Skip to main content

Endoreduplication and Programmed Cell Death in the Cereal Endosperm

  • Chapter
  • First Online:
Endosperm

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 8))

Abstract

Endoreduplication and programmed cell death are important processes during the development and maturation of cereal endosperm. Endoreduplication results in the formation of multiple copies of each chromosome in the nucleus, and it leads to cells with ploidies of 24C to 96C, and sometimes even higher. Although it has generally been thought that this process is associated with cell enlargement and increased levels of gene expression, recent studies of maize endosperm development provided data that do not support this hypothesis. Programmed cell death commences in starchy endosperm cells around mid-development, and ultimately affects nearly all of the endosperm cells, except for those in the aleurone layer. The progression of programmed cell death, which appears to be mediated by increasing levels of ethylene and gibberellic acid, is mediated by cysteine proteases that appear to be similar to vacuolar processing enzymes. Presumably, the loss of viability of starchy endosperm cells facilitates hydrolysis of stored nutrients and their uptake by the embryo during seed germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L, Zambryski P, Gruissem W (1997) RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol 17:5077–5086

    PubMed  CAS  Google Scholar 

  • Artlip TS, Madison JT, Setter TL (1995) Water deficit in developing endosperm of maize:cell division and nuclear DNA endoreduplication. Plant Cell Environ 18:1034–1040

    CAS  Google Scholar 

  • Becraft PW (2007) Aleurone Cell Development (in this volume). Springer, Heidelberg

    Google Scholar 

  • Becraft PW, Asuncion-Crabb Y (2000) Positional cues specify and maintain aleurone cell fate in maize endosperm development. Development 127:4039–4048

    PubMed  CAS  Google Scholar 

  • Beemster GTS, De Vusser K, De Tavernier E, De Bock K, Inze D (2002) Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol 129:854–864

    PubMed  CAS  Google Scholar 

  • Bethke PC, Lonsdale JE, Fath A, Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11:1033–1046

    PubMed  CAS  Google Scholar 

  • Brown, Lemmon (2007) The Developmental Biology of Cereal Endosperm (in this volume). Springer, Heidelberg

    Google Scholar 

  • Brunori A, Forino LMC, Frediani M, Ruberti F (1993) Cell number and polyploidy in the starchy endosperm of Triticum. J Genet Breed 47:217–220

    Google Scholar 

  • Buckner B, Janick-Buckner D, Gray J, Johal GS (2000) Cell death in maize. Physiol Plant 108:231–239

    CAS  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress. Plant Physiol 106:45–51

    PubMed  CAS  Google Scholar 

  • Chojecki AJS, Bayliss MW, Gale MD (1986) Cell production and DNA accumulation in the wheat endosperm, and their association with grain weight. Ann Bot 58:809–817

    Google Scholar 

  • Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA (2005) Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol 138:2323–2336

    PubMed  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    PubMed  CAS  Google Scholar 

  • Cossegal M (2007) The Embryo Surrounding Region (in this volume). Springer, Heidelberg

    Google Scholar 

  • Coverley D, Laman H, Laskey RA (2002) Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 4:523–528

    PubMed  CAS  Google Scholar 

  • Criqui MC, Weingartner M, Capron A, Parmentier Y, Shen W-H, Heberle-Bors E, Laszlo B, Genschik P (2001) Sub-cellular localization of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant J 28:569–581

    PubMed  CAS  Google Scholar 

  • D'Amato F (1984) Role of polyploidy in reproductive organs and tissues. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 523–566

    Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fie genes in maize:expression pattern and imprinting suggest distinct functions. Plant Cell 15:425–438

    PubMed  CAS  Google Scholar 

  • Danon A, Gallois P (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett 437:131–136

    PubMed  CAS  Google Scholar 

  • Dante RA (2005) Characterization of cyclin-dependent kinases and their expression in developing maize endosperm. PhD dissertation, University of Arizona, Tucson, AZ

    Google Scholar 

  • De Clercq A, Inze D (2006) Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 41:293–313

    PubMed  Google Scholar 

  • de Jager SM, Maughan S, Dewitte W, Scofield S, Murray JAH (2005) The developmental context of cell-cycle control in plants. Semin Cell Dev Biol 16:385–396

