Skip to main content

Phylogenetic Diversity and Evolution of Predatory Prokaryotes

  • Chapter
  • First Online:
Predatory Prokaryotes

Part of the book series: Microbiology Monographs ((MICROMONO,volume 4))

Abstract

Predation is one of the commonest types of interaction in the living world. Its roots appear to be ancient, and it may have first occurred early in the evolution of life forms. Predators have evolved many times in the animal realm, and this also seems to be the case within the prokaryotes. Although still rather limited, our knowledge of obligate and non-obligate bacterial predators suggest that they are common in many bacterial phyla, as well as in the environment. In this work, we survey and describe the known bacterial predators according to their phylogenetic affiliation. A hallmark of many bacterial predators is their ability to degrade the polymeric structures of their bacterial preys. An additional characteristic of known obligate predators is a small cell size. We use such distinguishing features to put forward hypotheses relating to the origin of predation in prokaryotes and to the impact of predation on the evolution of the eukaryotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abrams PA (2000) The evolution of predator–prey interactions: theory and evidence. Ann Rev Ecol Syst 31:79–105

    Article  Google Scholar 

  2. Afinogenova AV, Romai Penabad S, Konovalona SM, Churkina LG, Lambina VA (1981) Comparative characteristics of strains of Bdellovibrio isolated from river water and sewage. Mikrobiologiya 50:378–385

    CAS  Google Scholar 

  3. Afinogenova AV, Markelova NY, Lambina VA (1986) Detection of enzyme activities of some metabolic pathways in Micavibrio admirandus and Bdellovibrio bacteriovorus. Mikrobiologiya 141:471–475

    CAS  Google Scholar 

  4. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  CAS  PubMed  Google Scholar 

  5. Andersson S, Karlberg O, Canback B, Kurland C (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc 358:165–179

    Article  CAS  Google Scholar 

  6. Andersson S, Kurland C (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–278

    Article  CAS  PubMed  Google Scholar 

  7. Angert E, Clements K, Pace N (1993) The largest bacterium. Nature 362:239–241

    Article  CAS  PubMed  Google Scholar 

  8. Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax stolpii comb nov and Bacteriovorax starrii comb nov, respectively. Int J Syst Environ Microbiol 50:219–224

    CAS  Google Scholar 

  9. Barel G, Jurkevitch E (2001) Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol 176:211–216

    Article  CAS  PubMed  Google Scholar 

  10. Barel G, Sirota A, Volpin H, Jurkevitch E (2005) Fate of predator and prey proteins during the growth of Bdellovibrio bacteriovorus on Escherichia coli and Pseudomonas syringae prey. J Bacteriol 187:329–335

    Article  CAS  PubMed  Google Scholar 

  11. Begunova EA, Stepnaya OA, Tsfasman IM, Kulaev IS (2004) The effect of the extracellular bacteriolytic enzymes of Lysobacter sp. on Gram-negative bacteria. Microbiol (Mikrobiologya) 73:267–270

    CAS  Google Scholar 

  12. Bengston S (2002) Origins and early evolution of predation. Paleontol Soc P 8:289–318

    Google Scholar 

  13. Beveridge TJ (1999) Structure of Gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed  Google Scholar 

  14. Bohannan BJM, Kerr B, Jessup CM, Hughes JB, Sandvik G (2002) Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek 81:107–115

    Article  CAS  PubMed  Google Scholar 

  15. Bonner J (1993) Life Cycles: Reflections of an Evolutionary Biologist. Princeton University Press, Princeton

    Google Scholar 

  16. Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci USA 101:9722–9727

    Article  CAS  PubMed  Google Scholar 

  17. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  18. Buckling A, Rainey PB (2002) The role of parasites in sympatric and allopatric host diversification. Nature 420:496–499

    Article  CAS  PubMed  Google Scholar 

  19. Burnham J, Collart S, Highison B (1981) Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus. PCO2 Arch Microbiol 129:285–294

    Article  Google Scholar 

  20. Burnham J, Collart S, Daft ML (1984) Myxococcal predation of the cyanobacterium Phormidium luridium in aqueous environments. Arch Microbiol 137:220–225

    Article  Google Scholar 

  21. Byrd J, Zeph L, Casida LE Jr (1985) Bacterial control of Agromyces ramosus in soil. Can J Microbiol 31:1157–1163

    CAS  Google Scholar 

  22. Cain CC et al. (2003) Synergistic antimicrobial activity of metabolites produced by a non-obligate bacterial predator. Antimicrob Agen Chemo 47:2113–2117

    Article  CAS  Google Scholar 

  23. Casida LE Jr (1980) Bacterial predators of Micrococcus luteus in soil. Appl Environ Microbiol 39:1035–1041

    PubMed  CAS  Google Scholar 

  24. Casida LE Jr (1982) Ensifer adhaerens gennov, sp nov: a bacerial predator bacteria in soil. Int J Syst Bacteriol 32:339–345

