Skip to main content

Predation on Bacteria and Bacterial Resistance Mechanisms: Comparative Aspects Among Different Predator Groups in Aquatic Systems

  • Chapter
  • First Online:
Predatory Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 4))

Abstract

Predation on bacteria is now considered as an essential component of aquatic and terrestrial food webs, with important implications for many ecosystem processes. Studies in recent years have also focused on the mechanisms of predation and its implications for the structure of bacterial communities. This chapter gives an overview on predation on free-living bacteria by the major predator groups encountered in aquatic systems: bacteriophages, predatory prokaryotes, protists and metazoans. Quantitative as well as qualitative predation impacts on bacterial communities by the different predators, as derived from field studies and laboratory experiments, are summarized. The different predator types encompass several orders of magnitude in size and differ with respect to foraging strategy, consumption rates and selectivity. Bacteria have evolved various strategies to reduce predatory mortality. These have been studied most extensively with respect to protist predation and encompass behavioural, morphological and physiological adaptations, which act at different stages of the predator–prey interactions between bacteria and bacterivores. Field studies and food web manipulation experiments in pelagic systems have also demonstrated the relevance of predation for the taxonomic and morphological composition of natural bacterial assemblages. Compared to bacterivorous protists, much less is known about the predation impact of the smallest, parasitoid-like predators such as bacteriophages and prokaryotic predators (e.g. Bdellovibrio) and the resulting anti-predator strategies of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann H, DuBow M (1987) Viruses of prokaryotes: general properties of bacteriophages. CRC, Boca Raton, FL

    Google Scholar 

  2. Allison GE, Klaenhammer TR (1998) Phage resistance mechanisms in lactic acid bacteria. Int Dairy J 8:207–226

    Google Scholar 

  3. Arndt H (1993) Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiologia 255/256:231–246

    Google Scholar 

  4. Arndt H, Dietrich D, Auer B, Cleven E-J, Grafenhan T, Weitere M, Mylinkov A (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater B, Green J (eds) The flagellates. Taylor and Francis, London, pp 240–243

    Google Scholar 

  5. Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  6. Bak R, Joenje M, de Jong I, Lambrechts D, Nieuwland G (1998) Bacterial suspension feeding by coral reef benthic organisms. Mar Ecol Prog Ser 175:285–288

    Google Scholar 

  7. Beardsley C, Pernthaler J, Wosniok W, Amann R (2003) Are readily culturable bacteria in coastal North Sea waters suppressed by selective grazing mortality? Appl Environ Microbiol 69:2624–2630

    CAS  PubMed  Google Scholar 

  8. Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    CAS  PubMed  Google Scholar 

  9. Bettarel Y, Sime-Ngando T, Amblard C, Dolan J (2004) Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol 70:2941–2951

    CAS  PubMed  Google Scholar 

  10. Bianchi M (1989) Unusual bloom of a star-like prosthecate bacteria and filaments as a consequence of grazing pressure. Microb Ecol 17:137–142

    Google Scholar 

  11. Boenigk J, Arndt H (2000) Comparative studies on the feeding behavior of two heterotrophic nanoflagellates: The filter-feeding choanoflagellate Monosiga ovata and the raptorial-feeding kinetoplastid Rhynchomonas nasuta. Aquat Microb Ecol 22:243–249

    Google Scholar 

  12. Boenigk J, Arndt H (2002) Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81:465–480

    PubMed  Google Scholar 

  13. Boenigk J, Matz C, Jürgens K, Arndt H (2001) The influence of preculture conditions and food quality on the ingestion and digestion process of three species of heterotrophic nanoflagellates. Microb Ecol 42:168–176

    PubMed  Google Scholar 

  14. Bohannan BJM, Kerr B, Jessup CM, Hughes JB, Sandvik G (2002) Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek 81:107–115

    CAS  PubMed  Google Scholar 

  15. Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315

    Google Scholar 

  16. Booth IR (2002) Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    PubMed  Google Scholar 

  17. Boraas M, Seale D, Boxhorn J (1998) Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol 12:153–164

    Google Scholar 

  18. Brendelberger H (1991) Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol Oceanogr 36:884–894

    Google Scholar 

  19. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proceed R Soc Lond B Biol Sci 269:931–936