    PubMed  Google Scholar 

  • De Veylder L, Beeckman T, Beemster GTS, de Almeida Engler J, Ormenese S, Maes S, Naudts M, Van Der Schueren E, Jacqmard A, Engler G, Inze D (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa–DPa transcription factor. EMBO J 21:1360–1368

    PubMed  Google Scholar 

  • Desvoyes B, Ramirez-Parra E, Xie Q, Chua N-H, Gutierrez C (2006) Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol 140:67–80

    PubMed  CAS  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    PubMed  CAS  Google Scholar 

  • Dilkes BP, Dante RA, Coelho CM, Larkins BA (2002) Genetic variation in endoreduplication in maize endosperm is subject to parent-of-origin specific effects. Genetics 160:1163–1177

    PubMed  Google Scholar 

  • Dolfini S, Landoni M, Tonelli C, Bernard L, Viotti A (1992) Spatial regulation in the expression of structural and regulatory storage-protein genes in Zea mays endosperm. Dev Genet 13:264–276

    Google Scholar 

  • Dominguez F, Cejudo FJ (2006) Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem J 397:529–536

    PubMed  CAS  Google Scholar 

  • Dominguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    PubMed  CAS  Google Scholar 

  • Dominguez F, Moreno J, Cejudo FJ (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J Biol Chem 279:11530–11536

    PubMed  CAS  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    PubMed  CAS  Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    PubMed  CAS  Google Scholar 

  • Engelen-Eigles G, Jones RJ, Phillips RL (2000) DNA endoreduplication in maize endosperm cells: the effect of exposure to short-term high temperature. Plant Cell Environ 23:657–663

    CAS  Google Scholar 

  • Engelen-Eigles G, Jones RJ, Phillips RL (2001) DNA endoreduplication in maize endosperm cells is reduced by high temperature during the mitotic phase. Crop Sci 41:1114–1121

    Article  Google Scholar 

  • Fath A, Bethke P, Lonsdale J, Meza-Romero R, Jones R (2000) Programmed cell death in cereal aleurone. Plant Mol Biol 44:255–266

    PubMed  CAS  Google Scholar 

  • Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U (1999) Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. Eur J Biochem 264:415–426

    PubMed  CAS  Google Scholar 

  • Fung TK, Poon RY (2005) A roller-coaster ride with the mitotic cyclins. Semin Cell Dev Biol 16:335–342

    PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    PubMed  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Höfte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    PubMed  CAS  Google Scholar 

  • Gerbi SA, Strezoska Z, Waggener JM (2002) Initiation of DNA replication in multicellular eukaryotes. J Struct Biol 140:17–30

    PubMed  CAS  Google Scholar 

  • Grafi G, Larkins BA (1995) Endoreduplication in maize endosperm: involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science 269:1262–1264

    PubMed  CAS  Google Scholar 

  • Grafi G, Burnett RJ, Helentjaris T, Larkins BA, DeCaprio JA, Sellers WR, Kaelin WG Jr (1996) A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc Natl Acad Sci USA 93:8962–8967

    PubMed  CAS  Google Scholar 

  • Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    PubMed  CAS  Google Scholar 

  • Guitton AE, Berger F (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49:707–716

    PubMed  CAS  Google Scholar 

  • Halford NG, Shewry P (2007) The Structure and Expression of Cereal Storage Protein Genes (in this volume). Springer, Heidelberg

    Google Scholar 

  • Hannah C (2007) Starch Formation in the Cereal Endosperm (in this volume). Springer, Heidelberg

    Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    PubMed  CAS  Google Scholar 

  • Ingle J, Beitz D, Hageman RH (1965) Changes in composition during development and maturation of maize seeds. Plant Physiol 40:835–839

    Article  PubMed  CAS  Google Scholar 

  • Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP (2000) CDK-related protein kinases in plants. Plant Mol Biol 43:607–620

    PubMed  CAS  Google Scholar 

  • Keown AC, Taiz L, Jones RL (1977) The nuclear content of developing barley aleurone cells. Am J Bot 64:1248–1253

    CAS  Google Scholar 

  • Kladnik A, Chamusco K, Dermastia M, Chourey P (2004) Evidence of programmed cell death in post-phloem transport cell of the maternal pedicel tissue in developing caryopsis of maize. Plant Physiol 136:3572–3581

