Skip to main content

Branched-Chain Amino Acids

Part of the Microbiology Monographs book series (MICROMONO,volume 5)

Abstract

The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are synthesized by bacteria, fungi, and plants, but are essential for vertebrates including humans, who must receive them from their diet. The interest to construct overproducing industrial strains therefore stems from the need to supplement the food or feed with these amino acids to use them in medical treatment and as precursors in biochemical synthesis. Regulation of the biosynthesis pathways of branched-chain amino acids has many features, such as homologous reactions catalyzed by a single enzyme, branching of the pathways and multivalent regulation of both gene expression and enzyme activity, which make their analysis both interesting and challenging. The structural similarity of these three amino acids and their precursors causes their alternative binding to the proteins as substrates, inhibitors, activators, and passengers in transporters with different affinities. Studies of threonine deaminase, the first enzyme specific for isoleucine biosynthesis, and of acetohydroxyacid synthase, the first common enzyme in the pathways of BCAA biosynthesis, promoted the discovery of feedback inhibition and may serve as paradigms for this regulatory mechanism. Regulation of the Escherichia coli operons ilvGMEDA and ilvBN provides examples of typical translation-mediated transcriptional termination (attenuation). Mechanisms of regulation by the seemingly similar structures found in ilvBNC operon and leuA gene of the industrial amino acid producer Corynebacterium glutamicum still have to be unveiled. A wide range of different specific and global regulatory mechanisms being gradually uncovered in various microorganisms will contribute to the knowledge of genetic control of BCAA biosynthesis.

Keywords

  • Corynebacterium Glutamicum
  • Threonine Deaminase
  • Leucine Codon
  • Leader Transcript
  • Transcriptional Attenuation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7171_2006_070
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-48596-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison MJ, Baetz AL, Wiegel J (1984) Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol 48:1111–1117

    PubMed  CAS  Google Scholar 

  2. Baccigalupi L, Marasco R, Ricca E, De Felice M, Sacco M (1995) Control of ilvIH transcription during amino acid downshift in stringent and relaxed strains of Escherichia coli. FEMS Microbiol Lett 131:95–98

    PubMed  CAS  Google Scholar 

  3. Barak Z, Chipman DM, Gollop N (1987) Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750–3756

    PubMed  CAS  Google Scholar 

  4. Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hubner G, Barak Z, Chipman DM (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Biochemistry 40:11946–11954

    PubMed  CAS  Google Scholar 

  5. Bendt AK, Burkovski A, Schaffer S, Bott M, Farwick M, Hermann T (2003) Towards a phosphoproteome map of Corynebacterium glutamicum. Proteomics 3:1637–1646

    PubMed  CAS  Google Scholar 

  6. Berg CM, Wang MD, Vartak NB, Liu L (1988) Acquisition of new metabolic capabilities: multicopy suppression by cloned transaminase genes in Escherichia coli K-12. Gene 65:195–202

    PubMed  CAS  Google Scholar 

  7. Brinkman AB, Ettema TJ, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294

    PubMed  CAS  Google Scholar 

  8. Calder PC (2006) Branched-chain amino acids and immunity. J Nutr 136:288S–293S

    Google Scholar 

  9. Carter PW, Bartkus JM, Calvo JM (1986) Transcription attenuation in Salmonella typhimurium: the significance of rare leucine codons in the leu leader. Proc Natl Acad Sci USA 83:8127–8131

    PubMed  CAS  Google Scholar 

  10. Carter PW, Weiss DL, Weith HL, Calvo JM (1985) Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J Bacteriol 162:943–949

    PubMed  CAS  Google Scholar 

  11. Changeux JP (1961) The feedback control mechanisms of biosynthetic l-threonine deaminase by l-isoleucine. Cold Spring Harb Symp. Quant Biol 26:313–318

    CAS  Google Scholar 

  12. Changeux JP (1963) Allosteric interaction on biosynthetic l-threonine deaminase from E. coli K-12. Cold Spring Harbor Symp Quant Biol 28:497–504

    CAS  Google Scholar 

  13. Chen JW, Bennett DC, Umbarger HE (1991) Specificity of attenuation control in the ilvGMEDA operon of Escherichia coli K-12. J Bacteriol 173:2328–2340