    Google Scholar 

  20. Caron DA (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb Ecol 13:203

    Google Scholar 

  21. Caron DA, Goldman JC, Dennett MR (1988) Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159:27–40

    Google Scholar 

  22. Chrzanowski TH, Šimek K (1990) Prey-size selection by freshwater flagellated protozoa. Limnol Oceanogr 35:1429–1436

    Article  Google Scholar 

  23. Corno G, Jürgens K (2006) Direct and indirect effects of protist predation on the population size structure of a bacterial strain with high phenotypic plasticity. Appl Environ Microbiol 72:78–86

    CAS  PubMed  Google Scholar 

  24. Cotner JB, Gardner WS, Johnson JR, Sada RH, Cavaletto JF, Heath RT (1995) Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton – evidence for both size-selective consumption and growth stimulation. J Great Lakes Res 21:517–528

    Google Scholar 

  25. Davidov Y, Friedjung A, Jurkevitch E (2006) High diversity of Bdellovibrio-and-like organisms (BALOs) in soil revealed by culture-dependent and culture-independent methods. Environ Microbiol 8:1667–1673

    PubMed  CAS  Google Scholar 

  26. Deibel D, Lee SH (1992) Retention efficiency of submicrometer particles by the pharyngeal filter of the pelagic tunicate Oikopleura vanhoeffeni. Mar Ecol Prog Ser 81:25–30

    Google Scholar 

  27. Dietrich D, Arndt H (2000) Biomass partitioning of benthic microbes in a Baltic inlet: relationships between bacteria, algae, heterotrophic flagellates and ciliates. Mar Biol 136:309–322

    Google Scholar 

  28. Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    PubMed  Google Scholar 

  29. Eccleston-Parry JD, Leadbeater BSC (1994) A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar Ecol Prog Ser 105:167–177

    Google Scholar 

  30. Ekelund F, Ronn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15:321–353

    CAS  PubMed  Google Scholar 

  31. Esteve I, Guerrero R, Montesinos E, Abella C (1983) Electron microscopy study of the interaction of epibiontic bacteria with Chromatium minus in natural habitats. Microb Ecol 9:57–64

    Google Scholar 

  32. Fenchel T (1980) Suspension feeding in ciliated protozoa: Feeding rates and their ecological significance. Microb Ecol 6:13–25

    Google Scholar 

  33. Fenchel T (1982a) Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223

    Google Scholar 

  34. Fenchel T (1982b) Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–41

    Google Scholar 

  35. Fenchel T (1984) Suspended marine bacteria as a food source. In: Fasham MJ (ed) Flows of energy and materials in marine ecosystems. Plenum, New York, London, pp 301–315

    Google Scholar 

  36. Fenchel T (1986a) The ecology of heterotrophic microflagellates. Adv Microb Ecol 9:57–97

    Google Scholar 

  37. Fenchel T (1986b) Protozoan filter feeding. Progr Protistol 1:65–113

    Google Scholar 

  38. Fenchel T (2001) Eppur si muove: many water column bacteria are motile. Aquat Microb Ecol 24:197–201

    Google Scholar 

  39. Fenchel T, Blackburn N (1999) Motile chemosensory behaviour of phagotrophic protists: Mechanisms for and efficiency in congregating at food patches. Protist 150:325–336

    Article  CAS  PubMed  Google Scholar 

  40. Fenchel T, Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, pp 285–299

    Google Scholar 

  41. Fischer UR, Velimirov B (2002) High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol 27:1–12

    Google Scholar 

  42. Fry JC, Staples DG (1974) Occurrence and rOLE of Bdellovibrio bacteriovorus in a polluted river. Water Res 8:1029–1035

    Google Scholar 

  43. Fry JC, Staples DG (1976) Distribution of Bdellovibrio bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol 31:469–474

    CAS  PubMed  Google Scholar 

  44. Fuhrman J (2000) Impact of viruses on bacterial processes. In: Kirchman D (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 327–350

    Google Scholar 

  45. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    CAS  PubMed  Google Scholar 

  46. Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242

    Article  Google Scholar 

  47. Gasol JM (1994) A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113:291–300

    Google Scholar 

  48. Gasol JM, Vaqué D (1993) Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems? Limnol Oceanogr 38:657–665

    Google Scholar 

  49. González JM, Sherr EB, Sherr BF (1990) Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–589

    PubMed  Google Scholar 

  50. Gray KM, Ruby EG (1991) Intercellular signalling in the Bdellovibrio developmental cycle. In: Dworkin M (ed) Microbial cell–cell interactions. American Society for Microbiology, Washington DC, pp 333–366