    PubMed  CAS  Google Scholar 

  • Kladnik A, Chamusco K, Chourey PS, Dermastia M (2005) In situ detection of programmed cell death in the maize caryopsis. Period Biol 107:11–16

    Google Scholar 

  • Kladnik A, Chourey PS, Pring DR, Dermastia M (2006) Development of the endosperm of Sorghum bicolor during the endoreduplication-associated growth phase. J Cereal Sci 43:209–215

    CAS  Google Scholar 

  • Kodrzycki R, Boston RS, Larkins BA (1989) The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1:105–114

    PubMed  CAS  Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. Proc Natl Acad Sci USA 82:7010–7014

    PubMed  CAS  Google Scholar 

  • Kowles RV, McMullen MD, Yerk G, Phillip RL, Kraemer S, Srienc F (1992) Endosperm mitotic activity and endoreduplication in maize affected by defective kernel mutations. Genome 35:68–77

    Google Scholar 

  • Kowles RV, Yerk GL, Haas KM, Phillips RL (1997) Maternal effects influencing DNA endoreduplication in developing endosperm of Zea mays. Genome 40:798–805

    CAS  PubMed  Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS (2000) The programme of cell death in plants and animals: a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Kudo N, Kimura Y (2002) Nuclear DNA endoreduplication during petal development in cabbage: relationship between ploidy levels and cell size. J Exp Bot 53:1017–1023

    PubMed  CAS  Google Scholar 

  • Kumagai A, Dunphy WG (1991) The CDC25 protein controls tyrosine dephosphorylation of the CDC2 protein in a cell-free system. Cell 64:903–914

    PubMed  CAS  Google Scholar 

  • Lam E (2005) Vacuolar proteases livening up programmed cell death. Trends Cell Biol 15:124–127

    PubMed  CAS  Google Scholar 

  • Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K, Hassan S, Wieruszeski J-M, Faure J-D, Van Montague M, Inze D, Lippens G (2004) A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:13380–13385

    PubMed  CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo Y-M, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192

    PubMed  CAS  Google Scholar 

  • LeBlanc O, Pointe C, Hernandez M (2002) Cell cycle progression during endosperm development in Zea mays depends on parental dosage effects. Plant J 32:1057–1066

    PubMed  CAS  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo Y-M, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16:1854–1869

    PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1:1011–1023

    PubMed  CAS  Google Scholar 

  • Li C-J, Vassilev A, DePamphilis ML (2004) Role for Cdk1 (Cdc2)/cyclin A in preventing the mammalian origin recognition complex's largest subunit (Orc1) from binding to chromatin during mitosis. Mol Cell Biol 24:5875–5886

    PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399

    PubMed  CAS  Google Scholar 

  • Lur H-S, Setter TL (1993) Role of auxin in maize endosperm development: timing of nuclear DNA endoreduplication, zein expression, and cytokinin. Plant Physiol 103:273–280

    PubMed  CAS  Google Scholar 

  • MacAuley A, Cross JC, Werb Z (1998) Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol Biol Cell 9:795–807

    PubMed  CAS  Google Scholar 

  • Mendenhall MD (1998) Cyclin-dependent kinase inhibitors of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Curr Top Microbiol Immunol 227:1–24

    PubMed  CAS  Google Scholar 

  • Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell cycle gene activity. Plant J 30:203–212

    PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    PubMed  CAS  Google Scholar 

  • Norstog K (1974) Nucellus during early embryogeny in barley: fine structure. Bot Gaz 135:97–103

    Google Scholar 

  • Olsen O-A (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    PubMed  CAS  Google Scholar 

  • Olsen O-A (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    PubMed  CAS  Google Scholar 

  • Parker LL, Piwnica-Worms H (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257:1955–1957

    PubMed  CAS  Google Scholar 

  • Penterman J (2007) Genomic Imprinting in Arabidopsis thaliana and Zeamays (in this volume). Springer, Heidelberg

    Google Scholar 

  • Porceddu A, Stals H, Reichheld JP, Segers G, De Veylder L, Barroco RP, Casteels P, Van Montagu M, Inze D, Mironov V (2001) A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. J Biol Chem 276:36354–36360

    PubMed  CAS  Google Scholar 

  • Ramachandran C, Raghavan V (1989) Changes in nuclear DNA content of endosperm cells during grain development in rice (Oryza sativa). Ann Bot 64:459–468