    PubMed  CAS  Google Scholar 

  14. Chen S, Iannolo M, Calvo JM (2005) Cooperative binding of the leucine-responsive regulatory protein (Lrp) to DNA. J Mol Biol 345:251–264

    PubMed  CAS  Google Scholar 

  15. Craster HL, Potter CA, Baumberg S (1999) End-product control of expression of branched-chain amino acid biosynthesis genes in Streptomyces coelicolor A3(2): paradoxical relationships between DNA sequence and regulatory phenotype. Microbiology 145:2375–2384

    PubMed  CAS  Google Scholar 

  16. Dailey FE, Cronan JE Jr (1986) Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as the sole carbon source. J Bacteriol 165:453–460

    PubMed  CAS  Google Scholar 

  17. De Rossi E, Leva R, Gusberti L, Manachini PL, Riccardi G (1995) Cloning, sequencing and expression of the ilvBNC gene cluster from Streptomyces avermitilis. Gene 166:127–132

    PubMed  Google Scholar 

  18. Duggleby RG, Pang SS, Yu H, Guddat LW (2003) Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur J Biochem 270:2895–2904

    PubMed  CAS  Google Scholar 

  19. Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of alfa-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 25:346–351

    CAS  Google Scholar 

  20. Eggeling L (2005) Export of amino acids and other solutes. In: Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 187–214

    Google Scholar 

  21. Eggeling L, Morbach S, Sahm H (1997) The fruits of molecular physiology: engineering the l-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J Biotechnol 56:167–182

    CAS  Google Scholar 

  22. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

    PubMed  CAS  Google Scholar 

  23. Eisenstein E (1991) Cloning, expression, purification, and characterization of biosynthetic threonine deaminase from Escherichia coli. J Biol Chem 266:5801–5807

    PubMed  CAS  Google Scholar 

  24. Eisenstein E, Yu HD, Schwarz FP (1994) Cooperative binding of the feedback modifiers isoleucine and valine to biosynthetic threonine deaminase from Escherichia coli. J Biol Chem 269:29423–29429

    PubMed  CAS  Google Scholar 

  25. Elischewski F, Puhler A, Kalinowski J (1999) Pantothenate production in Escherichia coli K12 by enhanced expression of the panE gene encoding ketopantoate reductase. J Biotechnol 75:135–146

    PubMed  CAS  Google Scholar 

  26. Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213

    PubMed  Google Scholar 

  27. Fisher KE, Eisenstein E (1993) An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli. J Bacteriol 175:6605–6613

    PubMed  CAS  Google Scholar 

  28. Flint DH, Tuminello JF, Miller TJ (1996) Studies on the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase in Escherichia coli crude extract. Isolation of O-acetylserine sulfhydrylases A and B and beta-cystathionase based on their ability to mobilize sulfur from cysteine and to participate in Fe-S cluster synthesis. J Biol Chem 271:16053–16067

    PubMed  CAS  Google Scholar 

  29. Freundlich M (1977) Cyclic AMP can replace the relA-dependent requirement for derepression of acetohydroxy acid synthase in E. coli K-12. Cell 12:1121–1126

    PubMed  CAS  Google Scholar 

  30. Friden P, Newman T, Freundlich M (1982) Nucleotide sequence of the ilvB promoter-regulatory region: a biosynthetic operon controlled by attenuation and cyclic AMP. Proc Natl Acad Sci USA 79:6156–6160

    PubMed  CAS  Google Scholar 

  31. Gemmill RM, Wessler SR, Keller EB, Calvo JM (1979) Leu operon of Salmonella typhimurium is controlled by an attenuation mechanism. Proc Natl Acad Sci USA 76:4941–4945

    PubMed  CAS  Google Scholar 

  32. Glanemann C, Loos A, Gorret N, Willis LB, O'Brien XM, Lessard PA, Sinskey AJ (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68

    PubMed  CAS  Google Scholar 

  33. Gollop N, Barak Z, Chipman DM (1987) A method for simultaneous determination of the two possible products of acetohydroxy acid synthase. Anal Biochem 160:323–331