    Google Scholar 

  51. Grossart HP, Riemann L, Azam F (2001) Bacterial motility in the sea and its ecological implications. Aquat Microb Ecol 25:247–258

    Google Scholar 

  52. Güde H (1989) The role of grazing on bacteria in plankton succession. In: Sommer U (ed) Plankton ecology. Succession in plankton communities. Springer, Berlin Heidelberg New York, pp 337–364

    Google Scholar 

  53. Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D, Margulis L (1986) Predatory prokaryotes predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142

    CAS  PubMed  Google Scholar 

  54. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Google Scholar 

  55. Hahn MW, Höfle MG (1999) Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl Environ Microbiol 65:4863–4872

    CAS  PubMed  Google Scholar 

  56. Hahn MW, Moore ERB, Höfle MG (1999) Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate controlled in bacteria of different phyla. Appl Environ Microbiol 65:25–35

    CAS  PubMed  Google Scholar 

  57. Hahn MW, Moore ERB, Höfle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb Ecol 39:175–185

    PubMed  Google Scholar 

  58. Harcombe WR, Bull JJ (2005) Impact of phages on two-species bacterial communities. Appl Environ Microbiol 71:5254–5259

    CAS  PubMed  Google Scholar 

  59. Hirsch P (1974) Budding bacteria. Annu Rev Microbiol 28:391–444

    CAS  PubMed  Google Scholar 

  60. Höfle MG, Haas H, Dominik K (1999) Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis. Appl Environ Microbiol 65:3164–3174

    PubMed  Google Scholar 

  61. Johansen JE, Pinhassi J, Blackburn N, Zweifel UL, Hagström Å (2002) Variability in motility characteristics among marine bacteria. Aquat Microb Ecol 28:229–237

    Google Scholar 

  62. Jürgens K (1994) Impact of Daphnia on planktonic microbial food webs – A review. Mar Microb Food Webs 8:295–324

    Google Scholar 

  63. Jürgens K, Arndt H, Rothhaupt KO (1994) Zooplankton-mediated changes of bacterial community structure. Microb Ecol 27:27–42

    Google Scholar 

  64. Jürgens K, Arndt H, Zimmermann H (1997) Impact of metazoan and protozoan grazers on bacterial biomass distribution in microcosm experiments. Aquat Microb Ecol 12:131–138

    Google Scholar 

  65. Jürgens K, De Mott WR (1995) Behavioral flexibility in prey selection by bacterivorous nanoflagellates. Limnol Oceanogr 40:1503–1507

    Google Scholar 

  66. Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112:169–188

    Google Scholar 

  67. Jürgens K, Matz C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81:413–434

    PubMed  Google Scholar 

  68. Jürgens K, Pernthaler J, Schalla S, Amann R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65:1241–1250

    PubMed  Google Scholar 

  69. Jürgens K, Sala MM (2000) Predation-mediated shifts in size distribution of microbial biomass and activity during detritus decomposition. Oikos 91:29–40

    Google Scholar 

  70. Jürgens K, Stolpe G (1995) Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwater Biol 33:27–38

    Google Scholar 

  71. Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371

    CAS  PubMed  Google Scholar 

  72. Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71:4044–4051

    CAS  PubMed  Google Scholar 

  73. Kelley JI, Turng BF, Williams HN, Baer ML (1997) Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl Environ Microbiol 63:84–90

    CAS  PubMed  Google Scholar 

  74. Kerfoot WC, Sih A (1987) Predation. Direct and indirect impacts on aquatic communities. University Press of New England, Hanover, New Hampshire

    Google Scholar 

  75. Koval SF, Bayer ME (1997) Bacterial capsules: No barrier against Bdellovibrio. Microbiology-Uk 143:749–753

    Article  CAS  Google Scholar 

  76. Koval SF, Hynes SH (1991) The effect of paracrystalline protein surface layers on predation by Bdellovibrio bacterivorus. J Bacteriol 173:2244–2249

    CAS  PubMed  Google Scholar 

  77. Lambert C, Smith MC, Sockett RE (2003) A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5:127–132

    CAS  PubMed  Google Scholar 

  78. Landry MR (1994) Methods and controls for measuring the grazing impact of planktonic protists. Mar Microb Food Webs 8:37–57