    Google Scholar 

  • Roberts IN, Passeron S, Barneix AJ (2006) The two main endoproteases present in dark-induced senescent wheat leaves are distinct subtilisin-like proteases. Planta 224:1437–1447

    PubMed  CAS  Google Scholar 

  • Royo J (2007) Transfer Cells (in this volume). Springer, Heidelberg

    Google Scholar 

  • Sabelli PA, Larkins BA (2006) Grasses like mammals? Redundancy and compensatory regulation within the retinoblastoma protein family. Cell Cycle 5:352–355

    PubMed  CAS  Google Scholar 

  • Sabelli PA, Dante RA, Leiva-Neto JT, Jung R, Gordon-Kamm WJ, Larkins BA (2005) RBR3, a member of the retinoblastoma-related family from maize, is regulated by the RBR1/E2F pathway. Proc Natl Acad Sci USA 102:13005–13012

    PubMed  CAS  Google Scholar 

  • Sauer K, Knoblich JA, Richardson H, Lehner CF (1995) Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycle of Drosophila embryogenesis. Genes Dev 9:1327–1339

    PubMed  CAS  Google Scholar 

  • Schnittger A, Schobinger U, Stierhof Y-D, Hulskamp M (2002) Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr Biol 12:415–420

    PubMed  CAS  Google Scholar 

  • Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    PubMed  CAS  Google Scholar 

  • Shrewry PR, Tatham AS (1999) The characteristics, structures, and evolutionary relationships of prolamins. In: Shrewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, pp 11–33

    Google Scholar 

  • Sørensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281

    PubMed  Google Scholar 

  • Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol 126:1214–1223

    PubMed  CAS  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215:518–522

    PubMed  CAS  Google Scholar 

  • Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, Cella R (2006) Interplay between Arabidopsis activating factors E2FB and E2FA in cell cycle progression and development. Plant Physiol 140:1355–1366

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327

    PubMed  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) Big it up: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    PubMed  CAS  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999a) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci USA 96:4180–4185

    PubMed  CAS  Google Scholar 

  • Sun Y, Flannigan BA, Setter TL (1999b) Regulation of endoreduplication in maize (Zea mays L.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis. Plant Mol Biol 41:245–258

    PubMed  CAS  Google Scholar 

  • Verkest A, Weinl C, Inze D, De Veylder L, Schnittger A (2005) Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiol 139:1099–1106

    PubMed  CAS  Google Scholar 

  • Vilhar B, Kladnik A, Blejec A, Chourey PS, Dermastia M (2002) Cytometrical evidence that the loss of seed weight in miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol 129:23–30

    PubMed  CAS  Google Scholar 

  • Walker JD, Oppenheimer DG, Concienne J and Larkin JC (2000) SIAMESE, a gene controlling the endoreplication cell cycle in Arabidopsis. Development 127:3931–3940

    PubMed  CAS  Google Scholar 

  • Weiss A, Herzig A, Jacobs H, Lehner CF (1998) Continuous cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr Biol 8:239–242

    PubMed  CAS  Google Scholar 

  • Woltering EJ (2004) Death proteases come alive. Trends Plant Sci 9:469–472

    PubMed  CAS  Google Scholar 

  • Woo Y-M, Hu DW-N, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13:2297–2317

    PubMed  CAS  Google Scholar 

  • Yamagata T, Kato H, Kuroda S, Abe S, Davies E (2003) Uncleaved legumin in developing maize endosperm: identification, accumulation, and putative subcellular localization. J Exp Bot 54:913–922

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39:915–926

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (2000a) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (2000b) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42:397–414

    PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115:737–751

    PubMed  CAS  Google Scholar 

  • Yu Y, Steinmetz A, Meyer D, Brown S, Shen W-H (2003) The tobacco A-type cyclin, Nicta;CYCA3;2, at the nexus of cell division and differentiation. Plant Cell 15:2763–2777

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Larkins .

Editor information

Odd-Arne Olsen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, H.N., Sabelli, P.A., Larkins, B.A. (2007). Endoreduplication and Programmed Cell Death in the Cereal Endosperm. In: Olsen, OA. (eds) Endosperm. Plant Cell Monographs, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_107

Download citation

Publish with us

Policies and ethics