    Google Scholar 

  25. Casida LE Jr (1983) Interaction of Agromyces ramosus with other bacteria in soil. Appl Environ Microbiol 46:881–888

    PubMed  CAS  Google Scholar 

  26. Casida LE Jr (1987) Relation to copper of N-1, a non-obligate bacterial predator. Appl Environ Microbiol 53:151–1518

    Google Scholar 

  27. Casida LE Jr (1988) Response in soil of Cupriavidus necator and other copper-resistant bacterial predators of bacteria to addition of water, soluble nutrients, various bacterial species, or Bacillus thuringiensis spores and crystals. Appl Environ Microbiol 54:2161–2166

    PubMed  CAS  Google Scholar 

  28. Casida LE Jr (1992) Competitive ability and survival in soil of Pseudomonas strain 679-2, a dominant, non-obligate bacterial predator of bacteria. Appl Environ Microbiol 58:32–37

    PubMed  CAS  Google Scholar 

  29. Chan A, Kacsmarska I, Suttle C (1997) Isolation and characterization of a species-specific bacterial pathogen which lyses the marine diatom Navicula pulchripora. Am Soc Limnol Ocean, Santa Fe NM, February 1997

    Google Scholar 

  30. Chang L, Pate J, Betzig RJ (1984) Isolation and characterization of nonspreading mutants of the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:26–35

    CAS  PubMed  Google Scholar 

  31. Christensen P, Cook F (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Google Scholar 

  32. Clements K, Bullivant S (1991) An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol 173:5359–5362

    CAS  PubMed  Google Scholar 

  33. Coder DM, Starr MP (1978) Antagonistic associations of the chlorellavorus bacterium (Bdellovibrio chlorellavorus) with Chlorella vulgaris. Curr Microbiol 1:9–64

    Google Scholar 

  34. Cotter T, Thomashow MF (1992) Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol 174:6018–6024

    CAS  PubMed  Google Scholar 

  35. Daft M, McCord S, Stewart W (1973) The occurrence of lytic bacteria as microbiological agents against blue-green algae and lytic bacteria at a waterworks in Scotland. Water Treat Exam 22:114–124

    Google Scholar 

  36. Daft M, Stewart W (1971) Bacterial pathogens of freshwater blue-green algae. New Phytol 70:819–829

    Article  Google Scholar 

  37. Daft MJ, Burnham J, Yamamoto Y (1985) Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J Appl Bacteriol 59:73–80

    CAS  Google Scholar 

  38. Daft MJ, Stewart W (1973) Light and electron microscope observations on algal lysis by bacterium CP-1. New Phytol 72:799–808

    Article  Google Scholar 

  39. Davidov Y, Friedjung A, Jurkevitch E (2006a) High diversity of Bdellovibrio-and-like organisms (BALOs) in soil revealed by culture-dependent and culture-independent methods. Environ Microbiol 8:1667–1673

    Article  PubMed  CAS  Google Scholar 

  40. Davidov Y, Huchon D, Koval SF, Jurkevitch E (2006b) A new α-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol (published online 4-Aug-2006, http://www.blackwell-synergy.com/doi/full/10.1111/j.1462-2920.2006.01101.x )

  41. Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evolution Microbiol 54:1439–1452

    Article  CAS  Google Scholar 

  42. Day T, Abrams P, Chasec J (2002) The role of size-specific predation in the evolution and diversification of prey life histories. Evol 5:877–887

    Article  Google Scholar 

  43. Dias FF, Baht JV (1965) Microbial ecology of activated sludge. II. Bacteriophages, Bdellovibrio, coliforms, and other organisms. Appl Microbiol 13:257–261

    CAS  PubMed  Google Scholar 

  44. Donze D, Mayo J, Diedrich D (1991) Relationship among the bdellovibrios revealed by partial sequences of 16S ribosomal RNA. Curr Microbiol 23:115–119

    Article  CAS  Google Scholar 

  45. Doolittle RF, York AL (2002) Bacterial actins? An evolutionary perspective. Bioessays 24:293–296

    Article  CAS  PubMed  Google Scholar 

  46. Dworkin M (1996) Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60:70–102

    CAS  PubMed  Google Scholar 

  47. Dworkin M (1999) Fibrils as extracellular appendages of bacteria: Their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21:590–595

    Article  CAS  PubMed  Google Scholar 

  48. Elsherif M, Grossman F (1996) Role of biotic factors in the control of soil-borne fungi by fluorescent pseudomonads. Microbiol Res 151:351–357