    Google Scholar 

  79. Langenheder S, Jürgens K (2001) Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol Oceanogr 46:121–134

    Article  Google Scholar 

  80. Lenski R (1988) Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol 10:1–44

    CAS  Google Scholar 

  81. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Google Scholar 

  82. López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    PubMed  Google Scholar 

  83. Lu J, Chen F, Hodson RE (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 67:3285–3290

    CAS  PubMed  Google Scholar 

  84. Margulis L (1996) Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc Natl Acad Sci USA 93:1071–1076

    CAS  PubMed  Google Scholar 

  85. Markelova NY, Colwell RR (1999) Two-component bacterial predator–prey system immobilized on the surface of a transparent plastic substrate is a promising model for investigation of the role of bacterial predators in ecosystems. Microbiol 68:328–331

    CAS  Google Scholar 

  86. Markelova NY, Kerzhentsev AS (1998) Isolation of a new strain of the genus Bdellovibrio from plant rhizosphere and its lytic spectrum. Microbiol 67:696–699

    CAS  Google Scholar 

  87. Martin MO (2002) Predatory prokaryotes: An emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477

    CAS  PubMed  Google Scholar 

  88. Massana R et al. (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    CAS  PubMed  Google Scholar 

  89. Massana R, Guillou L, Díez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    CAS  PubMed  Google Scholar 

  90. Massana R, Jürgens K (2003) Composition and population dynamics of planktonic bacteria and bacterivorous flagellates in seawater chemostat cultures. Aquat Microb Ecol 32:11–22

    Google Scholar 

  91. Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004a) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226

    PubMed  Google Scholar 

  92. Matz C, Boenigk J, Arndt H, Jürgens K (2002a) Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat Microb Ecol 27:137–148

    Google Scholar 

  93. Matz C et al. (2004b) Impact of violacein-producing bacteria on survival and feeding of bacterivorous nanoflagellates. Appl Environ Microbiol 70:1593—1599

    CAS  PubMed  Google Scholar 

  94. Matz C, Deines P, Jürgens K (2002b) Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microbiol Ecol 39:57–65

    CAS  PubMed  Google Scholar 

  95. Matz C, Jürgens K (2001) Effects of hydrophobic and electrostatic cell surface properties of bacteria on feeding rates of heterotrophic nanoflagellates. Appl Environ Microbiol 67:814–820

    CAS  PubMed  Google Scholar 

  96. Matz C, Jürgens K (2003) Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Microb Ecol 45:384–398

    CAS  PubMed  Google Scholar 

  97. Matz C, Jürgens K (2005) High motility reduces grazing mortality of planktonic bacteria. Appl Environ Microbiol 71:921–929

    CAS  PubMed  Google Scholar 

  98. Matz C, Kjelleberg S (2005) Off the hook – how bacteria survive protozoan grazing. Trends Microbiol 13:302–307

    CAS  PubMed  Google Scholar 

  99. Middelboe M et al. (2001) Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Microb Ecol 42:395–406

    CAS  PubMed  Google Scholar 

  100. Monger BC, Landry MR, Brown SL (1999) Feeding selection of heterotrophic marine nanoflagellates based on the surface hydrophobicity of their picoplankton prey. Limnol Oceanogr 44:1917–1927

    Article  CAS  Google Scholar 

  101. Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Google Scholar 

  102. Morris RM et al. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    CAS  PubMed  Google Scholar 

  103. Nunez ME, Martin MO, Chan PH, Spain EM (2005) Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy. Colloids Surf B-Biointerfaces 42:263–271

    CAS  PubMed  Google Scholar 

  104. Ooms-Wilms AL, Postema G, Gulati RD (1995) Evaluation of bacterivory of Rotifera based on measurements of in situ ingestion of fluorescent particles, including some comparisons with Cladocera. J Plankton Res 17:1057–1077

    Google Scholar 

  105. Pace ML (1988) Bacterial mortality and the fate of bacterial production. Hydrobiologia 159:41–49

    Google Scholar 

  106. Patterson D (1994) Protozoa: evolution and systematics. In: Hausmann K, Hülsmann N (eds) Progress in protozoology. Gustav Fischer, Stuttgart

    Google Scholar 

  107. Pedrós-Alió C, Calderón-Paz JI, Gasol JM (2000) Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32:157–165

    PubMed  Google Scholar 

  108. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nature Rev Microbiol 3:537–546

    CAS  Google Scholar 

  109. Pernthaler J, Amann R (2005) Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol Mol Biol Rev 69:440–461

    CAS  PubMed  Google Scholar 

  110. Pernthaler J, Posch T, Šimek K, Vrba J, Amann R, Psenner R (1997) Contrasting bacterial strategies to coexist with a flagellate predator in an experimental microbial assemblage. Appl Environ Microbiol 63:596–601

