Part of the Springer Series on Biofilms book series (BIOFILMS, volume 2)


This introductory chapter discusses the problem of drug resistance and persistent medical biofilm infections, emphasizing the need for alternative approaches to the prevention and treatment of biofilm infections. Such alternative approaches are described in subsequent chapters, culminating with clinical studies that describe treating otherwise untreatable wound infections with the aid of antibiofilm approaches.


Antimicrobial Resistance Planktonic Cell Acid Tolerance Arginine Deiminase Acid Tolerance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adewoye L, Sutherland A, Srikumar R, Poole K (2002) The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol 184:4308–4312PubMedCrossRefGoogle Scholar
  2. 2.
    Aendekerk S, Ghysels B, Cornelis P, Baysse C (2002) Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:2371–2381PubMedGoogle Scholar
  3. 3.
    Allison DG, Gilbert P (1995) Modification by surface association of antimicrobial susceptibility of bacterial populations. J Ind Microbiol 15:311–317PubMedCrossRefGoogle Scholar
  4. 4.
    Anwar H, Dasgupta MK, Costerton JW (1990) Testing the susceptibility of bacteria in biofilms to antibacterial Agents. Antimicrob Agents Chemother 34:2043–2046PubMedGoogle Scholar
  5. 5.
    Anwar H, van Biesen T, Dasgupta M, Lam K, Costerton JW (1989) Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 33:1824–1826PubMedGoogle Scholar
  6. 6.
    Appelbaum PC (2006) MRSA—the tip of the iceberg. Clin Microbiol Infect 12(Suppl 2):3–10PubMedCrossRefGoogle Scholar
  7. 7.
    Arciola CR, Campoccia D, Gamberini S, Donati ME, Pirini V, Visai L, Speziale P, Montanaro L (2005) Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 26:6530–6535PubMedCrossRefGoogle Scholar
  8. 8.
    Bagge N, Ciofu O, Hentzer M, Campbell JI, Givskov M, Hoiby N (2002) Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411PubMedCrossRefGoogle Scholar
  9. 9.
    Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684PubMedCrossRefGoogle Scholar
  10. 10.
    Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474PubMedCrossRefGoogle Scholar
  11. 11.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  12. 12.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedCrossRefGoogle Scholar
  13. 13.
    Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867PubMedCrossRefGoogle Scholar
  14. 14.
    Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219PubMedCrossRefGoogle Scholar
  15. 15.
    Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743PubMedCrossRefGoogle Scholar
  16. 16.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964PubMedCrossRefGoogle Scholar
  17. 17.
    Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166PubMedCrossRefGoogle Scholar
  18. 18.
    Eaton KA, Gilbert JV, Joyce EA, Wanken AE, Thevenot T, Baker P, Plaut A, Wright A (2002) In vivo complementation of ureB restores the ability of Helicobacter pylori to colonize. Infect Immun 70:771–778PubMedCrossRefGoogle Scholar
  19. 19.
    Elvers KT, Lappin-Scott HM (2000) Biofilms and biofouling, 2nd edn. Academic Press, San DiegoGoogle Scholar
  20. 20.
    Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236Google Scholar
  21. 21.
    Gatermann S, Marre R (1989) Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus carnosus and contribution of the enzyme to virulence. Infect Immun 57:2998–3002PubMedGoogle Scholar
  22. 22.
    Ghuysen JM (1994) Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol 2:372–380PubMedCrossRefGoogle Scholar
  23. 23.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  24. 24.
    Hanaki H, Labischinski H, Inaba Y, Kondo N, Murakami H, Hiramatsu K (1998a) Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. J Antimicrob Chemother 42:315–320 PubMedCrossRefGoogle Scholar
  25. 25.
    Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K (1998b) Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199–209PubMedCrossRefGoogle Scholar
  26. 26.
    Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27(Suppl 1):S93–S99PubMedCrossRefGoogle Scholar
  27. 27.
    Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513–516PubMedGoogle Scholar
  28. 28.
    Hauser AR, Sriram P (2005) Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad Med 117:41–48PubMedCrossRefGoogle Scholar
  29. 29.
    Hedelin H, Brorson JE, Grenabo L, Pettersson S (1984) Ureaplasma urealyticum and upper urinary tract stones. Br J Urol 56:244–249PubMedCrossRefGoogle Scholar
