Skip to main content

Control of Leaf Morphogenesis by Long- and Short-Distance Signaling: Differentiation of Leaves Into Sun or Shade Types and Compensated Cell Enlargement

Part of the Plant Cell Monographs book series (CELLMONO,volume 10)

Abstract

The flattened, thin lamina of leaves captures sunlight for photosynthesis and facilitates gas exchange. Therefore, the size and shape of a leaf are fundamentally important features of its integrity and function. Progress in developmental studies has suggested that long- and short-distance signaling pathways are involved in leaf formation. In this chapter, we introduce these signaling pathways, both of which can control final leaf shape and structure: a long-distance signaling pathway that governs the differentiation of leaves into sun and shade types, and a short-distance signaling pathway that appears to be involved in an organ-wide system that integrates cell proliferation and cell enlargement. Although none of the molecules involved in these two pathways have been identified, plausible mechanisms of these pathways are discussed based on present data.

Keywords

  • Mature Leaf
  • Leaf Development
  • Leaf Primordia
  • Leaf Thickness
  • Shade Leave

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7089_2007_148
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-77590-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton PMS, Berlyn GP (1994) A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. Am J Bot 81:589–597

    CrossRef  Google Scholar 

  • Autran D, Jonak C, Belcram K, Beemster GT, Kronenberger J, Grandjean O, Inzé D, Traas J (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049

    PubMed  CrossRef  CAS  Google Scholar 

  • Avery GS (1933) Structure and development of tobacco leaf. Am J Bot 20:565–592

    CrossRef  Google Scholar 

  • Barrôco RM, Peres A, Droual AM, De Veylder L, le Nguyen SL, De Wolf J, Mironov V, Peerbolte R, Beemster GT, Inzé D, Broekaert WF, Frankard V (2006) The cyclin-dependent kinase inhibitor Orysa; KRP1 plays an important role in seed development of rice. Plant Physiol 142:1053–1064

    PubMed  CrossRef  CAS  Google Scholar 

  • Beemster GT, Vercruysse S, De Veylder L, Kuiper M, Inze D (2006) The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. J Plant Res 119:43–50

    PubMed  CrossRef  Google Scholar 

  • Björkman O (1981) In: Encyclopedia of Plant Physiology, Physiological Plant Ecology I. New Series vol 12A. Springer, Berlin Heidelberg, New York, pp 57–107

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    CrossRef  CAS  Google Scholar 

  • Boudolf V, Barrôco R, Engler Jde A, Verkest A, Beeckman T, Naudts M, Inzé D, De Veylder L (2004) B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16:945–955

    PubMed  CrossRef  CAS  Google Scholar 

  • Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W, Jefferson RA, Grossniklaus U, Curtis MD (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141:1194–1204

    PubMed  CrossRef  CAS  Google Scholar 

  • Chabot BF, Chabot JF (1977) Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26:363–377

    CrossRef  Google Scholar 

  • Chabot BF, Jurik TW, Chabot JF (1979) Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am J Bot 66:940–945

    CrossRef  Google Scholar 

  • Cho Y-H, Yoo S-D, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    PubMed  CrossRef  CAS  Google Scholar 

  • Clay NK, Nelson T (2005) The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf. Plant Cell 17:1994–2008

    PubMed  CrossRef  CAS  Google Scholar 

  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341

    PubMed  CrossRef  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, van der Schueren E, Maes S, Naudts M, Inzé D (2001) Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 13:1653–1668

    PubMed  CrossRef  Google Scholar 

  • Dengler NG (1980) Comparative histological basis of sun and shade leaf dimorphism in Helianthus annuus. Can J Bot 58:717–730

    CrossRef  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    PubMed  CrossRef  CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQJ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    PubMed  CrossRef  CAS  Google Scholar 

  • Esau K (1977) Anatomy of Seed Plants. Wiley, New York

    Google Scholar 

  • Escoubas J-M, Lmas M, LaRoshe J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241

    PubMed  CrossRef  CAS  Google Scholar 

  • Exner V, Taranto P, Schonrock N, Gruissem W, Henning L (2006) Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 133:4163–4172

