Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

The biosynthesis of glycine and l-serine is closely connected, and both amino acids are produced in industry. However, whereas glycine is made chemically, l-serine production relies largely on microbial processes. These include conversions of added glycine by C-1 utilizing microorganisms. But such precursor conversions usually suffer from low yields, as did previous attempts to produce l-serine from glucose. As more recent molecular and physiological studies have shown, microorganisms like Corynebacterium glutamicum have a high l-serine degradation capacity corresponding to an apparent key position of this amino acid in metabolism. Considering this key position, deletion of a serine dehydratase gene and prevention of folate synthesis to reduce serine hydroxymethyltransferase activity together with increased biosynthesis resulted in l-serine producers of C. glutamicum with excellent production characteristics and maximal specific productivities of 1.45 mmol g−1 h−1 accumulating more than 50 g l−1 l-serine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida K, Chibata I, Nakayama K, Takinami K, Yamada H (eds) (1986) Biotechnology of amino acid production. Kodansha Ltd, Tokyo. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  2. Araki K, Nakayama K (1971) Studies on histidine fermentation. 1. Histidine production by histidine analog-resistant mutants from several bacteria. Agric Biol Chem 5:2081–2084

    Google Scholar 

  3. Behrendt U, Bang W-G, Wagner F (1984) The production of l-serine with a methylotrophic microorganism using the l-serine pathway and coupling with an l-tryptophan-producing process. Biotech Bioeng 26:308–314

    Article  CAS  Google Scholar 

  4. Cetin I, Fennessey PV, Quick AN Jr, Marconi AM, Meschia G, Battaglia FC Sparks JW (1991) Glycine turnover and oxidation and hepatic serine synthesis from glycine in fetal lambs. Am J Physiol Endocrinol Metab 260:E371–E378

    CAS  Google Scholar 

  5. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  6. Collet JF, Stroobant V, Van Schaftingen E (1999) Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases. J Biol Chem 274:33985–33990

    Article  PubMed  CAS  Google Scholar 

  7. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Taylor Francis Group, Boca Raton, FL

    Google Scholar 

  8. Eggeling L, Pfefferle W, Sahm H (2006) Amino acids. In: Radledge C, Kristiansen B (eds) Basic biotechnology, 3rd edn. Cambridge University Press, Cambridge, pp 335–358

    Google Scholar 

  9. Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY et al., Papoutsakis (eds) Metababolic Engineering. Marcel Dekker Inc., New York, Basel, pp 153–176

    Google Scholar 

  10. Ema M, Kakimoto T, Chibata I (1979) Production of l-serine by Sarcina albida. Appl Environ Microbiol 37:1053–1058

    PubMed  CAS  Google Scholar 

  11. Enei H, Yokozeki K, Akashi K (1989) Recent progress in microbial production of amino acids. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  12. Furuyoshi S, Kawabata N, Nagata S, Tanaka H, Soda K (1989) Enzymatic synthesis of l-serine from d-glycerate. Agr Biol Chem 53:3075–3076

    Google Scholar 

  13. Hagishita T, Yoshida T, Isumi Y, Mitsunaga T (1996) Efficient l-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci Biotech Biochem 60:1604–1607

    Article  CAS  Google Scholar 

  14. Hamilton BK, Hsiao H (1985) Manufacture of l-amino acids with bioreactors. Trends Biotechnol 3:64–69

    Article  CAS  Google Scholar 

  15. Hayashi M, Mizoguchi H, Ohnishi J, Mitsuhashi S, Yonetani Y, Hashimoto S, Ikeda M (2006) A leuC mutation leading to increased l-lysine production and rel-independent global expression changes in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:783–789

    Article  PubMed  CAS  Google Scholar 

  16. Hsiao H, Wei T (1985) Enzymatic production of l-serine with a feedback control system for formaldehyde addition. Biotechnol Bioeng 28:1510–1518

    Article  Google Scholar 

  17. Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    Article  PubMed  CAS  Google Scholar 

  18. Izumi Y, Takizawa M, Tani Y, Yamada H (1982) l-Serine production by resting cells of a methanol-utilizing bacterium. J Ferment Technol 60:269–276

    CAS  Google Scholar 

  19. Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) l-Serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39:427–432

    Article  PubMed  CAS  Google Scholar 

  20. Kase H, Nakayama K (1974) l-Serine production by mutants of Corynebacterium glutamicum and Athrobacter paraffineus. Nippon-Nogeikagaku-Kaishi 48:209–213

    CAS  Google Scholar 

  21. Keune H, Sahm H, Wagner F (1976) Production of l-serine by the methanol utilizing bacterium Pseudomonas 3ab. Eur J Appl Microbiol 2:175–184

    Article  CAS  Google Scholar 

  22. Kubota K (1985) Improved production of l-serine by mutants of Corynebacterium glycinophylum with less serine dehydratase activity. Agr Biol Chem 49:7–12

    CAS  Google Scholar 

  23. Kubota K, Kageyama K, Maeyashiki I, Yamada K, Okumura S (1972) Fermentative production of l-serine. Production of l-serine from glycine by Corynebacterium glycinophilum Nov. SP. J Gen Appl Microbiol 18:365–375

    Article  CAS  Google Scholar 

  24. Kubota K, Kageyama T, Shiro S, Okumura S (1971) Fermentative production of l-serine. J Gen Appl Microbiol 17:167–168

    Article  CAS  Google Scholar 

  25. Kubota K, Yokozeki K (1979) Production of l-serine from glycine by Corynebacterium glycinophylum and properties os serine hydroxymethyltransferase, a key enzyme in l-serine production. J Ferment Bioeng 67:387–390