  30. 30.
    Hentzer M, Eberl L, Givskov M (2005) Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2:37–61 CrossRefGoogle Scholar
  31. 31.
    Hooper DC (2002) Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect Dis 2:530–538PubMedCrossRefGoogle Scholar
  32. 32.
    Hoyle BD, Costerton JW (1991) Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91–105PubMedGoogle Scholar
  33. 33.
    Jones BD, Lockatell CV, Johnson DE, Warren JW, Mobley HL (1990) Construction of urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection. Infect Immun 58:1120–1123PubMedGoogle Scholar
  34. 34.
    Kohler T, Epp SF, Curty LK, Pechere JC (1999) Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 181:6300–6305PubMedGoogle Scholar
  35. 35.
    Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354PubMedCrossRefGoogle Scholar
  36. 36.
    Korem M, Gov Y, Kiran MD, Balaban N (2005) Transcriptional profiling of target of RNAIII-activating protein, a master regulator of staphylococcal virulence. Infect Immun 73:6220–6228PubMedCrossRefGoogle Scholar
  37. 37.
    LeChevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499PubMedGoogle Scholar
  38. 38.
    Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150PubMedCrossRefGoogle Scholar
  39. 39.
    Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007PubMedCrossRefGoogle Scholar
  40. 40.
    Li YH, Chen YY, Burne RA (2000) Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ Microbiol 2:169–177PubMedCrossRefGoogle Scholar
  41. 41.
    Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001b) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908PubMedCrossRefGoogle Scholar
  42. 42.
    Ligon JV, Kenny GE (1991) Virulence of ureaplasmal urease for mice. Infect Immun 59:1170–1171PubMedGoogle Scholar
  43. 43.
    Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265–1273PubMedGoogle Scholar
  44. 44.
    Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O'Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310PubMedCrossRefGoogle Scholar
  45. 45.
    Matz C, Bergfeld T, Rice SA, Kjelleberg S (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226PubMedCrossRefGoogle Scholar
  46. 46.
    Ng EY, Trucksis M, Hooper DC (1996) Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob Agents Chemother 40:1881–1888PubMedGoogle Scholar
  47. 47.
    O'Toole GA, Gibbs KA, Hager PW, Phibbs PV Jr, Kolter R (2000) The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182:425–431PubMedCrossRefGoogle Scholar
  48. 48.
    Poole K, Srikumar R (2001) Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr Top Med Chem 1:59–71PubMedCrossRefGoogle Scholar
  49. 49.
    Potera C (1999) Forging a link between biofilms and disease. Science 19:1837–1838CrossRefGoogle Scholar
  50. 50.
    Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002PubMedGoogle Scholar
  51. 51.
    Pumbwe L, Piddock LJ (2000) Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2861–2864PubMedCrossRefGoogle Scholar
  52. 52.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154PubMedCrossRefGoogle Scholar
  53. 53.
    Song MD, Wachi M, Doi M, Ishino F, Matsuhashi M (1987) Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett 221:167–171PubMedCrossRefGoogle Scholar
  54. 54.
    Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  55. 55.
    Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  56. 56.
    Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320PubMedCrossRefGoogle Scholar
  57. 57.
    Utsui Y, Yokota T (1985) Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 28:397–403PubMedGoogle Scholar
  58. 58.
    Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864PubMedCrossRefGoogle Scholar
  59. 59.
    Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146:547–549PubMedGoogle Scholar
  60. 60.
    Yoneyama H, Ocaktan A, Tsuda M, Nakae T (1997) The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa. Biochem Biophys Res Commun 233:611–618PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Cummings School of Veterinary Medicine, Department of Biomedical Sciences, Division of Infectious DiseasesTufts UniversityNorth GraftonUSA
  2. 2.Department of Biomedical and Chemical EngineeringSyracuse UniversitySyracuseUSA
  3. 3.BioCentrum-DTUTechnical University of DenmarkKgs LyngbyDenmark
  4. 4.Innovation, Cultures & Enzymes DivisionHørsholmDenmark

Personalised recommendations