# Mathematical Modeling of Quorum-Sensing Control in Biofilms

Chapter
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 2)

## Abstract

This chapter begins with an overview of the relevant literature on theoretical approaches to modeling biofilms, quorum sensing in bacteria, and anti-quorum-sensing treatment. Following this, new mathematical models are proposed to investigate anti-quorum-sensing treatment in batch cultures and in biofilm environments. Details for the models' derivation are aimed so that readers with a nonmathematical background will have a good idea of how such models are constructed and studied. Three anti-quorum-sensing targets are investigated, and a wide variety of outcomes in terms of successful treatment are predicted depending on treatment type, strength, and timing. The many interesting conclusions that can be drawn from the presented results are discussed in detail, including ideas for new experiments, many of which would be considered routine, that will provide deeper insights into how anti-quorum-sensing treatments could be highly effective means of controlling bacterial behavior in a variety of situations and environments.

## Keywords

Batch Culture Pretreated Medium Total Population Density Downregulated Cell Rapid Jump
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Anguige K, King JR, Ward JP, Williams P (2004) Mathematical modeling of therapies targeted at bacterial quorum sensing. Math Biosci 192:39–83
2. 2.
Anguige K, King JR, Ward JP, Williams P (2005) Modeling antibiotic- and anti-quorum sensing treatment of a Pseudomonas aeruginosa biofilm. J Math Biol 51:557–594
3. 3.
Anguige K, King JR, Ward JP (2006) A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 203:240–276
4. 4.
Atkinson B, Davies IJ (1974a) The overall rate of substrate uptake (reaction) by microbial film. Part I – a biological rate equation. Trans Inst Chem Eng 52:260–268Google Scholar
5. 5.
Atkinson B, Davies IJ (1974b) The overall rate of substrate uptake (reaction) by microbial film. Part II – effect of concentration and thickness with mixed microbial films. Trans Inst Chem Eng 52:248–259Google Scholar
6. 6.
Bakke R, Trulear MG, Robinson JA, Characklis WG (1984) Activity of Pseudomonas aeruginosa in biofilms: steady state. Biotech and Bioeng 26:1418–1424
7. 7.
Boyle JD, Dodds I, Lappin-Scott H, Stoodley P (1999) Limits to growth and what keeps a biofilm finite. Anitmicrobial Agents Chemo 38:303–315Google Scholar
8. 8.
Chaudhry MAS, Beg SA (1998) A review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21:701–710
9. 9.
Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Indust Microbiol Biotech 29:339–346
10. 10.
Chopp DL, Kirisits MJ, Moran B, Parsek MR (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65:1053–1079
11. 11.
Cogan NG, Cortez R, Fauci L (2005) Modeling physiological resistance in bacterial biofilms. Bull Math Biol 67:831–853
12. 12.
Cogan NG, Keener JP (2004) The role of the biofilm matrix in structural development. Math Med Biol 21:147–166
13. 13.
Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–297
14. 14.
Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63:95–116
15. 15.
Dockery J, Klapper I (2001) Finger formation in biofilms layers. SIAM J Appl Math 62:853–869Google Scholar
16. 16.
Dillon R, Fauci L, Fogelson A, Gaver D III (1996) Modeling biofilm processes using the immersed boundary method. J Comp Phys 129:57–73
17. 17.
Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759
18. 18.
Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209–6222
19. 19.
Fagerlind MG, Nilsson P, Harlén M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80:201–213
20. 20.
Fagerlind MG, Rice SA, Nilsson P, Harlén M, James S, Charlton T, Kjelleberg S (2003) The Role of Regulators in the Expression of Quorum-Sensing Signals in Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 6:88–100
21. 21.
Freter R, Brickner H, Fekete J, Vickerman M, Carey K (1983) Survival and implantation of Escherichia coli in the intestinal tract. Infect Immun 39:686–703
22. 22.
Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homosering lactone signalling. Mol Cell Biol 3:685–695Google Scholar
23. 23.
Gonpot P, Smith R, Richter A (2000) Diffusion limited biofilm growth. Mod Simul Mater Sci Eng 8:707–726
