Animal Models Commonly Used to Study Quorum-Sensing Inhibitors

Part of the Springer Series on Biofilms book series (BIOFILMS, volume 2)


Multiple animal models exist for the study of biofilm infections and their inhibitors in vivo. The infection models described in this chapter range from the simple nematode-killing and amoeba-plate-killing assays, to models with more relevance to human disease like the pulmonary and cellulitis infection models in mice, the graft prosthesis, and the central venous catheter infection models in rats, and the endocarditis and osteomyelitis infection models in rabbits.


Quorum Sense Alginate Bead Prosthetic Valve Endocarditis Include Control Group Sodium Morrhuate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atela I, Coll P, Rello J, Quintana E, Barrio J, March F, Sanchez F, Barraquer P, Ballus J, Cotura A, Prats G (1997) Serial surveillance cultures of skin and catheter hub specimens from critically ill patients with central venous catheters: molecular epidemiology of infection and implications for clinical management and research. J Clin Microbiol 35:1784–1790PubMedGoogle Scholar
  2. 2.
    Baddour LM, Wilson WR, Bayer AS (2005) Infective endocarditis: diagnosis, antimicrobial therapy, and management of complications – executive summary. Circulation 111:3167–3184CrossRefGoogle Scholar
  3. 3.
    Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101:12312–12317PubMedCrossRefGoogle Scholar
  4. 4.
    Balaban N, Goldkorn T, Nhan RT, Dang LB, Scott S, Ridgley RM, Rasooly A, Wright SC, Larrick JW, Rasooly R, Carlson JR (1998) Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280:438–440PubMedCrossRefGoogle Scholar
  5. 5.
    Balaban N, Collins LV, Cullor JS, Hume EB, Medina-Acosta E, Vieira-da-Motta O, O'Callaghan R, Rossitto PV, Shirtliff ME, Serafim da Silveira L, Tarkowski A, Torres JV (2000) Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides 21:1301–1311PubMedCrossRefGoogle Scholar
  6. 6.
    Balaban N, Stoodley P, Fux CA, Wilson S, Costerton JW, Dell'Acqua G (2005) Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 437:48–54PubMedCrossRefGoogle Scholar
  7. 7.
    Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein J, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229PubMedCrossRefGoogle Scholar
  8. 8.
    Bjarnsholt T, Jensen PO, Burmolle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Hoiby N, Givskov M (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383PubMedCrossRefGoogle Scholar
  9. 9.
    Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426PubMedCrossRefGoogle Scholar
  10. 10.
    Cirioni O, Giacometti A, Ghiselli R, Dell'acqua G, Orlando F, Mocchegiani F, Silvestri C, Licci A, Saba V, Scalise G, Balaban N (2006) RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. J Infect Dis 193:180–186PubMedCrossRefGoogle Scholar
  11. 11.
    Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, Van Delden C, Curty LK, Kohler T (2002) Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033PubMedCrossRefGoogle Scholar
  12. 12.
    Costerton JW (2005) Biofilm theory can guide the treatment of device-related orthopaedic infections. Clin Orthop Relat Res 437:7–11PubMedCrossRefGoogle Scholar
  13. 13.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  14. 14.
    Darby C, Cosma CL, Thomas JH, Manoil C (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:15202–15207PubMedCrossRefGoogle Scholar
  15. 15.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890PubMedGoogle Scholar
  16. 16.
    Ehrlich GD, Hu FE, Lin Q, Costerton JW, Post JC (2004) Intelligent implants to battle biofilms. ASM News 70:127–133Google Scholar
  17. 17.
    Garrison PK, Freedman LR (1970) Experimental endocarditis 1. Staphylococcal endocarditis in rabbits resulting from placement of a polyethylene catheter in the right side of the heart. Yale J Biol Med 42:394–410PubMedGoogle Scholar
  18. 18.
    Gov Y, Borovok I, Korem M, Singh VK, Jayaswal RK, Wilkinson BJ, Rich SM, Balaban N (2004) Quorum sensing in Staphylococci is regulated via phosphorylation of three conserved histidine residues. J Biol Chem 279:14665–14672PubMedCrossRefGoogle Scholar
  19. 19.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  20. 20.
    Mader JT (1985) Animal models of osteomyelitis. Am J Med 78:213–217PubMedCrossRefGoogle Scholar
  21. 21.
    Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosaCaenorhabditis elegans pathogenesis model. Cell 96:47–56PubMedCrossRefGoogle Scholar
  22. 22.
    Oramas-Shirey MP, Buchanan LV, Dileto-Fang CL, Dailey CF, Ford CW, Batts DH, Gibson JK (2001) Efficacy of linezolid in a staphylococcal endocarditis rabbit model. J Antimicrob Chemother 47:349–352PubMedCrossRefGoogle Scholar
  23. 23.
    Pedersen SS, Shand GH, Hansen BL, Hansen GN (1990) Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMI 98:203–211CrossRefGoogle Scholar
  24. 23.
    Pesanti EL, Lorenzo JA (1998) Osteoclasts and effects of interleukin 4 in development of chronic osteomyelitis. Clin Orthop Relat Res 355:290–299PubMedCrossRefGoogle Scholar
  25. 24.
    Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 99:3159–3164PubMedCrossRefGoogle Scholar
  26. 25.
    Raad I (1998) Intravascular-catheter-related infection. Lancet 351:893–898PubMedCrossRefGoogle Scholar
  27. 26.
    Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005a) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814PubMedCrossRefGoogle Scholar
  28. 27.
    Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862PubMedGoogle Scholar
  29. 28.
    Sifri CD, Begun J, Ausubel FM, Calderwood SB (2003) Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71:2208–2217PubMedCrossRefGoogle Scholar
  30. 29.
    Smith RS, Harris SG, Phipps R, Iglewski B (2002a) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139PubMedCrossRefGoogle Scholar
  31. 30.
    Steinert M, Heuner K (2005) Dictyostelium as host model for pathogenesis. Cell Microbiol 7:307–314PubMedCrossRefGoogle Scholar
  32. 31.
    Tan MW, Mahajan-Miklos S, Ausubel FM (1999) Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA 96:715–720PubMedCrossRefGoogle Scholar
  33. 32.
    Wu H, Song Z, Givskov M, Doring G, Worlitzsch D, Mathee K, Rygaard J, Hoiby N (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147:1105–1113PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Tufts University, Cummings School of Veterinary MedicineDepartment of Biomedical Sciences, Division of Infectious DiseasesNorth GraftonUSA
  2. 2.Centre for Biomedical MicrobiologyBioCentrum-DTU, Technical University of DenmarkKgs LyngbyDenmark
  3. 3.Institute of Infectious Diseases and Public HealthUniversita Politecnica delle MarcheAnconaItaly

Personalised recommendations