Skip to main content

The Control of Cell Size and Rate of Elongation in the Arabidopsis Root

  • Chapter
  • First Online:

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 6))

Abstract

The control of cell elongation is studied in the root of Arabidopsis by focusing on reduction of cell size. Reduced organ size is a common response of a plant to different exogenous and endogenous signals. There is not a single specific event/actor that is solely responsible for the fast inhibition of cell elongation, but a battery of different actors at different levels work together to result in cell elongation arrest. A reduction of cell wall loosening seems to be achieved by cross-linking of structural proteins, by creating a suboptimal pH-environment for loosening enzymes by modulation of H +-ATPase activity and by structural changes in the composition and architecture of the cell walls. Microtubules and the reorientation of cellulose microfibrils are not involved in the control of cell elongation in the Arabidopsis root. Significant alterations in cellular symplast exchange, brought about by modulation of plasmodesmal transport, certainly influence the cell's general metabolism. In combination with changes that directly influence cell wall properties this may lead to the observed cell elongation arrest in the Arabidopsis root.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    PubMed  CAS  Google Scholar 

  2. Alonso JM, Hirayma T, Roman G, Nourizodeh S, Ecker JR (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219

    Google Scholar 

  3. Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C (2004). Plasma membrane H+-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H+-ATPase interaction. Plant Cell Physiol 45:1202–1210

    PubMed  CAS  Google Scholar 

  4. Arioli T, Peng L, Betzner AS (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    PubMed  CAS  Google Scholar 

  5. Avery GS, Burkholder PR (1936) Polarized growth and cell studies on the Avena coleoptile, phytohormone test object. Bull Torrey bot Club 63:1–15

    CAS  Google Scholar 

  6. Baluška F, Volkmann D, Barlow RW (1996) Specialized zones of development in roots. View from the cellular level. Plant Physiol 112:3–4

    PubMed  Google Scholar 

  7. Baluška F, Cvrclova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46

    PubMed  Google Scholar 

  8. Baluška F, Samaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma-membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    PubMed  Google Scholar 

  9. Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35:935–942

    PubMed  CAS  Google Scholar 

  10. Baskin TI, Beemster GT, Judy-March JE, Marga F (2004) Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis. Plant Physiol 135:2279–2290

    PubMed  CAS  Google Scholar 

  11. Baumberger N, Steiner M, Ryser U, Keller B, Ringli C (2003) Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. Plant J 35:71–81

    PubMed  CAS  Google Scholar 

  12. Beck CB (2005) An introduction to plant structure and development. Cambridge University Press, Cambridge

    Google Scholar 

  13. Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    PubMed  CAS  Google Scholar 

  14. Beffa RS, Hofer RM, Thomas M, Meins F (1996) Decreased susceptibility to viral disease of beta-1,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8:1001–1011

    PubMed  CAS  Google Scholar 

  15. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  PubMed  Google Scholar 

  16. Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    PubMed  CAS  Google Scholar 

  17. Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel and rapid response. Cell 70:21–30

    PubMed  CAS  Google Scholar 

  18. Brady DJ, Fry SC (1997) Formation of di-isodityrosine and loss of isodityrosine in the cell walls of tomato cell-supension cultures treated with fungal elicitors and H2O2. Plant Physiol 115:87–92

    PubMed  CAS  Google Scholar 

  19. Brady DJ, Sadler IH, Fry SC (1996) Di-isodityrosine, a novel tetrameric derivative of tyrosine in plant cell wall proteins: a new potential cross-links. J Biochem 315:323–327

    CAS  Google Scholar 

  20. Brett CT, Waldron KW (1996) Physiology and biochemistry of plant cell walls, 2nd ed. Chapman and Hall, London

    Google Scholar 

  21. Brownleader MD, Ahmed N, Trevan M, Chaplin MF, Dey PM (1995) Purification and partial characterization of Tomato extensin peroxidase. Plant Physiol 109:1115–1123

    PubMed  CAS  Google Scholar 

  22. Brownleader MD, Hopkins J, Mobasheri A, Dey PM, Jackson P, Trevan M (2000) Role of extensin peroxidase in tomato (Lycopersicon esculentum Mill.) seedling growth. Planta 210:668–676

    PubMed  CAS  Google Scholar 

  23. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    PubMed  CAS  Google Scholar 

  24. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262:539–544

    PubMed  CAS  Google Scholar 

  25. Cilia M, Cantrill L, van Bel A (2002) Plasmodesmata 2001: On safari through the symplast. Plant Cell 14:7–10

    PubMed  CAS  Google Scholar 

  26. Cosgrove DJ (1989) Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Plant 177:121–133

    CAS  Google Scholar 

  27. Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Ann Rev Plant Mol Biol 50:391–417