24. 24.
Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems 83:178–187
25. 25.
Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401
26. 26.
Hentzer M, Wu H, Andersen JB, Riedel KB, Rasmussen T, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815
27. 27.
Hudson MC, Ramp WK, Nicholson NC, Williams AS, Nousiainen MT (1995) Internalisation of Staphylococcus aureus by cultured osteoblasts. Microb Pathog 19:409–419
28. 28.
James S, Nilsson P, James G, Kjelleberg S, Fagerstrøm T (2000) Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation. J Mol Biol 296:1127–1137
29. 29.
Koerber AJ, King JR, Ward JP, Williams P, Croft JM, Sockett RE (2002) A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull Math Biol 64:239–259
30. 30.
Koerber AJ, King JR, Williams P (2005) Deterministic and stochastic modeling of endosome escape by Staphylococcus aureus: quorum'' sensing by a sungle bacterium. J Math Biol 50:440–488
31. 31.
Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760
32. 32.
Kreft JU, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287
33. 33.
Lee S, Park S, Lee J, Yum D, Koo B, Lee J-K (2002) Genes encoding the N-Acyl Homoserine Lactone-Degrading Enzyme Are Widespread in Many Subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924
34. 34.
Lewandowski Z, Walser G, Characklis WG (1991) Reaction Kinetics in Biofilms. Biotech and Bioeng 38:877–882
35. 35.
Manefield M, De Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S (1999) Evidence that halogenated furanones from Dlisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291
36. 36.
Manefield M, Rasmussen TB, Hentzer M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127
37. 37.
Nilsson P, Olofsson A, Fagerlind MG, Fagerstrøm T, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a quorum''. J Mol Biol 309:631–640
38. 38.
Noguera DR, Pizarro G, Stahl DA, Rittmann BE (1999) Simulation of multispecies biofilm development in three dimensions. Wat Sci Tech 39:123–130
39. 39.
Pearson JP, van Dalden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210
40. 40.
Picioreanu C, Kreft JU, van Loosdrecht MCM (2004) Particle-based multidimensional multispecies biofilm model. Appl Environ Microbiol 70:3024–3040
41. 41.
Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998a) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotech and Bioeng 57:718–731
42. 42.
Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998b) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotech and Bioeng 58:101–116
43. 43.
Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotech and Bioeng 69:504–515
44. 44.
Pritchett LA, Dockery J (2001) Steady state solutions of a one-dimensional biofilm model. Math Comput Model 33:255–263
45. 45.
Rittmann BE, Manem JA (1992) Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotech Bioeng 39:914–922
46. 46.
Sloane NJA (1998) Kepler's conjecture confirmed. Nature 395:435–436
47. 47.
Stewart PS (1994) Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Anitmicrobial Agents Chemo 38:1052–1058Google Scholar
48. 48.
Szego S, Cinnella P, Cunningham AB (1993) Numerical simulation of biofilm growth in closed conduits. J Comp Phys 108:246–263
49. 49.
Tiwari SK, Bowers KL (2001) Modeling biofilm growth and porous media applications. Math Comput Model 33:299–319
50. 50.
Ulrich RL (2004) Quorum quenching:enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 70:6173–6180
51. 51.
Viretta AU, Fusseneggar M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678
52. 52.
Wanner O, Gujer W (1986) A Multispecies Biofilm Model. Biotech and Bioeng 28:314–328
53. 53.
Wanner O, Reichert P (1995) Mathematical modeling of mixed culture biofilms. Biotech and Bioeng 49:172–184
54. 54.
Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47:23–55
55. 55.
Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2004) Cell-signalling repression in bacterial quorum sensing. Math Med Biol 21:169–204
56. 56.
Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modeling of quorum sensing in bacteria. IMA J Math Appl Med Biol 18:263–292
57. 57.
Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16
58. 58.
Xu F, Byun T, Dussen HJ, Duke KR (2003) Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. Biotechnology 101:89–96