Skip to main content

Redox and Wall-Restructuring

  • Chapter
  • First Online:
The Expanding Cell

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 6))

Abstract

Diverse mechanisms contribute to primary cell wall re-structuring, causing wall loosening and tightening (increasing and decreasing extensibility, respectively). Wall loosening can occur by enzymic hydrolysis and possibly also elimination-degradation of polysaccharides; by enzymic transglycosylation of xyloglucan; by expansin-mediated rupture of hemicellulose–cellulose tethers; and by non-protein-mediated scission of polysaccharides through hydroxyl radical attack. Tightening can occur by enzymic de-esterification of pectin enabling Ca2+-bridge formation; and by peroxidase-catalysed coupling of phenol–polysaccharide complexes and of tyrosine-containing glycoproteins. Several loosening and tightening mechanisms involve redox reactions; low-molecular-weight oxidants and anti-oxidants in the apoplast can therefore control wall extensibility. Apoplastic ascorbate is unusual in potentially being either an anti-oxidant or a pro-oxidant (the latter via Fenton reaction-mediated production of hydroxyl radicals). Many wall-localised reactions are known only from model experiments in vitro: an important future challenge is to explore the relative contributions of postulated reactions in the walls of living plant cells. To this end, a clear distinction is required between enzyme activity (assayed in vitro) and enzyme action (occurring in vivo).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alonso AP, Vigeolas H, Raymond P, Rolin D, Dieuaide-Noubhani M (2005) A new substrate cycle in plants. evidence for a high glucose-phosphate-to-glucose turnover from in vivo steady-state and pulse-labeling experiments with [13C]glucose and [14C]glucose. Plant Physiol 138:2220–2232

    PubMed  CAS  Google Scholar 

  2. Arnaldos TL, Ferrer MA, García AAC, Muñoz R (2002) Changes in peroxidase activity and isoperoxidase pattern during strawberry (Fragaria × ananassa) callus development. J Plant Physiol 159:429–435

    CAS  Google Scholar 

  3. Arwell BJ, Waters I, Greenway H (1982) The effects of oxygen and turbulence on elongation of coleoptiles of submergence-tolerant and -intolerant rice cultivars. J Exp Bot 33:1030–1044

    Google Scholar 

  4. Asard H, Horemans N, Caubergs RJ (1992) Transmembrane electron-transport in ascorbate-loaded plasma-membrane vesicles from higher plants involves a b-type cytochrome. FEBS Letts 306:143–146

    CAS  Google Scholar 

  5. Asard H, May JM, Smirnoff N (eds) (2004) Vitamin C: its functions and biochemistry in animals and plants. Taylor & Francis, Abingdon, 304 pp

    Google Scholar 

  6. Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol 107:1241–1247

    PubMed  CAS  Google Scholar 

  7. Bacon MA, Thompson DS, Davies WJ (1997) Can cell wall peroxidase activity explain the leaf growth response of Lolium temulentum L. during drought? J Exp Bot 48:2075–2085

    CAS  Google Scholar 

  8. Bergman L, Rennenberg H (1978) Efflux und Produktion von Glutathion in Suspensionskulturen von Nicotiana tabacum. Z Pflanzenphysiol 88:175–185

    Google Scholar 

  9. Biggs KJ, Fry SC (1990) Solubilization of covalently-bound extensin from Capsicum cell walls. Plant Physiol 92:197–204

    PubMed  CAS  Google Scholar 

  10. Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP (2001) Early signalling events in the apoplastic oxidative burst in suspension-cultured French bean cells involve cAMP and Ca2+. New Phytol 151:185–194

    CAS  Google Scholar 

  11. Brady JD, Sadler IH, Fry SC (1996) Di-isodityrosine, a novel tetrameric derivative of tyrosine in plant cell wall proteins: a new potential cross-link. Biochem J 315:323–327

    PubMed  CAS  Google Scholar 

  12. Brady JD, Sadler IH, Fry SC (1998) Pulcherosine, an oxidatevely coupled trimer of tyrosine in plant cell walls: its role in cross-link formation. Phytochemistry 47:349–353

    PubMed  CAS  Google Scholar 

  13. Brett CT, Wende G, Smith AC, Waldron KW (1999) Biosynthesis of cell wall ferulate and diferulates. J Sci Food Agric 79:421–424