    CAS  Google Scholar 

  28. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    PubMed  CAS  Google Scholar 

  29. De Boer AH (1997) Fusicoccin – a key to multiple 14-3-3 locks? Trends Plant Sci 2:60–66

    Google Scholar 

  30. De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen J-P (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: A matter of apoplastic reactions. New Phytol 168:541–550

    PubMed  Google Scholar 

  31. De Veylder L, Joubes J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    PubMed  Google Scholar 

  32. Dewitte W, Murray JAH (2003) The plant cell cycle. Ann Rev Plant Biol 54:235–264

    CAS  Google Scholar 

  33. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  34. Dolan L (1996) Pattern in the root epidermis: an interplay of diffusible signals and cellular geometry. Ann Bot 77:547–553

    Google Scholar 

  35. Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K (1994) Dye-coupling in the root epidermis is progessively reduced during development. Development 120:3247–3255

    CAS  Google Scholar 

  36. El-Gendy W, Brownleader MD, Ismail H, Clarke PJ, Gilbert J, El-Bordiny F, Trevan M, Hopkins J, Naldrett M, Jackson P (2001) Rapid deposition of wheat cell wall structural proteins in response to Fusarium-derived elicitors. J Exp Bot 52:85–90

    PubMed  CAS  Google Scholar 

  37. Epstein L, Lamport DTA (1984) An intramolecular linkage involving isodityrosine in extensin. Phytochemistry 23:1241–1246

    CAS  Google Scholar 

  38. Erickson RO, Sax KB (1956) Elemental growth rate of the primary root of Zea mays. Proc Amer Philos Soc 100:487–498

    Google Scholar 

  39. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2423

    PubMed  CAS  Google Scholar 

  40. Fan N, Neumann PM (2004) The spatially variable inhibition by water deficit of maize root growth correlated with altered profiles of proton flux and cell wall pH. Plant Physiol 135:2291–2300

    PubMed  CAS  Google Scholar 

  41. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  42. Giddings TH Jr, Staehelin LA (1991) Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, San Diego, p 85–100

    Google Scholar 

  43. Granger CL, Cyr RJ (2001) Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD. Protoplasma 216:201–214

    PubMed  CAS  Google Scholar 

  44. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed  CAS  Google Scholar 

  45. Hable WE, Bisgrove SR, Kropf DL (1998) To shape a plant – The cytoskeleton in plant morphogenesis. Plant Cell 10:1772–1774

    PubMed  CAS  Google Scholar 

  46. Hématy K, Höfte H (2007) Cellulose and cell elongation. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  47. Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J 36:565–575

    PubMed  CAS  Google Scholar 

  48. Iglesias VA, Meins F Jr (2000) Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    PubMed  CAS  Google Scholar 

  49. Ishikawa H, Evans ML (1993) The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol 102:1203–1210

    PubMed  CAS  Google Scholar 

  50. Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109:725–727

    PubMed  CAS  Google Scholar 

  51. Kačuráková M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Res 43:195–203

    Article  Google Scholar 

  52. Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  53. Kerstens S, Decraemer FWS, Verbelen J-P (2001) Cell walls at the surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:281–285

    Google Scholar 

  54. Kidner C, Sundareson V, Roberts K, Dolan L (2000) Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211:191–199

    PubMed  CAS  Google Scholar 

  55. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    PubMed  CAS  Google Scholar 

  56. Kieliszewski MJ, Lamport DTA (1994) Extensin: repetitive motifs, functional sites, posttranslational codes, and phylogeny. Plant J 5:157–172

    PubMed  CAS  Google Scholar 

  57. Knox JP (1995) The extracellular matrix in higher plants. Developmentally regulated proteoglycans and glycoproteins of the plant cell surface. FASEB J 9:1004–1012

    PubMed  CAS  Google Scholar 

  58. Kreps JA, Wu Y, Chang H-S, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141

    PubMed  CAS  Google Scholar 

  59. Larkin JC, Brown ML, Schiefelbein J (2003) How cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Ann Rev Plant Biol 54:403–430

    CAS  Google Scholar 

  60. Le J, Vandenbussche F, Van Der Straeten D, Verbelen J-P (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down regulated and uncoupled from differentiation. Plant Physiol 125:519–522

    Google Scholar 

  61. Linkohr BI, Williamson LC, Fitter AH, Leyser O (2002) Nitrate and phosphate availibility and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    PubMed  CAS  Google Scholar 

  62. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theoret Biol 8:264–275

    CAS  Google Scholar 

  63. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availibility in regulationg root architecture. Curr Opin Plant Biol 6:280–287

    PubMed  Google Scholar 

  64. Lucas WJ, Lee JY (2004) Plant cell biology – Plasmodesmata as supracellular control network in plants. Nature Rev Mol Cell Biol 5:712–726