    Google Scholar 

  49. Embly TM, Hirt RP (1998) Early branching eukaryotes? Curr Opin Genet Dev 8:624–629

    Article  Google Scholar 

  50. Emelanov VV (2003) Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618

    Article  CAS  Google Scholar 

  51. Ensign JC, Wolfe RS (1965) Lysis of bacterial cell walls by an enzyme isolated from a myxobacter. J Bacteriol 90:395–402

    CAS  PubMed  Google Scholar 

  52. Epstein D, Wensink P (1988) The alpha-lytic protease gene of Lysobacter enzymogenes The nucleotide sequence predicts a large prepropeptide with homology to pro-peptides of other chymotrypsin-like enzymes. J Biol Chem 263:16586–16590

    CAS  PubMed  Google Scholar 

  53. Esteve I, Guerrero R, Montesinos E, Abella C (1983) Electron microscopy study of the interaction of epibiontic bacteria with Chromatium minus in natural habitats. Microb Ecol 9:57–64

    Article  Google Scholar 

  54. Farmer J (1992) Grazing and bioturbation in modern microbial mats. Cambridge University Press, Cambridge

    Google Scholar 

  55. Fitzpatrick DA, Creevey CJ, McInerney JO (2006) Genome phylogenies indicate a meaningful a-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 23:74–85

    Article  CAS  PubMed  Google Scholar 

  56. Folman L, Postma J, vanVeen J (2003) Characterization of Lysobacter enzymogenes (Christensen and Cook 1978) strain 31T8, a powerful antagonist of fungal diseases in cucumber. Microbiol Res 158:107–115

    Article  CAS  PubMed  Google Scholar 

  57. Forde ES, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host-parasitoid interaction. Nature 431:841–843

    Article  CAS  PubMed  Google Scholar 

  58. Fraleigh P, Burnham J (1988) Myxococcal predation on cyanobacterial populations–nutrient effects. Limnol Ocean 33:476–483

    CAS  Google Scholar 

  59. Fry JC (2000) Bacterial diversity and “unculturables”. Microbiol Today 27:186–188

    Google Scholar 

  60. Fry J, Staples DG (1974) The occurrence and role of Bdellovibrio bacteriovorus in a polluted river. Water Res 8:1029–1035

    Article  Google Scholar 

  61. Fry J, Staples DG (1976) Distribution of Bdellovibrio bacteriovorus in sewage works, river water, and sediments. Appl Environ Microbiol 31:469–474

    CAS  PubMed  Google Scholar 

  62. Fussmann G, SP S, Shertzer K, Hairston Jr N (2000) Crossing the Hopf bifurcation in a live predator–prey system. Science 290:1358–1360

    Article  CAS  PubMed  Google Scholar 

  63. Germida JJ, Casida LE Jr (1983) Ensifer adhaerens predatory activity against other bacteria in soil, as monitored by indirect phage analysist. Appl Environ Microbiol 45:1380–1388

    PubMed  CAS  Google Scholar 

  64. Gillespie D, Cook F (1965) Extracellular enzymes from strains of Sorangium. Can J Microbiol 11:109–118

    CAS  PubMed  Google Scholar 

  65. Gabaldón T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301:609

    Article  PubMed  Google Scholar 

  66. Guelin A, Maillet P-L (1978) Observation sur l'ultrastructure de micropredateurs de bacilles gram-positif et la degenerescence de C perfringens. CR Acad Sc Paris Serie D:1975–1978

    Google Scholar 

  67. Guerrero R (1991) Predation as prerequisite to organelle origin: Daptobacter as example. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge, pp 107–117

    Google Scholar 

  68. Guerrero R, Esteve I, Pedros-Alio C, Gaju N (1987) Predatory bacteria in prokaryotic communities: The earliest trophic relationships. In: Endocytobiology III. The New York Academy of Sciences, New York

    Google Scholar 

  69. Guerrero R, Pedros-Alio C, Esteve I, Mas J, Chase D, Margulis L (1986) Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci USA 83:2138–2142

    Article  CAS  PubMed  Google Scholar 

  70. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  CAS  PubMed  Google Scholar 

  71. Gromov BV, Mamkayeva KA (1980) Proposal of a new genus Vampirococcus for chlorellavorus bacteria previously assigned to Bdellovibrio. Mikrobiologya 49:165–167

    CAS  Google Scholar 

  72. Haska G (1981) Activity of bacteriolytic enzymes adsorbed to clay. Microb Ecol 7:331–341

    Article  Google Scholar 

  73. Herschkovitz Y, Lerner A, Davidov Y, Okon Y, Jurkevitch E (2005) Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environ Microbiol 7:1847–1852

    Article  CAS  PubMed  Google Scholar 

  74. Hespell RB, Thomashow MF, Rittenberg SC (1974) Changes in cell composition and viability of Bdellovibrio bacteriovorus during starvation. Arch Microbiol 97:313–327

