal-catalysed histidine oxidation. Nature 440:363–367

    PubMed  CAS  Google Scholar 

  81. Lieser SA, Davis TC, Helmann JD, Cohen SM (2003) DNA-binding and oligomerization studies of the manganese(II) metalloregulatory protein MntR from Bacillus subtilis. Biochemistry 42:12634–12642

    PubMed  CAS  Google Scholar 

  82. Liu T, Golden JW, Giedroc DP (2005) A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Biochemistry 44:8673–8683

    PubMed  CAS  Google Scholar 

  83. Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N (2003) Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. J Bacteriol 185:2887–2900

    PubMed  CAS  Google Scholar 

  84. Makarova KS, Ponomarev VA, Koonin EV (2001) Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2:RESEARCH 0033

    Google Scholar 

  85. Masse E, Arguin M (2005) Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468

    PubMed  CAS  Google Scholar 

  86. Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    PubMed  CAS  Google Scholar 

  87. Masse E, Vanderpool CK, Gottesman S (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J Bacteriol 187:6962–6971

    PubMed  CAS  Google Scholar 

  88. McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278:29478–29486

    PubMed  CAS  Google Scholar 

  89. Meibom KL, Kallipolitis BH, Ebright RH, Valentin-Hansen P (2000) Identification of the subunit of cAMP receptor protein (CRP) that functionally interacts with CytR in CRP-CytR-mediated transcriptional repression. J Biol Chem 275:11951–11956

    PubMed  CAS  Google Scholar 

  90. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    PubMed  CAS  Google Scholar 

  91. Mey AR, Craig SA, Payne SM (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun 73:5706–5719

    PubMed  CAS  Google Scholar 

  92. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD (2005) Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 57:27–40

    PubMed  CAS  Google Scholar 

  93. Moore CM, Helmann JD (2005) Metal ion homeostasis in Bacillus subtilis. Curr Opin Microbiol 8:188–195

    PubMed  CAS  Google Scholar 

  94. Murphy ER, Dickenson A, Militello KT, Connell TD (1999) Genetic characterization of wild-type and mutant fur genes of Bordetella avium. Infect Immun 67:3160–3165

    PubMed  CAS  Google Scholar 

  95. Nanamiya H, Akanuma G, Natori Y, Murayama R, Kosono S, Kudo T, Kobayashi K, Ogasawara N, Park SM, Ochi K, Kawamura F (2004) Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283

    PubMed  CAS  Google Scholar 

  96. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    PubMed  CAS  Google Scholar 

  97. Nucifora G, Silver S, Misra TK (1989) Down regulation of the mercury resistance operon by the most promoter-distal gene merD. Mol Gen Genet 220:69–72

    PubMed  CAS  Google Scholar 

  98. O'Halloran T, Walsh C (1987) Metalloregulatory DNA-binding protein encoded by the merR gene: isolation and characterization. Science 235:211–214

    PubMed  Google Scholar 

  99. O'Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725

    PubMed  Google Scholar 

  100. O'Halloran TV, Frantz B, Shin MK, Ralston DM, Wright JG (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56:119–129

    PubMed  Google Scholar 

  101. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    PubMed  CAS  Google Scholar 

  102. Outten CE, Tobin DA, Penner-Hahn JE, O'Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli Zur, an ultrasensitive zinc(II) metalloregulatory protein. Biochemistry 40:10417–10423

    PubMed  CAS  Google Scholar 

  103. Panina EM, Mironov AA, Gelfand MS (2001) Comparative analysis of FUR regulons in gamma-proteobacteria. Nucleic Acids Res 29:5195–5206

    PubMed  CAS  Google Scholar 

  104. Panina EM, Mironov AA, Gelfand MS (2003) Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci USA 100:9912–9917

    PubMed  CAS  Google Scholar 

  105. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    PubMed  CAS  Google Scholar 

  106. Patzer SI, Hantke K (2001) Dual repression by Fe(2+)-Fur and Mn(2+)-MntR of the mntH gene, encoding an NRAMP-like Mn(2+) transporter in Escherichia coli. J Bacteriol 183:4806–4813