    CAS  Google Scholar 

  65. Lürssen K, Naumann K, Schröder R (1979) 1-Aminocyclopropane-1-carboxylic acid – an intermediate of the ethylene biosynthesis in higher plants. Z Pflanzenphysiol 92:285–294

    Google Scholar 

  66. Malerba M, Cerana A, Crosti P (2004) Comparison between the effect of fusicoccin, tunicamycin, and brefeldin A on programmed cell death of cultured sycamore (Acer pseudoplatanus L.) cells. Protoplasma 224:61–70

    PubMed  CAS  Google Scholar 

  67. McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100:1940–1947

    PubMed  CAS  Google Scholar 

  68. McCann MC, Chen L, Roberts K, Kemsley EK, Sene C, Carpita NC, Stacey NJ, Wilson RH (1997) Infrared microspectroscopy: Sampling heterogeneity in plant cell wall composition and architecture. Physiol Plant 100:729–738

    CAS  Google Scholar 

  69. McQueen-Mason SJ, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  70. Morikawa H, Hayashi R, Senda M (1978) Infrared analysis of pea stem cell walls and oriented structure of matrix polysaccharides in them. Plant Cell Physiol 19:1151–1159

    CAS  Google Scholar 

  71. Mullen JL, Ishikawa H, Evans ML (1998) Analysis of changes in relative elemental growth rate in the elongation zone of the Arabidopsis roots upon gravistimulation. Planta 206:598–603

    PubMed  CAS  Google Scholar 

  72. Neljubow DN (1901) Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderen. Pflanzen Beiträge und Botanik Zentralblatt 10:128–139

    Google Scholar 

  73. Newman IA (2001) Ion transport in roots: measurements of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    PubMed  CAS  Google Scholar 

  74. Nickle TC, Meinke DW (1998) A cytokinesis-defective mutant of Arabidopsis (cyt1) characterized by embryonic lethality, incomplete cell walls, and excessive callose accumulation. Plant J 15:321–332

    PubMed  CAS  Google Scholar 

  75. Nicol R, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998) A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J 17:5563–5576

    PubMed  CAS  Google Scholar 

  76. Olivari C, Meanti C, De Michelis MI, Rasi-Caldogno F (1998) Fusicoccin induces the association between the plasma membrane H+-ATPase and the fusicoccin receptor. Plant Physiol 116:529–537

    PubMed  CAS  Google Scholar 

  77. Oparka KJ, Duckett CM, Prior DAM, Fisher DB (1994) Real-time imaging of phloem unloading in the root tip of Arabidopsis. Plant J 6:759–766

    Google Scholar 

  78. Østergaard L, Petersen M, Mattson O, Mundy J (2003) An Arabidopsis callose synthase. Plant Mol Biol 49:559–566

    Google Scholar 

  79. Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002) KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell 14:2001–2013

    PubMed  CAS  Google Scholar 

  80. Palmgren MG (1998) Proton gradients and plant growth: Role of the plasma membrane H+-ATPase. Adv Bot Res 28:1–70

    Article  CAS  Google Scholar 

  81. Palmgren MG (2001) Plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    PubMed  CAS  Google Scholar 

  82. Peters WS, Felle HH (1999) The correlation of profiles of surface pH and elongation growth in maize roots. Plant Physiol 121:905–912

    PubMed  CAS  Google Scholar 

  83. Pilet P-E, Versel J-M, Mayor G (1983) Growth distribution and surface pH paterns along maize roots. Planta 158:398–402

    CAS  Google Scholar 

  84. Rayle DL, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    PubMed  CAS  Google Scholar 

  85. Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    PubMed  CAS  Google Scholar 

  86. Reichelt S, Knight AE, Hodge TP, Baluška F, Šamaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–569

    PubMed  CAS  Google Scholar 

  87. Rinne PLH, van der Schoot C (1998) Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125:1477–1485

    PubMed  CAS  Google Scholar 

  88. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Google Scholar 

  89. Sachs J (1874) Ueber das Wachstum der Haupt- und Nebenwurzeln. Arb D Bot Intst Würzb, I

    Google Scholar 

  90. Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  91. Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001) Role of the putative membrane-bound endo-1,4-β glucanase KORRIGAN in cell elongation and cellulse synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263

    PubMed  CAS  Google Scholar 

  92. Schaller GE, Kieber JJ (2002) Ethylene. doi: 10.1199/tab.0071, The Arabidopsis book, p 1–18

    Google Scholar 

  93. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  94. Scheres B, Benfey P, Dolan L (2002) Root development. doi: 10.1199/tab.0101, The Arabidopsis book, p 1–18