    CAS  Google Scholar 

  14. Bunzel M, Ralph J, Funk C, Steinhart H (2003) Isolation and identification of a ferulic acid dehydrotrimer from saponified maize bran insoluble fiber. Eur Food Res Technol 217:128–133

    CAS  Google Scholar 

  15. Carnachan SM, Harris PJ (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem Syst Ecol 28:865–879

    PubMed  CAS  Google Scholar 

  16. Carpita NC (1984) Cell wall development in maize coleoptiles. Plant Physiol 76:205–212

    PubMed  CAS  Google Scholar 

  17. Chen SX, Schopfer P (1999) Hydroxyl radical production in physiological reactions—a novel function of peroxidase. Eur J Biochem 260:726–735

    PubMed  CAS  Google Scholar 

  18. Crawford RM (1989) Studies in Plant Survival: Ecological Case Histories of Plant Adaptation to Adversity. Blackwell Scientific, Oxford

    Google Scholar 

  19. Darvill AG, Smith CJ, Hall MA (1978) Cell wall structure and elongation growth in Zea mays coleoptile tissue. New Phytol 80:503–516

    CAS  Google Scholar 

  20. de Souza IRP, MacAdam JW (2001) Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation. J Exp Bot 52:1673–1682

    PubMed  Google Scholar 

  21. Doke N, Miura Y (1995) In-vitro activation of NADPH-dependent O2 generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor from Phytophthora infestans or with digitonin. Physiol Molecular Plant Pathol 46:17–28

    CAS  Google Scholar 

  22. Dumville JC, Fry SC (2003) Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening. Planta 217:951–961

    PubMed  CAS  Google Scholar 

  23. Edelmann HG, Fry SC (1992) Kinetics of integration of xyloglucan into the walls of suspension-cultured rose cells. J Exp Bot 43:463–470

    CAS  Google Scholar 

  24. Encina A, Fry SC (2005) Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor. Planta 223:77–89

    PubMed  CAS  Google Scholar 

  25. Epstein L, Lamport DTA (1984) An intramolecular linkage involving isodityrosine in extensin. Phytochemistry 23:1241–1246

    CAS  Google Scholar 

  26. Federico R, Angelini R (1986) Occurrence of diamine oxidase in the apoplast of pea epicotyls. Planta 167:300–302

    CAS  Google Scholar 

  27. Franz G (1972) Polysaccharidmetabolismus in den Zellwänden wachsender Keimlinge von Phaseolus aureus. Planta 102:334–347

    CAS  Google Scholar 

  28. Fry SC (1979) Phenolic components of the primary cell wall and their possible rôle in the hormonal regulation of growth. Planta 146:343–351

    CAS  Google Scholar 

  29. Fry SC (1980) Gibberellin-controlled pectinic acid and protein secretion in growing cells. Phytochemistry 19:735–740

    CAS  Google Scholar 

  30. Fry SC (1982a) Phenolic components of the primary cell wall: feruloylated disaccharides of d-galactose and l-arabinose from spinach polysaccharide. Biochem J 203:493–504

    PubMed  CAS  Google Scholar 

  31. Fry SC (1982b) Isodityrosine, a new cross-linking amino acid from plant cell wall glycoprotein. Biochem J 204:449–455

    PubMed  CAS  Google Scholar 

  32. Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    PubMed  CAS  Google Scholar 

  33. Fry SC (2000) The Growing Plant Cell Wall: Chemical and Metabolic Analysis. Reprint Edition, The Blackburn Press, Caldwell, New Jersey

    Google Scholar 

  34. Fry SC (2004) Tansley Review: Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675

    CAS  Google Scholar 

  35. Fry SC, Street HE (1980) Gibberellin-sensitive suspension cultures. Plant Physiol 65:472–477

    PubMed  CAS  Google Scholar 

  36. Fry SC, Willis SC, Paterson EJ (2000) Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products and maize cell-suspension cultures. Planta 211:679–692

    PubMed  CAS  Google Scholar 

  37. Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochem J 357:729–737

    PubMed  CAS  Google Scholar 

  38. Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67

    CAS  Google Scholar 

  39. Fujii T (1978) Effects of IAA on oxygen-sensitive growth and on hydroxyproline protein level in cell wall. Plant Cell Physiol 19:927–933