    PubMed  CAS  Google Scholar 

  34. Gollop N, Damri B, Barak Z, Chipman DM (1989) Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Biochemistry 28:6310–6317

    PubMed  CAS  Google Scholar 

  35. Goto M, Miyahara I, Hayashi H, Kagamiyama H, Hirotsu K (2003) Crystal structures of branched-chain amino acid aminotransferase complexed with glutamate and glutarate: true reaction intermediate and double substrate recognition of the enzyme. Biochemistry 42:3725–3733

    PubMed  CAS  Google Scholar 

  36. Grandoni JA, Marta PT, Schloss JV (1998) Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J Antimicrob Chemother 42:475–482

    PubMed  CAS  Google Scholar 

  37. Grandoni JA, Zahler SA, Calvo JM (1992) Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J Bacteriol 174:3212–3219

    PubMed  CAS  Google Scholar 

  38. Guillouet S, Rodal AA, An GH, Gorret N, Lessard PA, Sinskey AJ (2001) Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum. Appl Microbiol Biotechnol 57:667–673

    PubMed  CAS  Google Scholar 

  39. Gusberti L, Cantoni R, De Rossi E, Branzoni M, Riccardi G (1996) Cloning and sequencing of the ilvBNC gene cluster from Mycobacterium avium. Gene 177:83–85

    PubMed  CAS  Google Scholar 

  40. Harms EH, Umbarger HE (1991) The absence of branched-chain amino acid and growth rate control at the internal ilvEp promoter of the ilvGMEDA operon. J Bacteriol 173:6446–6452

    PubMed  CAS  Google Scholar 

  41. Hashiguchi K, Matsui H, Kurahashi O (1999a) Effects of a feedback-resistant aspartokinase III gene on l-isoleucine production in Escherichia coli K-12. Biosci Biotechnol Biochem 63:2023–2024

    PubMed  CAS  Google Scholar 

  42. Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999b) Construction of an l-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 63:672–679

    PubMed  CAS  Google Scholar 

  43. Hauser CA, Hatfield GW (1983) Nucleotide sequence of the ilvB multivalent attenuator region of Escherichia coli K12. Nucleic Acids Res 11:127–139

    PubMed  CAS  Google Scholar 

  44. Hu Y, Kohlhaw GB (1995) Additive activation of yeast LEU4 transcription by multiple cis elements. J Biol Chem 270:5270–5275

    PubMed  CAS  Google Scholar 

  45. Huang F, Coppola G, Calhoun DH (1992) Multiple transcripts encoded by the ilvGMEDA gene cluster of Escherichia coli K-12. J Bacteriol 174:4871–4877

    PubMed  CAS  Google Scholar 

  46. Hung SP, Baldi P, Hatfield GW (2002) Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277:40309–40323

    PubMed  CAS  Google Scholar 

  47. Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM (1996) Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282–16291

    PubMed  CAS  Google Scholar 

  48. Ikeda M, Katsumata M (1995) Tryptophan production by transport. mutants of Corynebacterium glutamicum. Biosci Biotechnol Biochem 59:1600–1602

    CAS  Google Scholar 

  49. Jafri S, Chen S, Calvo JM (2002) ilvIH operon expression in Escherichia coli requires Lrp binding to two distinct regions of DNA. J Bacteriol 184:5293–5300

    PubMed  CAS  Google Scholar 

  50. Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, Barak Z, Chipman DM, Shaanan B (2006) Structure of the regulatory subunit of acetohydroxyacid synthase isozyme III from Escherichia coli. J Mol Biol 357:951–963

    PubMed  CAS  Google Scholar 

  51. Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    PubMed  CAS  Google Scholar 

  52. Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH Jr, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    PubMed  CAS  Google Scholar 

  53. Kisumi M, Komatsubara S, Chibata I (1971) Valine accumulation by alpha-aminobutyric acid-resistant mutants of Serratia marcescens. J Bacteriol 106:493–499

    PubMed  CAS  Google Scholar 

  54. Kohlhaw GB (1988) Isopropylmalate dehydratase from yeast. Methods Enzymol 166:423–429

    PubMed  CAS  Google Scholar 

  55. Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15

    PubMed  CAS  Google Scholar 

  56. Komatsubara S, Kisumi M, Chibata I (1980) Transductional construction of an isoleucine-producing strain of Serratia marcescens. J Gen Microbiol 119:51–61