    PubMed  CrossRef  CAS  Google Scholar 

  • Ferjani A, Horiguchi G, Yano S, Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis thaliana reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiol 144:988–999

    PubMed  CrossRef  CAS  Google Scholar 

  • Fujikura U, Horiguchi G, Tsukaya H (2007) Dissection of enhanced cell expansion processes in leaves triggered by a defect in cell proliferation, with reference to roles of endoreduplication. Plant Cell Physiol 48:278–286

    PubMed  CrossRef  CAS  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole-plant perspective. In: Evans JR, Von Caemmerer S, Adams WW III (eds) Ecology of Photosynthesis in Sun and Shade. CSIRO, Melbourne, pp 63–92

    Google Scholar 

  • Haberlandt G (1914) Physiological Plant Anatomy. Macmillan, London

    Google Scholar 

  • Hagemann W (1992) The relationship of anatomy to morphology in plants: a new theoretical perspective. Int J Plant Sci 153:S38–48

    CrossRef  Google Scholar 

  • Hanson J, Johannesson H, Engström P (2001) Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. Plant Mol Biol 45:247–262

    PubMed  CrossRef  CAS  Google Scholar 

  • Hemerly A, Engler Jde A, Bergounioux C, Van Montagu M, Engler G, Inzé D, Ferreira P (1995) Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J 14:3925–3936

    PubMed  CAS  Google Scholar 

  • Heraut-Bron V, Robin C, Varlet-Grancher C, Afif D, Guckert A (1999) Light quality (red:far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? Can J Bot 77:1425–1431

    CrossRef  Google Scholar 

  • Héraut-Bron V, Robin C, Varlet-Grancher C, Guckert A (2001) Phytochrome-mediated effects on leaves of white clover: consequences for light interception by the plant under competition for light. Ann Bot 88:737–743

    CrossRef  CAS  Google Scholar 

  • Horiguchi G, Kim G-T, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    PubMed  CrossRef  CAS  Google Scholar 

  • Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006a) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119:37–42

    PubMed  CrossRef  Google Scholar 

  • Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H (2006b) Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J 48:638–644

    PubMed  CrossRef  CAS  Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105:79–98

    PubMed  CrossRef  CAS  Google Scholar 

  • Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaplan DR, Hagemann W (1991) The relationship of cell and organism in vascular plants. Bioscience 41:693–703

    CrossRef  Google Scholar 

  • Kaplan DR (1992) The relationship of organisms to cells in plants: problems and implications of an organismal perspective. Int J Plant Sci 153:S28–S37

    CrossRef  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systematic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    PubMed  CrossRef  CAS  Google Scholar 

  • Kaya H, Shibahara K, Taoka K, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim G-T, Shoda K, Tsuge T, Cho KH, Uchimiya H, Yokoyama R, Nishitani K, Tsukaya H (2002) The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO J 21:1267–1279

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774

    PubMed  CrossRef  CAS  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379

    PubMed  CrossRef  CAS  Google Scholar 

  • Koch KE, Ying Z, Wu Y, Avigne WT (2000) Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot 51:417–427

    PubMed  CrossRef  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  CrossRef  CAS  Google Scholar 

  • Lake JA, Quick QP, Beerling DJ, Woodward FI (2001) Signals from mature to new leaves. Nature 411:154

    PubMed  CrossRef  CAS  Google Scholar 

  • Lopéz-Juez E, Bowyer JR, Sakai T (2001) Distinct leaf developmental and gene expression responses to light quantity depend on blue-photoreceptor or plastid-derived signals, and can occur in the absence of phototropins. Planta 227:113–123

    CrossRef  CAS  Google Scholar 

  • Maksymowych R (1963) Cell division and cell elongation in leaf development in Xanthium pennsylvanicum. Am J Bot 50:891–901

    CrossRef  Google Scholar 

  • Melaragno JE, Mehrotra B, Coleman AW (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5:1661–1668

    PubMed  CrossRef  Google Scholar 

  • Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    PubMed  CrossRef  CAS  Google Scholar 

  • Miyazawa S-I, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P deltoides). J Exp Bot 57:373–380