    Article  CAS  PubMed  Google Scholar 

  75. Hespell RB (1978) Intraperiplasmic growth of Bdellovibrio bacteriovorus on heat-treated Escherichia coli. J Bacteriol 133:1156–1162

    CAS  PubMed  Google Scholar 

  76. Hespell RB, Paster BJ, Macke TJ, Woese CR (1984) The origin and phylogeny of the Bdellovibrios. Syst Appl Microbiol 5:196–203

    CAS  Google Scholar 

  77. Hoeniger J, Ladwig R, Moor H (1972) The fine structure of resting bodies of Bdellovibrio sp. strain W developed in Rhodospirillum rubrum. Can J Microbiol 18:87–92

    CAS  PubMed  Google Scholar 

  78. Hoenigsberg H (2002) Non-Darwinian and Darwinian prokaryotic and eukaryotic evolution – an enigma in cell biology conservation. Gen Mol Res 2:279–287

    Google Scholar 

  79. Horn M et al. (2004) Illuminating the evolutionary history of Chlamydiae. Science 304:728–730

    Article  CAS  PubMed  Google Scholar 

  80. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter K (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100

    PubMed  Google Scholar 

  81. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  82. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environ Microbiol 6:111–120

    Article  CAS  PubMed  Google Scholar 

  83. Imai I, Ishida Y, Sakaguchi K, Hata Y (1993) Killing of marine phytoplankton by gliding bacterium Cytophaga sp, isolated from the coastal sea of Japan. Mar Biol 116:527–532

    Article  Google Scholar 

  84. Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, Bohannan BJM (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19:189–197

    Article  PubMed  Google Scholar 

  85. Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371

    Article  CAS  PubMed  Google Scholar 

  86. Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorusattack. Appl Environ Microbiol 71:4044–4051

    Article  CAS  PubMed  Google Scholar 

  87. Karlberg EO (2004) Microbial evolution. Turning bugs into features. PhD Thesis, University of Uppsala, Sweden

    Google Scholar 

  88. Kato A, Nakaya S, Ohashi Y, Hirata H (1997) WAP-8294A2, a novel anti-MRSA antibiotic produced by Lysobacter sp. J Am Chem Soc 119:6680–6681

    Article  CAS  Google Scholar 

  89. Kaunzinger CMK, Morin PJ (1998) Productivity controls food-chain properties in microbial communities. Nature 395:495–497

    Article  CAS  Google Scholar 

  90. Kelley J, Williams H (1992) Bdellovibrios in Callinectus sapidus, the blue crab. Appl Environ Microbiol 58:1408–1410

    PubMed  CAS  Google Scholar 

  91. Kelley J, Turng B, Williams H, Baer M (1997) Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl Environ Microbiol 63:84–90

    CAS  PubMed  Google Scholar 

  92. Kirchman D (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  93. Kitchell JA (1983) Biotic interactions and siliceous marine phytoplankton: an ecological and evolutionary perspective. In: McCall PL (ed) Biotic Interactions in Recent and Fossils Benthic Communities. Plenum, New York, pp 285–329

    Google Scholar 

  94. Kobayashi DY, Reedy RM, Palumbo JD, Zhou J-M, Yuen GY (2005) A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol 71:261–269

    Article  CAS  PubMed  Google Scholar 

  95. Koch A (1996) What size should a bacterium be? a question of scale. Ann Rev Microbiol 50:317–348

    Article  CAS  Google Scholar 

  96. Koval S, Bayer ME (1997) Bacterial capsules: no barrier against Bdellovibrio. Microbiology 143:749–753

    Article  CAS  PubMed  Google Scholar 

  97. Kramer T, Westergaard J (1977) Antigenicity of bdellovibrios. Appl Environ Microbiol 33:967–970

    CAS  PubMed  Google Scholar 

  98. Lambina VA, Afinogenova AV, Romai Penabad S, Konovalona SM, Pushkareva AP (1982) Micavibrio admirandus gen. et sp. nov. Mikrobiologiya 51:114–117

    CAS  Google Scholar 

  99. Lambina VA, Afinogenova AV, Romay Penabad S, Konovalona SM, Andreev LV (1983) A new species of exoparasitic bacteria from the genus Micavibrio destroying gram-negative bacteria. Mikrobiologiya 53:777–780

    Google Scholar 

  100. Larkin JM, Henck MC, Burton SD (1990) Occurrence of a Thiothrix sp. attached to mayfly larvae and presence of parasitic bacteria in the Thiothrix sp. Appl Environ Microbiol 56:357–361

    PubMed  CAS  Google Scholar 

  101. Law R (1991) The symbiotic phenotype: origins and evolution. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. The MIT Press, Cambridge