    PubMed  CAS  Google Scholar 

  57. Kopecký J, Janata J, Pospíšil S, Felsberg J, Spížek J (1999) Mutations in two distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochem Biophys Res Commun 266:162–166

    PubMed  Google Scholar 

  58. Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H (2003) Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl Environ Microbiol 69:2521–2532

    PubMed  CAS  Google Scholar 

  59. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    PubMed  CAS  Google Scholar 

  60. Lawther RP, Calhoun DH, Adams CW, Hauser CA, Gray J, Hatfield GW (1981) Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci USA 78:922–925

    PubMed  CAS  Google Scholar 

  61. Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW (1987) The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res 15:2137–2155

    PubMed  CAS  Google Scholar 

  62. Leary TR, Kohlhaw G (1970) Dissociation of alpha-isopropylmalate synthase from Salmonella typhimurium by its feedback inhibitor leucine. Biochem Biophys Res Commun 39:494–501

    PubMed  CAS  Google Scholar 

  63. Lee CR, Koo BM, Cho SH, Kim YJ, Yoon MJ, Peterkofsky A, Seok YJ (2005) Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol 58:334–344

    PubMed  CAS  Google Scholar 

  64. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104:241–252

    PubMed  CAS  Google Scholar 

  65. Liu H, Allee GL, Berkemeyer JJ, Touchette KJ, Spencer JD, Kim IB (1999) Effect of reducing protein level and adding amino acids on growth performance and carcass characteristics of finishing pigs. J Anim Sci 77(Suppl 1):69

    Google Scholar 

  66. Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    PubMed  CAS  Google Scholar 

  67. Marta PT, Ladner RD, Grandoni JA (1996) A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon. J Bacteriol 178:2150–2153

    PubMed  CAS  Google Scholar 

  68. Mavromichalis I, Webel DM, Emmert JL, Moser RL, Baker DH (1998) Limiting order of amino acids in a low-protein corn-soybean meal-based diet for nursery pigs. J Anim Sci 76:2833–2837

    PubMed  CAS  Google Scholar 

  69. McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210

    PubMed  CAS  Google Scholar 

  70. McCourt JA, Pang SS, Guddat LW, Duggleby RG (2005) Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase. Biochemistry 44:2330–2338

    PubMed  CAS  Google Scholar 

  71. Mendel S, Elkayam T, Sella C, Vinogradov V, Vyazmensky M, Chipman DM, Barak Z (2001) Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J Mol Biol 307:465–477

    PubMed  CAS  Google Scholar 

  72. Mendel S, Vinogradov M, Vyazmensky M, Chipman DM, Barak Z (2003) The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase III from Escherichia coli. J Mol Biol 325:275–284

    PubMed  CAS  Google Scholar 

  73. Merkamm M, Chassagnole C, Lindley ND, Guyonvarch A (2003) Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum. J Biotechnol 104:253–260

    PubMed  CAS  Google Scholar 

  74. McHardy AC, Tauch A, Ruckert C, Puhler A, Kalinowski J (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240

    PubMed  CAS  Google Scholar 

  75. Möckel B, Eggeling L, Sahm H (1992) Functional and structural analyses of threonine dehydratase from Corynebacterium glutamicum. J Bacteriol 174:8065–8072

    PubMed  Google Scholar 

  76. Möckel B, Eggeling L, Sahm H (1994) Threonine dehydratases of Corynebacterium glutamicum with altered allosteric control: their generation and biochemical and structural analysis. Mol Microbiol 13:833–842

    PubMed  Google Scholar 

  77. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507

    PubMed  CAS  Google Scholar 

  78. Morbach S, Sahm H, Eggeling L (1996) l-isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62:4345–4351

    PubMed  CAS  Google Scholar 

  79. Muller YA, Schulz GE (1993) Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Science 259:965–967

    PubMed  CAS  Google Scholar 

  80. Okamoto K, Kino K, Ikeda M (1997) Hyperproduction of l-threonine by an Escherichia coli mutant with impaired l-threonine uptake. Biosci Biotechnol Biochem 61:1877–1882