    CAS  Google Scholar 

  40. Funk C, Ralph J, Steinhart H, Bunzel M (2005) Isolation and structural characterisation of 8–O–4/8–O–4- and 8–8/8–O–4-coupled dehydrotriferulic acids from maize bran. Phytochemistry 66:363–371

    PubMed  CAS  Google Scholar 

  41. Geissmann T, Neukom H (1971) Vernetzung von Phenolcarbonsaureestern von Polysacchariden durch oxydative phenolische Kupplung. Helv Chim Acta 54:1108–1112

    CAS  Google Scholar 

  42. Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005) Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles. Planta 221:729–738

    PubMed  CAS  Google Scholar 

  43. González-Reyes JA, Hidalgo A, Caler JA, Palos R, Navas P (1994) Nutrient uptake changes in ascorbate free radical-stimulated onion roots. Plant Physiol 104:271–276

    PubMed  Google Scholar 

  44. Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 40:1077–1082

    CAS  Google Scholar 

  45. Green MA, Fry SC (2005a) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–88

    PubMed  CAS  Google Scholar 

  46. Green MA, Fry SC (2005b) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosystems 139:2–7

    Google Scholar 

  47. Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of Gramineae by ultraviolet fluorescence microscopy. Nature 259:508–510

    CAS  Google Scholar 

  48. Hartley RD (1973) Carbohydrate esters of ferulic acid as components of cell walls of Lolium multiflorum. Phytochemistry 12:661–665

    CAS  Google Scholar 

  49. Hartley RD, Jones EC (1976) Diferulic acid as a component of cell walls of Lolium multiflorum. Phytochemistry 15:1157–1160

    CAS  Google Scholar 

  50. Held MA, Tan L, Kamyab A, Hare M, Shpak E, Kieliszewski MJ (2004) Di-isodityrosine is the intermolecular cross-link of isodityrosine-rich extensin analogs cross-linked in vitro. J Biol Chem 279:55474–55482

    PubMed  CAS  Google Scholar 

  51. Hidalgo A, García-Herdugo G, González-Reyes JA, Morré DJ, Navas P (1991) Ascorbate free-radical stimulates onion root growth by increasing cell elongation. Bot Gaz 152:282–288

    CAS  Google Scholar 

  52. Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell walls. Carbohydr Res 219:15–22

    PubMed  CAS  Google Scholar 

  53. Ishii T (1997) Structure and function of feruloylated polysaccharides. Plant Sci 127:111–127

    CAS  Google Scholar 

  54. Ishii T, Hiroi T, Thomas JR (1990) Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell walls. Phytochemistry 29:1999–2003

    PubMed  CAS  Google Scholar 

  55. Ito H, Nishitani K (1999) Visualization of EXGT-mediated molecular grafting activity by means of a fluorescent-labeled xyloglucan oligomer. Plant Cell Physiol 40:1172–1176

    CAS  Google Scholar 

  56. Kamisaka S, Takeda S, Takahashi K, Shibata K (1990) Diferulic acid in the cell wall of Avena coleoptiles—Their relationship to mechanical properties of the cell wall. Physiol Plant 78:1–7

    CAS  Google Scholar 

  57. Kärkönen A, Fry SC (2006) Effect of ascorbate and its oxidation-products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644

    PubMed  Google Scholar 

  58. Kato Y, Nevins DJ (1985) Isolation and identification of O-(5-O-feruloyl-α-l-arabinofuranosyl)-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose as a component of Zea shoot cell walls. Carbohydr Res 137:139–150

    CAS  Google Scholar 

  59. Keppler LD, Baker CJ, Atkinson MM (1989) Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79:974–978

    CAS  Google Scholar 

  60. Kerr EM, Fry SC (2003) Pre-formed xyloglucans and xylans increase in molecular weight in three distinct compartments of a maize cell-suspension culture. Planta 217:327–339

    PubMed  CAS  Google Scholar 

  61. Kerr EM, Fry SC (2004) Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling. Planta 219:73–83

    PubMed  CAS  Google Scholar 

  62. Kuchitsu K, Kosaka H, Shiga T, Shibuya N (1995) EPR evidence for generation of hydroxyl radical triggered by N-acetylchitooligosaccharide elicitor and a protien phosphatase inhibitor in suspension-cultured rice cells. Protoplasma 188:138–142