    Google Scholar 

  102. Lenski R (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evol 42:425–432

    Article  Google Scholar 

  103. Li Z, Clarke J, Beveridge T (1996) A major autolysin of Pseudomonas aeruginosa, its subcellular distribution, its potential role in cell growth and division, and its secretion in surface membrane vesicles. J Bacteriol 178:2479–2488

    CAS  PubMed  Google Scholar 

  104. Li ZA, Clarke J, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483

    CAS  PubMed  Google Scholar 

  105. Lin SB, Wang HH (1983) Bdellovibrio in methylotrophic bacteria. Biotechnol Lett 8:549–554

    Article  Google Scholar 

  106. Ludwig W et al. (1998) Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568

    Article  CAS  PubMed  Google Scholar 

  107. Makkar N, Casida Jr L (1987) Cupriavidus necator gen. nov., sp. nov.: a non-obligatebacterial predator in soil. Int J Syst Microbiol 37:323–326

    Google Scholar 

  108. Marbach A, Shilo M (1978) Dependence of marine bdellovibrios on potassium, calcium, and magnesium ions. Appl Environ Microbiol 36:169–177

    CAS  PubMed  Google Scholar 

  109. Margalith P (1962) Bacteriolytic principles of Myxococcus fulvus. Nature 196:1335–1336

    Article  Google Scholar 

  110. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT

    Google Scholar 

  111. Margulis L (1993) Symbiosis in Cell Evolution. 2nd edn. Freeman, New York

    Google Scholar 

  112. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  CAS  PubMed  Google Scholar 

  113. Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Microbiol Biotechnol 4:467–477

    CAS  Google Scholar 

  114. Martin W, Embley TM (2004) Evolutionary biology—Early evolution comes full circle. Nature 431:134–137

    Article  CAS  PubMed  Google Scholar 

  115. Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoliplasmids. J Bacteriol 169:2828–2834

    CAS  PubMed  Google Scholar 

  116. Maynard-Smith J, Szathamary E (1995) The major transitions in evolution. Freeman, New York

    Google Scholar 

  117. McBride MJ, Zusman DM (1996) Behavioral analysis of single cells of Myxococcus xanthusin response to prey cells of Escherichia coli. FEMS Microbiol Lett 137:227–231

    Article  CAS  PubMed  Google Scholar 

  118. McBride MJ (2004) Cytophaga-Flavobacterium gliding motility. J Mol Microbiol Biotechnol 7:63–71

    Article  CAS  PubMed  Google Scholar 

  119. McBride MJ, Braun TF, Brust JL (2003) Flavobacterium johnsoniae GldH is a lipoprotein that is required for gliding motility and chitin utilization. J Bacteriol 185:6648–6657

    Article  CAS  PubMed  Google Scholar 

  120. Mira A, Klasson L, Andersson SGE (2002) Microbial genome evolution: sources of variability. Curr Opin Microbiol 5:506–512

    Article  CAS  PubMed  Google Scholar 

  121. Morris SA, Radajewski S, Willison TW, Murrell JC (2002) Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 68:1446–1453

    Article  CAS  PubMed  Google Scholar 

  122. Moulder J (1985) Comparative biology of intracellular paratism. Microbiol Rev 49:298–337

    CAS  PubMed  Google Scholar 

  123. Nealson K, Conrad P (1999) Life: past, present and future. Philos Trans R Soc Lond 354:1923–1939

    Article  CAS  Google Scholar 

  124. Nogales B, Guerrero R, Esteve I (1997) A heterotrophic bacterium inhibits growth of several species of the genus Chlorobium. Arch Microbiol 167:396–399

    Article  CAS  Google Scholar 

  125. Nunez ME, Martin MO, Duong LK, Ly E, Spain EM (EM) Investigations into the life cycle of the bacterial predator Bdellovibrio bacteriovorus 109J at an interface by atomic force microscopy. Biophys J 84:3379–3388

    Google Scholar 

  126. Ogata H et al. (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:2093–2098

    Article  CAS  PubMed  Google Scholar 

  127. Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three {beta}-1,3-glucanase genes from Lysobacter enzymogenes strain N4–7. J Bacteriol 185:4362–4370

    Article  CAS  PubMed  Google Scholar 

  128. Pan et al. (1997) Isolation and identification of Bdellovibrio from coastal areas of Taiwan. Fish Sci 63:52–59

    CAS  Google Scholar 

  129. Pineiro SA, Sahaniuk GE, Romberg E, Williams H (2004) Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake. Utah Curr Microbiol 48:113–117

    Article  CAS  Google Scholar 

  130. Quinn R, Skerman V (1980) Herpetosiphon-Nature's scavenger? Curr Microbiol 4:57–62

    Google Scholar 

  131. Rappé M, Giovannoni S (2003) The uncultured microbial majority. Ann Rev Microbiol 57:369–394

    Article  CAS  Google Scholar 

  132. Rashidan KK, Bird DF (2001) Role of predatory bacteria in the termination of a cyanobacterial bloom. Microbiol Ecol 41:97–105