    PubMed  CAS  Google Scholar 

  81. Pang SS, Duggleby RG, Guddat LW (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J Mol Biol 317:249–262

    PubMed  CAS  Google Scholar 

  82. Parsons SJ, Burns RO (1969) Purification and properties of beta-isopropylmalate dehydrogenase. J Biol Chem 244:996–1003

    PubMed  CAS  Google Scholar 

  83. Pátek M, Hochmannová J, Jelínková M, Nešvera J, Eggeling L (1998) Analysis of the leuB gene from Corynebacterium glutamicum. Appl Microbiol Biotechnol 50:42–47

    PubMed  Google Scholar 

  84. Pátek M, Krumbach K, Eggeling L, Sahm H (1994) Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis. Appl Environ Microbiol 60:133–140

    PubMed  Google Scholar 

  85. Pereira RF, Ortuno MJ, Lawther RP (1988) Binding of integration host factor (IHF) to the ilvGp1 promoter of the ilvGMEDA operon of Escherichia coli K12. Nucleic Acids Res 16:5973–5989

    PubMed  CAS  Google Scholar 

  86. Platko JV, Willins DA, Calvo JM (1990) The ilvIH operon of Escherichia coli is positively regulated. J Bacteriol 172:4563–4570

    PubMed  CAS  Google Scholar 

  87. Porat I, Vinogradov M, Vyazmensky M, Lu CD, Chipman DM, Abdelal AT, Barak Z (2004) Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. J Bacteriol 186:570–574

    PubMed  CAS  Google Scholar 

  88. Powell JT, Morrison JF (1978) Role of the Escherichia coli aromatic amino acid aminotransferase in leucine biosynthesis. J Bacteriol 136:1–4

    PubMed  CAS  Google Scholar 

  89. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    PubMed  CAS  Google Scholar 

  90. Reinscheid DJ, Kronemeyer W, Eggeling L, Eikmanns BJ, Sahm H (1994) Stable expression of hom-1-thrB in Corynebacterium glutamicum and its effect on the carbon flux to threonine and related amino acids. Appl Environ Microbiol 60:126–132

    PubMed  CAS  Google Scholar 

  91. Rennie MJ, Bohe J, Smith K, Wackerhage H, Greenhaff P (2006) Branched-chain amino acids as fuels and anabolic signals in human muscle. J Nutr 136:264S-268S

    Google Scholar 

  92. Rennie MJ, Tipton KD (2000) Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr 20:457–483

    PubMed  CAS  Google Scholar 

  93. Rhee KY, Parekh BS, Hatfield GW (1996) Leucine-responsive regulatory protein-DNA interactions in the leader region of the ilvGMEDA operon of Escherichia coli. J Biol Chem 271:26499–26507

    PubMed  CAS  Google Scholar 

  94. Ricca E, Aker DA, Calvo JM (1989) A protein that binds to the regulatory region of the Escherichia coli ilvIH operon. J Bacteriol 171:1658–1664

    PubMed  CAS  Google Scholar 

  95. Sahm H, Eggeling L (1999) d-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl Environ Microbiol 65:1973–1979

    PubMed  CAS  Google Scholar 

  96. Sahm H, Eggeling L, Morbach S, Eikmanns B (1999) Construction of l-isoleucine overproducing strains of Corynebacterium glutamicum. Naturwissenschaften 86:33–38

    CAS  Google Scholar 

  97. Seliverstov AV, Putzer H, Gelfand MS, Lyubetsky VA (2005) Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol 5:54–67

    PubMed  Google Scholar 

  98. Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K (2006) Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr 136:529S-532S

    Google Scholar 

  99. Sutton A, Freundlich M (1980) Regulation of cyclic AMP of the ilvB-encoded biosynthetic acetohydroxy acid synthase in Escherichia coli K-12. Mol Gen Genet 178:179–183

    PubMed  CAS  Google Scholar 

  100. Tedin K, Norel F (2001) Comparison of ΔrelA strains of Escherichia coli and Salmonella enterica serovar Typhimurium suggests a role for ppGpp in attenuation regulation of branched-chain amino acid biosynthesis. J Bacteriol 183:6184–6196