    PubMed  CAS  Google Scholar 

  107. Payne SM, Wyckoff EE, Murphy ER, Oglesby AG, Boulette ML, Davies NM (2006) Iron and pathogenesis of Shigella: iron acquisition in the intracellular environment. Biometals 19:173–180

    PubMed  CAS  Google Scholar 

  108. Peers G, Price NM (2006) Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441:341–344

    PubMed  CAS  Google Scholar 

  109. Pennella MA, Arunkumar AI, Giedroc DP (2006) Individual metal ligands play distinct functional roles in the zinc sensor Staphylococcus aureus CzrA. J Mol Biol 356:1124–1136

    PubMed  CAS  Google Scholar 

  110. Pennella MA, Giedroc DP (2005) Structural determinants of metal selectivity in prokaryotic metal-responsive transcriptional regulators. Biometals 18:413–428

    PubMed  CAS  Google Scholar 

  111. Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915

    PubMed  CAS  Google Scholar 

  112. Pohl E, Holmes RK, Hol WG (1999) Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J Mol Biol 285:1145–1156

    PubMed  CAS  Google Scholar 

  113. Pohl E, Holmes RK, Hol WG (1999) Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 292:653–667

    PubMed  CAS  Google Scholar 

  114. Pohl E, Qui X, Must LM, Holmes RK, Hol WG (1997) Comparison of high-resolution structures of the diphtheria toxin repressor in complex with cobalt and zinc at the cation-anion binding site. Protein Sci 6:1114–1118

    PubMed  CAS  Google Scholar 

  115. Posey JE, Hardham JM, Norris SJ, Gherardini FC (1999) Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc Natl Acad Sci USA 96:10887–10892

    PubMed  CAS  Google Scholar 

  116. Prince RW, Cox CD, Vasil ML (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175:2589–2598

    PubMed  CAS  Google Scholar 

  117. Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110

    PubMed  CAS  Google Scholar 

  118. Qi Z, Hamza I, O'Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci USA 96:13056–13061

    PubMed  CAS  Google Scholar 

  119. Qi Z, O'Brian MR (2002) Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell 9:155–162

    PubMed  CAS  Google Scholar 

  120. Qiu X, Verlinde CL, Zhang S, Schmitt MP, Holmes RK, Hol WG (1995) Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 3:87–100

    PubMed  CAS  Google Scholar 

  121. Que Q, Helmann JD (2000) Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol 35:1454–1468

    PubMed  CAS  Google Scholar 

  122. Raumann BE, Rould MA, Pabo CO, Sauer RT (1994) DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. Nature 367:754–757

    PubMed  CAS  Google Scholar 

  123. Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90

    PubMed  Google Scholar 

  124. Rodriguez GM, Smith I (2003) Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47:1485–1494

    PubMed  CAS  Google Scholar 

  125. Ross W, Park SJ, Summers AO (1989) Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. J Bacteriol 171:4009–4018

    PubMed  CAS  Google Scholar 

  126. Schmitt MP (2002) Analysis of a DtxR-like metalloregulatory protein, MntR, from Corynebacterium diphtheriae that controls expression of an ABC metal transporter by an Mn(2+)-dependent mechanism. J Bacteriol 184:6882–6892

    PubMed  CAS  Google Scholar 

  127. Schneider R, Hantke K (1993) Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol 8:111–121

    PubMed  CAS  Google Scholar 

  128. Schumacher MA, Brennan RG (2002) Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol 45:885–893

    PubMed  CAS  Google Scholar 

  129. Sen KI, Sienkiewicz A, Love JF, vanderSpek JC, Fajer PG, Logan TM (2006) Mn(II) binding by the anthracis repressor from Bacillus anthracis. Biochemistry 45:4295–4303

    PubMed  CAS  Google Scholar 

  130. Shi W, Dong J, Scott RA, Ksenzenko MY, Rosen BP (1996) The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem 271:9291–9297

    PubMed  CAS  Google Scholar 

  131. Shi W, Wu J, Rosen BP (1994) Identification of a putative metal binding site in a new family of metalloregulatory proteins. J Biol Chem 269:19826–19829