    CAS  Google Scholar 

  133. Reichenbach H (2001) The genus Lysobacter. In: Dworkin M et al (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. Springer, Berlin Heidelberg New York

    Google Scholar 

  134. Reichenbach H, Gerth K, Irschik H, Kunze B, Hofle G (1988) Myxobacteria: A source of new antibiotics. Trends Biotechnol 6:115–121

    Article  CAS  Google Scholar 

  135. Reichenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21

    Article  CAS  PubMed  Google Scholar 

  136. Rendulic S et al. (2004) A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692

    Article  CAS  PubMed  Google Scholar 

  137. Rice TD, Williams HN, Turng BF (1998) Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb Ecol 35:256–264

    Article  PubMed  Google Scholar 

  138. Rittenberg SC (1983) Bdellovibrio: Attack, penetration and growth on its prey. ASM News 49:435–440

    Google Scholar 

  139. Rittenberg SC, Shilo M (1970) Early host damage in the infection cycle of Bdellovibrio bacteriovorus. J Bacteriol 102:149–160

    CAS  PubMed  Google Scholar 

  140. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155

    Article  CAS  PubMed  Google Scholar 

  141. Rogel AM, Hernandez-Lucas I, Kuykendall D, Balkwill DL, Martinez-Romero E (2001) Nitrogen-Fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268

    Article  CAS  PubMed  Google Scholar 

  142. Rosenberg E, Keller K, Dworkin M (1977) Cell density-dependent growth of Myxococcus xanthuson casein. J Bacteriol 129:770–777

    CAS  PubMed  Google Scholar 

  143. Ruby EG, McCabe J (1988) Metabolism of periplasmic membrane-derived oligosaccharides by the predatory bacterium Bdellovibrio bacteriovorus 109J. J Bacteriol 170:646–652

    CAS  PubMed  Google Scholar 

  144. Ruby EG, Rittenberg SC (1984) Attachment of diaminopimelic acid to bdelloplast peptidoglycan during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. J Bacteriol 158:597–602

    CAS  PubMed  Google Scholar 

  145. Ruby EG, McCabe JB, Barke JI (1985) Uptake of intact nucleoside monophosphate by Bdellovibrio bacteriovorus109J. J Bacteriol 163:1087–1094

    CAS  PubMed  Google Scholar 

  146. Sacchi L, Bigliardi E, Corona S, Beninati T, Lo N, Franceschi A (2004) A symbiont of the tick Inoxes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36:43–53

    Article  CAS  PubMed  Google Scholar 

  147. Sachs JL, Mueller UG, Wilcox T, Bull JJ (2004) The evolution of cooperation. Quart Rev Biol 79:135–160

    Article  PubMed  Google Scholar 

  148. Sait M, Hugenholtz P, Janssen P (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  CAS  PubMed  Google Scholar 

  149. Sanchez-Amat A, Torrella F (1989) Isolation and characterization of marine and salt pond halophylic bdellovibrios. Can J Microbiol 35:771–778

    Article  Google Scholar 

  150. Sanchez-Amat A, Torrella F (1990) Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios. Appl Environ Microbiol 56:2127–2125

    Google Scholar 

  151. Schopf J (1993) Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  152. Schrag SJ, Mittler JE (1996) Host–parasite coexistence: the role of spatial refuges in stabilizing bacteria–phage interactions. Am Nat 148:348–377

    Article  Google Scholar 

  153. Schulz HN, Brinkhoff T, Ferdelman TG, Hernandez Marine M, Teske A, Jorgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  CAS  PubMed  Google Scholar 

  154. Schwudke D, Strauch E, Krueger M, Appel B (2001) Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 24:385–394

    Article  CAS  PubMed  Google Scholar 

  155. Seidler RJ, Starr MP (1969a) Factors affecting the intracellular parasitic growth of Bdellovibrio bacteriovorus developing within Escherichia coli. J Bacteriol 97:912–923

    CAS  PubMed  Google Scholar 

  156. Seidler R, Starr MP (1969b) Isolation and characterization of host-independent bdellovibrios. J Bacteriol 100:769–785

    CAS  PubMed  Google Scholar 

  157. Seidler R, Mendel M, Baptist J (1972) Molecular heterogeneity of the bdellovibrios: evidence for two new species. J Bacteriol 109:209–217

    CAS  Google Scholar 

  158. Shemesh Y, Davidov Y, Koval S, Jurkevitch E (2003) Small eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator–prey interactions. Agronomie 23:433–439

    Article  Google Scholar 

  159. Shemesh Y, Jurkevitch E (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 6:8–12

    Article  Google Scholar 

  160. Sheridan P, Freeman K, Brenchley J (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14

    Article  CAS  Google Scholar 

  161. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  CAS  PubMed  Google Scholar 