    PubMed  CAS  Google Scholar 

  101. Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y (2005) Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol Microbiol 56:1560–1573

    PubMed  CAS  Google Scholar 

  102. Tojo S, Satomura T, Morisaki K, Yoshida K, Hirooka K, Fujita Y (2004) Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J Bacteriol 186:7971–7979

    PubMed  CAS  Google Scholar 

  103. Tsuchida T, Momose H (1975) Genetic changes of regulatory mechanisms occurred in leucine and valine producing mutants derived from Brevibacterium lactofermentum. Agric Biol Chem 39:2193–2198

    CAS  Google Scholar 

  104. Tsuchida T, Momose H (1986) Improvement of an l-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to alfa-acetohydroxy acid synthase. Appl Environ Microbiol 51:1024–1027

    PubMed  CAS  Google Scholar 

  105. Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC, Ingraham JL, Low BL, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cell Mol Biol. ASM Press, Washington, DC, pp 442–457

    Google Scholar 

  106. Vartak NB, Liu L, Wang BM, Berg CM (1991) A functional leuABCD operon is required for leucine synthesis by the tyrosine-repressible transaminase in Escherichia coli K-12. J Bacteriol 173:3864–3871

    PubMed  CAS  Google Scholar 

  107. Vertes AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71:7633–7642

    PubMed  CAS  Google Scholar 

  108. Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM (2006) Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta 1760:356–363

    PubMed  CAS  Google Scholar 

  109. Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA (2004a) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234:357–370

    PubMed  CAS  Google Scholar 

  110. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2004b) Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet 20:44–50

    PubMed  CAS  Google Scholar 

  111. Vyazmensky M, Elkayam T, Chipman DM, Barak Z (2000) Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of holoenzyme. Meth Enzymol 324:95–103

    PubMed  CAS  Google Scholar 

  112. Vyazmensky M, Sella C, Barak Z, Chipman DM (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339–10346

    PubMed  CAS  Google Scholar 

  113. Wang JG, Li ZM, Ma N, Wang BL, Jiang L, Pang SS, Lee YT, Guddat LW, Duggleby RG (2005) Structure-activity relationships for a new family of sulfonylurea herbicides. J Comput Aided Mol Des 19:801–820

    PubMed  CAS  Google Scholar 

  114. Wang Q, Calvo JM (1993) Lrp, a global regulatory protein of Escherichia coli, binds co-operatively to multiple sites and activates transcription of ilvIH. J Mol Biol 229:306–318

    PubMed  CAS  Google Scholar 

  115. Ward JB Jr, Zahler SA (1973) Regulation of leucine biosynthesis in Bacillus subtilis. J Bacteriol 116:727–735

    PubMed  CAS  Google Scholar 

  116. Weaver LM, Mitsky TA, Rapp WD, Gruys KJ, Liang J, Vaduva G (2005) Plants with increased levels of one or more amino acids, US Patent application 20050289668

    Google Scholar 

  117. Weinstock O, Sella C, Chipman DM, Barak Z (1992) Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol 174:5560–5566

    PubMed  CAS  Google Scholar 

  118. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    PubMed  CAS  Google Scholar 

  119. Wessler SR, Calvo JM (1981) Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism. J Mol Biol 149:579–597

    PubMed  CAS  Google Scholar 

  120. Wichmann R, Wandrey C, Große-Wiesmann J (1990) Continuous microbial production of l-leucine with cell retention. Appl Microbiol Biotechnol 32:373–379

    CAS  Google Scholar 

  121. Willins DA, Ryan CW, Platko JV, Calvo JM (1991) Characterization of Lrp, and Escherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem 266:10768–10774

    PubMed  CAS  Google Scholar 

  122. Zahler SA, Najimudin N, Kessler DS, Vaneyar MA (1990) α-Acetolactate synthesis by Bacillus subtilis. In: Barak Z, Chipman DM, Schloss JV (ed) Biosynthesis of branched chain amino acids. Wiley-VCH, Weinheim, pp 25–32

    Google Scholar 

  123. Zohar Y, Einav M, Chipman DM, Barak Z (2003) Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Biochim Biophys Acta 1649:97–105

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pátek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pátek, M. (2007). Branched-Chain Amino Acids. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_070

Download citation