    CAS  PubMed  Google Scholar 

  111. Pernthaler J et al. (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145–2155

    CAS  PubMed  Google Scholar 

  112. Pernthaler J, Sattler B, Šimek K, Schwarzenbacher A, Psenner R (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol 10:255–263

    Google Scholar 

  113. Pernthaler J, Zöllner E, Warnecke F, Jürgens K (2004) Bloom of filamentous bacteria in a mesotrophic lake: Identity and potential controlling mechanism. Appl Environ Microbiol 70:6272–6281

    CAS  PubMed  Google Scholar 

  114. Pineiro SA, Sahaniuk GE, Romberg E, Williams HN (2004) Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake, Utah. Curr Microbiol 48:113–117

    CAS  PubMed  Google Scholar 

  115. Plante CJ (2000) Role of bacterial exopolymeric capsules in protection from deposit-feeder digestion. Aquat Microb Ecol 21:211–219

    Google Scholar 

  116. Posch T et al. (1999) Predator-induced changes of bacterial size, structure and productivity studied on an experimental microbial community. Aquat Microb Ecol 18:235–246

    Google Scholar 

  117. Rappé M, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    PubMed  Google Scholar 

  118. Rice TD, Williams HN, Turng BF (1998) Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb Ecol 35:256–264

    PubMed  Google Scholar 

  119. Riisgard H (1988) Efficiency of particle retention and filtration rate in six species of Northeast American bivalves. Mar Ecol Prog Ser:217–223

    Google Scholar 

  120. Riisgard H, Larsen P (2001a) Comparative ecophysiology of active zoobenthic filter-feeding, essence of current knowledge. J Sea Res 44:169–193

    Google Scholar 

  121. Riisgard H, Larsen P (2001b) Minireview: Ciliary filter feeding and bio-fluid mechanics – present understanding and unsolved problems. Limnol Oceanogr 46:882–891

    Article  Google Scholar 

  122. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    CAS  PubMed  Google Scholar 

  123. Sanders RW, Caron DA, Berninger UG (1992) Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters – An inter-ecosystem comparison. Mar Ecol Prog Ser 86:1–14

    Google Scholar 

  124. Schauer M, Hahn MW (2005) Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940

    CAS  PubMed  Google Scholar 

  125. Schmaljohann R, Pollingher U, Berman T (1987) Natural populations of bacteria in Lake Kinneret: Observations with scanning electron and epifluorescence microscopy. Microb Ecol 13:1–12

    Google Scholar 

  126. Schoeffield AJ, Williams HN, Turng BF, Falkler WA (1996) A comparison of the survival of intraperiplasmic and attack phase bdellovibrios with reduced oxygen. Microb Ecol 32:35–46

    PubMed  Google Scholar 

  127. Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935

    CAS  PubMed  Google Scholar 

  128. Shemesh Y, Jurkevitch E (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 6:12–18

    PubMed  Google Scholar 

  129. Sherr BF, Sherr EB, Pedros-Alio C (1989) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar Ecol Prog Ser 54:209–219

    Google Scholar 

  130. Sherr EB, Sherr BF (1987) High rates of consumption of bacteria by pelagic ciliates. Nature 325:710–711

    Google Scholar 

  131. Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81:293–308

    CAS  PubMed  Google Scholar 

  132. Silverman H, Nichols SJ, Cherry JS, Achberger E, Lynn JW, Dietz TH (1997) Clearance of laboratory-cultured bacteria by fresh-water bivalves: differences between lentic and lotic unionids. Can J Zool 75:1857–1866

    Google Scholar 

  133. Šimek K, Jürgens K, Nedoma J, Comerma M, Armengol J (2000) Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat Microb Ecol 22:43–56

    Google Scholar 

  134. Šimek K, Kojecka P, Nedoma J, Hartman P, Vrba J, Dolan JR (1999) Shifts in bacterial community composition associated with different microzooplankton size fractions in a eutrophic reservoir. Limnol Oceanogr 44:1634–1644

    Google Scholar 

  135. Šimek K, Nedoma J, Pernthaler J, Posch T, Dolan JR (2002) Altering the balance between bacterial production and protistan bacterivory triggers shifts in freshwater bacterial community composition. Antonie van Leeuwenhoek 81:453–463