  162. Shilo M, Bruff B (1965) Lysis of Gram negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol 40:317–328

    CAS  PubMed  Google Scholar 

  163. Shilo M (1970) Lysis of blue-green algae by myxobacter. J Bacteriol 104:453–461

    CAS  PubMed  Google Scholar 

  164. Shimkets LJ (1990) Social and developmental biology of myxobacteria. Microbiol Rev 54:473–501

    CAS  PubMed  Google Scholar 

  165. Simpson AGB, Roger AJ (2002) Eukaryotic evolution: Getting to the root of the problem. Curr Biol 12:R691–R693

    Article  CAS  PubMed  Google Scholar 

  166. Singh B (1947) Myxobacteria in soils and composts: Their distribution, number and lytic action on bacteria. J Gen Microbiol 1:1–10

    CAS  PubMed  Google Scholar 

  167. Sitkin B, Tsfasman I, Stepnaya O (2003) May the bacterial autolysins be the precursors of extracellular bacteriolytic enzymes? Dokl Biochem Biophys 392:260–262

    Article  CAS  PubMed  Google Scholar 

  168. Snyder AR, Williams HN, Baer ML, Walker SOC (2002) 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol 52:2089–2094

    Article  CAS  PubMed  Google Scholar 

  169. Stackebrandt E, Goebel BM (1994). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  170. Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Natl Acad Sci USA 70:1486–1489

    Article  PubMed  CAS  Google Scholar 

  171. Starr MP, Seidler R (1971) The Bdellovibrios. Ann Rev Microbiol 25:649–678

    Article  CAS  Google Scholar 

  172. Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91

    Article  CAS  PubMed  Google Scholar 

  173. Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (2001) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  Google Scholar 

  174. Stepnaya OA et al. (2004) The mechanism of action of the extracellular bacteriolytic enzymes of Lysobacter sp on Gram-positive bacteria: The role of the cell wall anionic polymers of target bacteria. Microbiol (Mikrobiologya) 73:404–409

    CAS  Google Scholar 

  175. Stewart J, Brown R (1971) Algicidal nonfruiting myxobacteria with high G+C ratios. Arch Microbiol 80:176–190

    CAS  Google Scholar 

  176. Stolp H, Pertzold H (1962) Untersuchungen uber einen obligat parasitischen Mikroorganismus mit lytischer Aktivitat fur Pseudomonas-Bakterien. Phytopathol Z 45:364–390

    Google Scholar 

  177. Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie van Leeuwenhoek 29:217–248

    Article  CAS  PubMed  Google Scholar 

  178. Stolp H (1967) Lysis von bacterien durch den parasiten Bdellovibrio bacteriovorus. Film C972. IWF, Gottingen

    Google Scholar 

  179. Sudo S, Dworkin M (1972) Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110:236–245

    CAS  PubMed  Google Scholar 

  180. Thomashow LS, Rittenberg S (1985a) Waveform analysis and structure of flagella and basal complexes from Bdellovibrio bacteriovorus 109J. J Bacteriol 163:1038–1046

    CAS  PubMed  Google Scholar 

  181. Thomashow LS, Rittenberg S (1985b) Isolation and composition of sheathed flagella from Bdellovibrio bacteriovorus 109J. J Bacteriol 163:1047–1054

    CAS  PubMed  Google Scholar 

  182. Thomashow MF, Rittenberg S (1978a) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J Bacteriol 135:998–1007

    CAS  PubMed  Google Scholar 

  183. Thomashow MF, Rittenberg SC (1978b) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids to Escherichia colipeptidoglycan. J Bacteriol 135:1015–1023

    CAS  PubMed  Google Scholar 

  184. Thomashow MF, Rittenberg SC (1978c) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: N-Deacetylation of Escherichia coli peptidoglycan amino sugars. J Bacteriol 135:1008–1014

    CAS  PubMed  Google Scholar 

  185. Torrella F, Guerrero R, Seidler R (1978) Further taxonomic characterization of the genus Bdellovibrio. Can J Microbiol 24:1387–1394

    CAS  PubMed  Google Scholar 

  186. Tudor JJ, Conti SF (1977) Ultrastructural changes during encystment and germination of Bdellovibriosp. J Bacteriol 131:323–330

    CAS  PubMed  Google Scholar 

  187. Tudor JJ, Conti SF (1978) Characterization of germination and activation of Bdellovibrio bdellocysts. J Bacteriol 133:130–138

    CAS  PubMed  Google Scholar 

  188. Tudor JJ, McCann M, Acrich IA (1990) A new model for the penetration of prey cells by bdellovibrios. J Bacteriol 172:2421–2426