    PubMed  CAS  Google Scholar 

  132. Song L et al. (2004) Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J Bacteriol 186:1861–1868

    PubMed  CAS  Google Scholar 

  133. Spiering MM, Ringe D, Murphy JR, Marletta MA (2003) Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc Natl Acad Sci USA 100:3808–3813

    PubMed  CAS  Google Scholar 

  134. Summers AO (1992) Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol 174:3097–3101

    PubMed  CAS  Google Scholar 

  135. Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR (1994) Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 14:191–197

    PubMed  CAS  Google Scholar 

  136. Tao X, Zeng HY, Murphy JR (1995) Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc Natl Acad Sci USA 92:6803–6807

    PubMed  CAS  Google Scholar 

  137. Thelwell C, Robinson NJ, Turner-Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA 95:10728–10733

    PubMed  CAS  Google Scholar 

  138. Thomas CE, Sparling PF (1996) Isolation and analysis of a fur mutant of Neisseria gonorrhoeae. J Bacteriol 178:4224–4232

    PubMed  CAS  Google Scholar 

  139. Todd JD, Sawers G, Johnston AW (2005) Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol Genet Genomics 273:197–206

    PubMed  CAS  Google Scholar 

  140. Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metal sensors and metallochaperones. Acc Chem Res 38:775–783

    PubMed  CAS  Google Scholar 

  141. Traore DA, El Ghazouani A, Ilango S, Dupuy J, Jacquamet L, Ferrer JL, Caux-Thang C, Duarte V, Latour JM (2006) Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61:1211–1219

    PubMed  CAS  Google Scholar 

  142. Tseng HJ, McEwan AG, Apicella MA, Jennings MP (2003) OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae. Infect Immun 71:550–556

    PubMed  CAS  Google Scholar 

  143. Turner JS, Glands PD, Samson AC, Robinson NJ (1996) Zn2+-sensing by the cyanobacterial metallothionein repressor SmtB: different motifs mediate metal-induced protein-DNA dissociation. Nucleic Acids Res 24:3714–3721

    PubMed  CAS  Google Scholar 

  144. Wennerhold J, Bott M (2006) The DtxR regulon of Corynebacterium glutamicum. J Bacteriol 188:2907–2918

    PubMed  CAS  Google Scholar 

  145. Wennerhold J, Krug A, Bott M (2005) The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508

    PubMed  CAS  Google Scholar 

  146. Wexler M, Todd JD, Kolade O, Bellini D, Hemmings AM, Sawers G, Johnston AW (2003) Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology 149:1357–1365

    PubMed  CAS  Google Scholar 

  147. White A, Ding X, vanderSpek JC, Murphy JR, Ringe D (1998) Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 394:502–506

    PubMed  CAS  Google Scholar 

  148. Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci USA 101:9792–9797

    PubMed  CAS  Google Scholar 

  149. Wisedchaisri G, Holmes RK, Hol WG (2004) Crystal structure of an IdeR-DNA complex reveals a conformational change in activated IdeR for base-specific interactions. J Mol Biol 342:1155–1169

    PubMed  CAS  Google Scholar 

  150. Woodmansee AN, Imlay JA (2002) Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods Enzymol 349:3–9

    PubMed  CAS  Google Scholar 

  151. Wu HJ, Seib KL, Srikhanta YN, Kidd SP, Edwards JL, Maguire TL, Grimmond SM, Apicella MA, McEwan AG, Jennings MP (2006) PerR controls Mn-dependent resistance to oxidative stress in Neisseria gonorrhoeae. Mol Microbiol 60:401–416

    PubMed  CAS  Google Scholar 

  152. Yang J, Ishimori K, O'Brian MR (2005) Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein. J Biol Chem 280:7671–7676

    PubMed  CAS  Google Scholar 

  153. Ye J, Kandegedara A, Martin P, Rosen BP (2005) Crystal structure of the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. J Bacteriol 187:4214–4221

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Helmann .

Editor information

Dietrich H. Nies Simon Silver

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helmann, J.D., Soonsanga, S., Gabriel, S. (2007). Metalloregulators: Arbiters of Metal Sufficiency. In: Nies, D.H., Silver, S. (eds) Molecular Microbiology of Heavy Metals. Microbiology Monographs, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_073

Download citation

Publish with us

Policies and ethics