    Article  Google Scholar 

  26. Kubota K, Yokozeki K, Ozaki H (1989) Effects of l-serine dehydratase activity on l-serine production by Corynebacterium glycinophilum and an examination of the properties of the enzyme. J Ferment Bioeng 67:391–394

    Article  CAS  Google Scholar 

  27. Kumagai H (2000) Microbial production of amino acids in Japan. In: Scheper T (ed) Adv in Biochem Eng, Vol. 69. Springer, Berlin, Heidelberg, New York, pp 71–85

    Google Scholar 

  28. Laukel M, Rossignol M, Borderies G, Volker U, Vorholt JA (2004) Comparison of the proteome of Methylobacterium extorquens AM1 grown under methylotrophic and nonmethylotrophic conditions. Proteomics 4:1247–1264

    Article  PubMed  CAS  Google Scholar 

  29. Marx A, deGraaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  CAS  PubMed  Google Scholar 

  30. Morinaga Y, Yamanaka S, Takinami K (1981a) l-Serine production by methanol-utilizing bacterium Pseudomonas MS31. Agr Biol Chem 45:1419–1424

    CAS  Google Scholar 

  31. Morinaga Y, Yamanaka S, Takinami K (1981b) l-Serine production by temperature-sensitive mutants of methanol-utilizing bacterium Pseudomonas MS31. Agr Biol Chem 45:1425–1430

    CAS  Google Scholar 

  32. Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microbiol 70:7148–7155

    Article  PubMed  CAS  Google Scholar 

  33. Omori K, Kakimoto T, Chibata I (1983) l-serine production by a mutant of Sarcina albida defective in l-serine degradation. Appl Environ Microbiol 45:1722–1726

    PubMed  CAS  Google Scholar 

  34. Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60:437–441

    Article  PubMed  CAS  Google Scholar 

  35. Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144

    Article  PubMed  CAS  Google Scholar 

  36. Pizer LI, Potochny ML (1964) Nutritional and regulatory aspects of serine metabolism in Escherichia coli. J Bacteriol 88:611–619

    PubMed  CAS  Google Scholar 

  37. Prüß BM, Nelms JM Park C, Wolfe AJ (1994) Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176:2143–2150

    PubMed  Google Scholar 

  38. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    Article  PubMed  CAS  Google Scholar 

  39. Schirch LV, Tatum CM Jr, Benkovic SJ (1977) Serine transhydroxymethylase: evidence for a sequential random mechanism. Biochemistry 16:410–419

    Article  PubMed  CAS  Google Scholar 

  40. Simic P, Willuhn J, Sahm H, Eggeling L (2002) Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase l-threonine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:3321–3327

    Article  PubMed  CAS  Google Scholar 

  41. Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L (2006) Reduced folate supply as a key to enhanced l-serine production with Corynebacterium glutamicum. Appl Environ Microbiol, DOI: 10.1128/AEM.02208-06

    Google Scholar 

  42. Suga M, Sugimoto M, Osumi T, Nakamatsu T, Hibino W, Ito M (1999) Method for producing l-serine by fermentation. EP 0 943 687 A2

    Google Scholar 

  43. Tanaka T, Yamamoto K, Towpprayoon S, Nakajima H, Sonomoto K, Yokozeki K, Kubota K, Tanaka A (1989) Continuous production of l-serine by immobilized growing Corynebacterium glycinophilum cells. Appl Microbiol Biotech 30:564–568

    Article  CAS  Google Scholar 

  44. Tani Y, Kanagawa T, Hanpongkittikun A, Ogata K, Yamada H (1978) Production of l-serine by a methanol-utilizing bacterium Arthrobacter globiformis SK-200. Agr Biol Chem 42:2275–2279

    CAS  Google Scholar 

  45. Wacker F (1991) Materials and methods for biosynthesis of serine and serine-related products. PCT WO 93/12235

    Google Scholar 

  46. Watanabe M, Morinaga Y, Enei H (1987) l-Serine production by a methionine-auxotrophic mutant of methylotrophic Pseudomonas. J Ferment Technol 65:617–620

    Article  CAS  Google Scholar 

  47. Yamada H, Miyazaki SS, Izumi Y (1986) l-Serine production by a glycine-resistant mutant of methylotrophic Hyphomicrobium methylovorum. Agr Biol Chem 50:17–21

    CAS  Google Scholar 

  48. Yamada K, Kinoshita S, Tsunoda T, Aida K (eds) (1972) The microbial production of amino acid. Kodansha Ltd, Tokyo. John Wiley & Sons, New York, London, Sidney, Toronto

    Google Scholar 

  49. Yoshida H, Nakayama K (1974) Production of l-serine by l-serine analog-resistent mutants from various bacteria and the effect of l-threonine and l-homoserine on the production of l-serine. Nippon-Nogeikagaku-Kaishi 48:201–208

    CAS  Google Scholar 

  50. Yoshida T, Mitsunaga T, Izumi Y (1993) l-serine production using a resting cell system of Hyphomycobium strains. J Ferment Technol 75:405–408

    CAS  Google Scholar 

  51. Zimmermann HF (2001) Online-Messung der Sauerstoff-Transferrate in geschüttelten Bioreaktoren zur Beschreibung der Stoffwechselaktivitäten von Corynebacterium glutamicum. Diplomarbeit, Universität Stuttgart, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Eggeling .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eggeling, L. (2007). l-Serine and Glycine. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_068

Download citation

Publish with us

Policies and ethics