    PubMed  Google Scholar 

  136. Šimek K et al. (1997) Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl Environ Microbiol 63:587–595

    PubMed  Google Scholar 

  137. Sleigh MA, Zubkov MV (1998) Methods of estimating bacterivory by protozoa. Eur J Protistol 34:273–280

    Google Scholar 

  138. Sommaruga R, Psenner R (1995) Permanent presence of grazing-resistant bacteria in a hypertrophic Lake. Appl Environ Microbiol 61:3457–3459

    CAS  PubMed  Google Scholar 

  139. Sommer U, Stibor H (2002) Copepoda-Cladocera-Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174

    Google Scholar 

  140. Stanley S (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Nat Acad Sci 70:1486–1489

    PubMed  CAS  Google Scholar 

  141. Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217

    CAS  PubMed  Google Scholar 

  142. Strayer DL, Caraco NF, Cole JJ, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves: A case study of zebra mussels in the Hudson River. BioScience 49:19–27

    Google Scholar 

  143. Suttle CA, Chan AM (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus – abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92:99–109

    Google Scholar 

  144. Sutton DC, Besant PJ (1994) Ecology and characteristics of Bdellovibrios from three tropical marine habitats. Mar Biol 119:313–320

    Google Scholar 

  145. Thingstad T (2000a) Control of bacterial growth in idealized food webs. In: Kirchman D (ed) Microbial ecology of the oceans. Wiley-Liss, New York

    Google Scholar 

  146. Thingstad TF (2000b) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328

    Article  Google Scholar 

  147. Thingstad TF, Heldal M, Bratbak G, Dundas I (1993) Are viruses important partners in pelagic food webs? Trends Ecol Evol 8:209–212

    CAS  PubMed  Google Scholar 

  148. Tollrian R, Harvell C (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  149. Vaqué D, Gasol JM, Marrase C (1994) Grazing rates on bacteria: The significance of methodology and ecological factors. Mar Ecol Prog Ser 109:263–274

    Google Scholar 

  150. Varon M (1979) Selection of predation-resistant bacteria in continuous culture. Nature 277:386–388

    Google Scholar 

  151. Varon M, Shilo M (1978) Ecology of aquatic bdellovibrios. In: Droop M, Jannash H (eds) Advances in microbial ecology. Academic, London, pp 1–48

    Google Scholar 

  152. Verity PG (1988) Chemosensory behavior in marine planktonic ciliates. Bull Mar Sci 43:772–782

    Google Scholar 

  153. Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399

    PubMed  CAS  Google Scholar 

  154. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  PubMed  Google Scholar 

  155. Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438

    CAS  PubMed  Google Scholar 

  156. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    PubMed  Google Scholar 

  157. Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601

    CAS  PubMed  Google Scholar 

  158. Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci USA 102:9535–9540

    CAS  PubMed  Google Scholar 

  159. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CAS  PubMed  Google Scholar 

  160. Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Schütt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64:4128–4133

    CAS  PubMed  Google Scholar 

  161. Williams H (1987) The recovery of high numbers of bdellovibrios from the surface water microlayer. Can J Microbiol 33:572–575

    Google Scholar 

  162. Williams H (1988) A study of the distribution of bdellovibrios in estuarine sediment over an annual cycle. Microb Ecol 15:9–20

    Google Scholar 

  163. Williams H, Falkler W, Shay D (1982) Seasonal distribution of bdellovibrios at the mouth of the Patuxent river in the Chesapeake bay. Can J Microbiol 28:111–116

    Article  CAS  PubMed  Google Scholar 

  164. Williams HN, Kelley JI, Baer ML, Turng BF (1995) The association of bdellovibrios with surfaces in the aquatic environment. Can J Microbiol 41:1142–1147

    Article  CAS  Google Scholar 

  165. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    CAS  PubMed  Google Scholar 

  166. Yair S, Yaacov D, Susan K, Jurkevitch E (2003) Small eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator–prey interactions. Agronomie 23:433–439

    Google Scholar 

  167. Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol 48:2174–2193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Jürgens .

Editor information

Edouard Jurkevitch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jürgens, K. (2006). Predation on Bacteria and Bacterial Resistance Mechanisms: Comparative Aspects Among Different Predator Groups in Aquatic Systems. In: Jurkevitch, E. (eds) Predatory Prokaryotes. Microbiology Monographs, vol 4. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_053

Download citation

Publish with us

Policies and ethics