    CAS  Google Scholar 

  63. Labavitch JM, Ray PM (1974) Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol 53:669–673

    PubMed  CAS  Google Scholar 

  64. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242

    PubMed  CAS  Google Scholar 

  65. Levigne SV, Ralet M-C.J, Quéméner BC, Pollet BN-L, Lapierre C, Thibault J-FJ (2004) Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers. Plant Physiol 134:1173–1180

    PubMed  CAS  Google Scholar 

  66. Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    PubMed  CAS  Google Scholar 

  67. MacAdam JW, Grabber JH (2002) Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. Planta 215:785–793

    PubMed  CAS  Google Scholar 

  68. Markwalder HU, Neukom H (1976) Diferulic acid as a possible crosslink in hemicelluloses from wheat germ. Phytochemistry 15:836–37

    CAS  Google Scholar 

  69. McDougall GJ, Fry SC (1991) Xyloglucan nonasaccharide, a naturally-occurring oligosaccharin, arises in vivo by polysaccharide breakdown. J Plant Physiol 137:332–336

    CAS  Google Scholar 

  70. Miller JG, Fry SC (2001). Characteristics of xyloglucan after attack by hydroxyl radicals. Carbohydr Res 332:389–403

    CAS  Google Scholar 

  71. Miller JG, Fry SC (2004) N-[3H]Benzoylglycylglycylglycine as a probe for hydroxyl radicals. Anal Biochem 335:126–134

    PubMed  CAS  Google Scholar 

  72. Morré DJ, Auderset G, Penel C, Canut H (1987) Cytochemical localization of NADH-ferricyanide oxidoreductase in hypocotyl segments and isolated membrane vesicles of soybean. Protoplasma 140:133–140

    Google Scholar 

  73. Morrison JC, Greve LC, Richmond PA (1993) Cell wall synthesis during growth and maturation of Nitella internodal cells. Planta 189:321–328

    CAS  Google Scholar 

  74. Nishitani K, Masuda Y (1982) Acid pH-induced structural changes in cell wall xyloglucans in Vigna angularis epicotyl segments. Plant Sci Lett 28:87–94

    CAS  Google Scholar 

  75. Otte O, Barz W (1996) The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200:238–246

    CAS  Google Scholar 

  76. Polle A, Chakrabarti K, Schürmann W, Rennenberg H (1990) Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., Karst.). Plant Physiol 94:312–319

    Article  PubMed  CAS  Google Scholar 

  77. Ralph J, Quideau S, Grabber JH, Hatfield RD (1994) Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J Chem Soc Perkin Trans 1:3485–3498

    Google Scholar 

  78. Rayle DL, Cleland RE (1992) The acid growth theory of cell elongation is alive and well. Plant Physiol 99:1271–1274

    PubMed  CAS  Google Scholar 

  79. Renger A, Steinhart H (2000) Ferulic acid dehydrodimers as structural elements in cereal dietary fibre. Eur Food Res Technol. 211:422–428

    CAS  Google Scholar 

  80. Rodríguez AA, Cordoba AR, Ortega L, Taleisnik E (2004) Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. J Exp Bot 55:1383–1390

    PubMed  Google Scholar 

  81. Rouau X, Cheynier V, Surget A, Gloux D, Barron C, Meudec E, Louis-Montero J, Criton M (2003) A dehydrotetrimer of ferulic acid from maize bran. Phytochemistry. Planta 63:899–903

    CAS  Google Scholar 

  82. Roulin S, Buchala AJ, Fincher GB (2002) Induction of (1→3,1→4)-β-d-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta 215:51–59

    PubMed  CAS  Google Scholar 

  83. Sánchez M, Peña MJ, Revilla G, Zarra I (1996) Changes in dehydrodiferulic acids and peroxidase activity against ferulic acid associated with cell walls during growth of Pinus pinaster hypocotyl. Plant Physiol 111:941–946

    PubMed  Google Scholar 

  84. Saulnier L, Crépeau M, Lahaye M, Thibault J, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Isolation and structural dertermination of two 5,5′-diferuloyl oligosaccharides indicates that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr Res 320:82–92