    CAS  PubMed  Google Scholar 

  189. van den Ent F, Amos LJL (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    Article  PubMed  CAS  Google Scholar 

  190. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  Google Scholar 

  191. Vandamme P, Coenye T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Environ Microbiol 54:2285–2289

    Article  Google Scholar 

  192. van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530

    Article  PubMed  CAS  Google Scholar 

  193. Varon M, Dickbusch S, Shilo M (1974) Isolation of host-dependent and nonparasitic mutants of the facultative parasitic BdellovibrioUKi2. J Bacteriol 119:635–637

    CAS  PubMed  Google Scholar 

  194. Varon M (1979) Selection of predation-resistant bacteria in continuous culture. Nature 277:386–388

    Article  Google Scholar 

  195. Varon M, Shilo M (1968) Interaction of Bdellovibrio bacteriovorusand host bacteria I Kinetic studies of attachment and invasion of Escherichia coliB by Bdellovibrio bacteriovorus. J Bacteriol 95:744–753

    CAS  PubMed  Google Scholar 

  196. Varon M, Shilo M (1969) Attachment of Bdellovibrio bacteriovorus to cell wall mutants of Salmonella spp and Escherichia coli. J Bacteriol 97:977–979

    CAS  PubMed  Google Scholar 

  197. Varon M, Zeigler B (1978) Bacterial predator–prey interaction at low prey density. Appl Environ Microbiol 36:11–17

    PubMed  CAS  Google Scholar 

  198. von Dohlen C, Kohler S, Aslop S, McManus W (2001) Mealybug [beta]-proteobacterial endosymbionts contain [gamma]-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  199. von Tigerstrom R (1980) Extracellular nuclease of Lysobacter enzymogenes: production of the enzymes and purification and characterization of an endonuclease. Can J Microbiol 26:1029–1037

    Google Scholar 

  200. Waters E et al. (2003) The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988

    Article  CAS  PubMed  Google Scholar 

  201. Wilkinson CR (1979) Bdellovibrio-like parasite of cyanobacteria symbiotic in marine sponges. Arch Microbiol 123:101–103

    Article  Google Scholar 

  202. Wilkinson MHF (2001) Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems. J Theor Biol 208:27–36

    Article  CAS  PubMed  Google Scholar 

  203. Willems AF-L et al. (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb nov Request for an opinion. Int J Syst Environ Microbiol 53:1207–1217

    Article  CAS  Google Scholar 

  204. Williams H, Falkler W, Shay D (1982) Seasonal distribution of bdellovibrios at the mouth of the Patuxent river in the Chesapeake bay. Can J Microbiol 28:111–116

    Article  CAS  PubMed  Google Scholar 

  205. Williams H (1987) The recovery of high numbers of bdellovibrios from the surface water microlayer. Can J Microbiol 33:572–575

    Google Scholar 

  206. Williams HN (1988) A study of the distribution of bdellovibrios in estuarine sediment over an annual cycle. Microb Ecol 15:9–20

    Article  Google Scholar 

  207. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  Google Scholar 

  208. Wood DW et al. (2001) The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294:2317–2323

    Article  CAS  PubMed  Google Scholar 

  209. Wright D, Graham L, Jennings P (1998) Cloning of a Lysobacter enzymogenesgene that encodes an arginyl endopeptidase (endoproteinase Arg-C). Biochim Biophys Acta 1443:369–374

    CAS  PubMed  Google Scholar 

  210. Yoshida T, Jones L, Ellner S, Fussmann G, Hairston N Jr (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424:303–306

    Article  CAS  PubMed  Google Scholar 

  211. Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and “Sinorhizobium morelense” Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination Sinorhizobium adhaerens (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. Int J Syst Environ Microbiol 53:2107–2110

    Article  CAS  Google Scholar 

  212. Yu X-J, Walker DH (2000) In: Dworkin M et al (ed) The Order Rickettsiales. The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. 3rd edn, release 3.7, November 2, 2001. Springer, Berlin Heidelberg New York, http://link.springer-ny.com/link/service/books/10125/

  213. Zeph L, Casida LE Jr (1986) Gram-negative versus Gram-positive (Actinomycete) non-obligate bacterial predators of bacteria in soil. Appl Environ Microbiol 52:819–823

    PubMed  CAS  Google Scholar 

  214. Zlatanova J (1997) Archaeal chromatin: Virtual or real? Proc Natl Acad Sci USA 94:12251–12254

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Jurkevitch .

Editor information

Edouard Jurkevitch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurkevitch, E., Davidov, Y. (2006). Phylogenetic Diversity and Evolution of Predatory Prokaryotes. In: Jurkevitch, E. (eds) Predatory Prokaryotes. Microbiology Monographs, vol 4. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7171_052

Download citation

Publish with us

Policies and ethics