    PubMed  CrossRef  CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelissen H, Clarke JH, De Block M, De Block S, Vanderhaeghen R, Zielinski RE, Dyer T, Lust S, Inzé D, Van Lijsebettens M (2003) DRL1, a homolog of the yeast TOT4/KTI12 protein, has a function in meristem activity and organ growth in plants. Plant Cell 15:639–654

    PubMed  CrossRef  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    PubMed  CrossRef  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and Environmental Pant Physiology 3rd edn. Elsevier, USA

    Google Scholar 

  • Osborn JM, Taylor TN (1990) Morphological and ultrastructural studies on plant cuticular membranes. I. Sun and shade leaves of Quercus velutina (Fagaceae). Bot Gaz 151:465–476

    CrossRef  Google Scholar 

  • Pfannschmidt T, Nilesson A, Allen JF (1999) Photosynthetic control of chloroplast gene expression. Nature 397:625–628

    CrossRef  CAS  Google Scholar 

  • Popescu SC, Tumer NE (2004) Silencing of ribosomal protein L3 genes in N. tabacum reveals coordinate expression and significant alterations in plant growth, development and ribosome biogenesis. Plant J 39:29–44

    PubMed  CrossRef  CAS  Google Scholar 

  • Rhichter T, Fukshansky L (1998) Optics of a bifacial leaf: 3. Implications for photosynthetic performance. Photochem Photobiol 68:337–352

    CrossRef  Google Scholar 

  • Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    PubMed  CrossRef  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    PubMed  CrossRef  CAS  Google Scholar 

  • Sitte P (1992) A modern concept of the cell theory: a perspective on competing hypotheses of structure. Int J Plant Sci 153:S1-S6

    Google Scholar 

  • Smith H (1994) Sensing the light environment: the functions of the phytochrome family. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants, 2nd edn. Kluwer Academic, Dordrecht, pp 337–416

    Google Scholar 

  • Smith LG, Hake S (1992) The initiation and determination of leaves. Plant Cell 4:1017–1027

    PubMed  CrossRef  Google Scholar 

  • Terashima I, Miyazawa S-I, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    CrossRef  CAS  Google Scholar 

  • Thomas PW, Woodward FI, Quick WP (2004) Systemic irradiance signalling in tobacco. New Phytol 161:193–198

    CrossRef  CAS  Google Scholar 

  • Tichá I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica 11:357–471

    Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh. Development 122:1589–1600

    PubMed  CAS  Google Scholar 

  • Tsukaya H (2002) Interpretation of mutants in leaf morphology: genetic evidence for a compensatory system in leaf morphogenesis that provides a new link between cell and organismal theories. Int Rev Cytol 217:1–39

    PubMed  CAS  CrossRef  Google Scholar 

  • Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62

    PubMed  CrossRef  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    PubMed  CrossRef  CAS  Google Scholar 

  • Tsukaya H, Beemster GT (2006) Genetics, cell cycle and cell expansion in organogenesis in plants. J Plant Res 119:1–4

    PubMed  CrossRef  Google Scholar 

  • Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology. Plant J 24:613–623

    PubMed  CrossRef  CAS  Google Scholar 

  • Weston E, Thorogood K, Vinti G, Lopéz-Juez E (2000) Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild-type and blue-light-perception mutants. Planta 211:807–815

    PubMed  CrossRef  CAS  Google Scholar 

  • White DWR (2006) PEAPOD regulates lamina size and curvature in Arabidopsis. Proc Natl Acad Sci USA 103:13238–13243

    PubMed  CrossRef  CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels. Nature 327:617–618

    CrossRef  Google Scholar 

  • Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO2: ecological consequences. New Phytol 153:477–484

    CrossRef  CAS  Google Scholar 

  • Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303–1310

    PubMed  CrossRef  CAS  Google Scholar 

  • Yano S, Terashima I (2004) Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Env 27:781–793

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tsukaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferjani, A., Yano, S., Horiguchi, G., Tsukaya, H. (2008). Control of Leaf Morphogenesis by Long- and Short-Distance Signaling: Differentiation of Leaves Into Sun or Shade Types and Compensated Cell Enlargement. In: Bögre, L., Beemster, G. (eds) Plant Growth Signaling. Plant Cell Monographs, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_148

Download citation