    CAS  Google Scholar 

  85. Schinkel H, Streller S, Wingsle G (1998) Multiple forms of extracellular superoxide dismutase in needles, stem tissues and seedlings of Scots pine. J Exp Bot 49:931–936

    CAS  Google Scholar 

  86. Schopfer P (2001) Hudroxyl radical-induced cell wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    PubMed  CAS  Google Scholar 

  87. Schopfer P, Lapierre C, Nolte T (2001) Light-controlled growth of the maize seedling mesocotyl: Mechanical cell wall changes in the elongation zone and related changes in lignification. Physiol Plant 111:83–92

    CAS  Google Scholar 

  88. Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    PubMed  CAS  Google Scholar 

  89. Schuchmann MM, von Sonntag C (1978) Effect of oxygen on OH radical-induced scission of glycosidic linkage of cellobiose. Int J Radiat Biol 34:397–400

    CAS  Google Scholar 

  90. Shetty NP, Kristensen BK, Newman MA, Møller K, Gregersen PL, Jørgensen HJL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistance wheat. Physiol Mol Plant Path 62:333–346

    CAS  Google Scholar 

  91. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    PubMed  CAS  Google Scholar 

  92. Takahama U (1993) Redox state of ascorbic acid in the apoplast of stems of Kalanchoë daigremontiana. Physiol Plant 89:791–798

    CAS  Google Scholar 

  93. Takahama U, Oniki T (1994) Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. Plant Cell Physiol 35:593–600

    CAS  Google Scholar 

  94. Talbott LD, Ray PM (1992) Changes in size of previously deposited and newly synthesized pea cell wall matrix polysaccharides. Effects of auxin and turgor. Plant Physiol 98:369–379

    PubMed  CAS  Google Scholar 

  95. Tan KS, Hoson T, Masuda Y, Kamisaka S (1991) Correlation between cell wall extensibility and the content of diferulic and ferulic acids in cell walls of Oryza sativa coleoptiles grown under water and in air. Physiol Plant 83:397–403

    CAS  Google Scholar 

  96. Thompson JE, Fry SC (2001) Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 26:23–34

    PubMed  CAS  Google Scholar 

  97. Thompson JE, Smith RC, Fry SC (1997) Xyloglucan undergoes inter-polymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 13C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J 327:699–708

    PubMed  CAS  Google Scholar 

  98. Vanacker H, Foyer CH, Carver TLW (1999) Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta 208:444–452

    CAS  Google Scholar 

  99. Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, Fry SC (2000) In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of Arabidopsis roots. Plant Cell 12:1229–1237

    PubMed  CAS  Google Scholar 

  100. Vissenberg K, Fry SC, Pauly M, Höfte H, Verbelen JP (2005) XTH acts at the microfibril–matrix interface during cell elongation. J Exp Bot 56:673–683

    PubMed  CAS  Google Scholar 

  101. von Sonntag C (1987) The Chemical Basis of Radiation Biology. Taylor & Francis, Abingdon

    Google Scholar 

  102. Vreeburg RAM, Fry SC (2005) Reactive oxygen species in cell walls. In: Smirnoff N (ed) Antioxidants and Reactive Oxygen Species in Plants. Blackwell, Oxford, p 215–249

    Google Scholar 

  103. Wakabayashi K, Hoson T, Kamisaka S (1997) Abscisic acid suppresses the increases in cell wall-bound ferulic and diferulic acid levels in dark-grown wheat (Triticum aestivum L) coleoptiles. Plant Cell Physiol 38:811–817

    CAS  Google Scholar 

  104. Ward G, Hadar Y, Bilkis I, Konstantinovsky L, Dosoretz CG (2001) Initial steps of ferulic acid polymerization by lignin peroxidase. J Biol Chem 276:18734–18741

    PubMed  CAS  Google Scholar 

  105. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Drs R.A.M. Vreeburg, A. Encina and A. Kärkönen for valuable discussions and preliminary data. We thank the BBSRC for financial support of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Fry .

Editor information

Jean-Pierre Verbelen Kris Vissenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindsay, S.E., Fry, S.C. (2006). Redox and Wall-Restructuring. In: Verbelen, JP., Vissenberg, K. (eds) The Expanding Cell. Plant Cell Monographs, vol 6. Springer, Berlin, Heidelberg . https://doi.org/10.1007/7089_2006_075

Download citation

Publish with us

Policies and ethics