    Google Scholar 

  95. Schultz CJ, Johnson KL, Currie G, Bacic A (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12:1751–1767

    PubMed  CAS  Google Scholar 

  96. Serna L (2005) Epidermal cell patterning and differentiation throughout he apical-basal axis of the seedling. J Exp Bot 56:1983–1989

    PubMed  CAS  Google Scholar 

  97. Shabala NS, Lew RR (2002) Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129:290–299

    PubMed  CAS  Google Scholar 

  98. Shabala S, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118

    PubMed  CAS  Google Scholar 

  99. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    PubMed  CAS  Google Scholar 

  100. Showalter AM (2001) Arabinogalactan proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    PubMed  CAS  Google Scholar 

  101. Sivaguru M, Fujiwara T, Samaj J, Baluška F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminium-induced 1-3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminium toxicity in plants. Plant Physiol 124:991–1005

    PubMed  CAS  Google Scholar 

  102. Sommer-Knudsen J, Bacic A, Clarke AE (1998) Hydroxyproline-rich plant glycoproteins. Phytochemistry 47:483–497

    CAS  Google Scholar 

  103. Spollen WG, Sharp RE (1991) Spatial distribution of turgor and root growth at low water potentials. Plant Physiol 96:438–443

    Article  PubMed  CAS  Google Scholar 

  104. Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO (2003) Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell 15:1414–1429

    PubMed  CAS  Google Scholar 

  105. Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–417

    PubMed  CAS  Google Scholar 

  106. Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8:943–948

    PubMed  CAS  Google Scholar 

  107. Tomos AD, Pritchard J (1994) Biophysical and biochemical control of cell expansion in roots and leaves. J Exp Bot 45:1721–1731

    CAS  Google Scholar 

  108. van der Weele CM, Jiang H, Palaniappan KK, Ivanov VB, Palaniappan K, Baskin TI (2003) A new algorithm for computational image analysis of deformable motion at high spatial and temporal resolution applied to root growth. Rougly uniform elongation in the meristem and also, after an abrupt acceleration, in the elongation zone. Plant Physiol 132:1–11

    Google Scholar 

  109. Van Hengel AJ, Roberts K (2002) Fucosylated arabinogalactan proteins are required for full root cell elongation in Arabidopsis. Plant J 32:105–113

    PubMed  Google Scholar 

  110. Verbelen J-P, Le J, Vissenberg K, De Cnodder T, Vandenbussche F, Sugimoto K, Van Der Straeten D (2006) Microtubules and the control of cell elongation in Arabidopsis roots. NATO monograph: The Plant Cytoskeleton: Functional diversity and biotechnological implications (in press)

    Google Scholar 

  111. Verma DPS, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    PubMed  CAS  Google Scholar 

  112. Vissenberg K, Martinez-Vilchez IM, Verbelen J-P, Miller JG, Fry SC (2000) In vivo colocalizatin of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12:1229–1238

    PubMed  CAS  Google Scholar 

  113. Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opin Plant Biol 7:651–660

    PubMed  CAS  Google Scholar 

  114. Wasteneys GO, Collings DA (2007) The cytoskeleton and co-ordination of directional expansion in a multicellular context. In: Verbelen JP, Vissenberg K (eds) The expanding cell. Plant Cell Monographs, vol 5. Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  115. Wojtaszek P, Trethowan J, Bolwell GP (1995) Specificity in the immobilization of cell wall proteins in response to different elicitor molecules in suspenson-cultured cells of French bean (Phaseolus vulgaris L.). Plant Mol Biol 28:1075–1087

    PubMed  CAS  Google Scholar 

  116. Zhou J, Rumeau D, Showalter AM (1992) Isolation and characterization of two wound-regulated tomato extensin genes. Plant Mol Biol 20:5–17

    PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support of the Fund for Scientific Research Flanders (FWO—Belgium), grant G0345.02. K.V. is a postdoctoral fellow of the Fund for Scientific Research Flanders (FWO—Belgium). Authors greatly acknowledge the help of B. Van Loock, S. Foubert, J. Van Orden, M. Liao, J. Eysermans—EMAT (Univ. Antwerpen), Dr. J. Le (Purdue Univ.), Dr. T. Elzenga and M. Staal (Univ. Groningen), Dr. F. Baluška (Univ. Bonn), Dr. H. Höfte and Dr. G. Mouille (INRA, Versailles), Dr. S.C. Fry (Univ. Edinburgh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Vissenberg .

Editor information

Jean-Pierre Verbelen Kris Vissenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Cnodder, T., Verbelen, JP., Vissenberg, K. (2006). The Control of Cell Size and Rate of Elongation in the Arabidopsis Root. In: Verbelen, JP., Vissenberg, K. (eds) The Expanding Cell. Plant Cell Monographs, vol 6. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7089_2006_078

Download citation

Publish with us

Policies and ethics