Skip to main content

Genomic and Molecular Analyses of Transporters in the Male Gametophyte

  • Chapter
  • First Online:
The Pollen Tube

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 3))

Abstract

The major events of male reproductive development and function have been known for years, but the molecular and cellular bases of these processes are still poorly understood. Recent advances in cell biology coupled with molecular genetics and functional genomics are poised to offer tremendous opportunities to understand how membrane transport is integrated with male gametophyte development and physiology. Here we first propose the type of transporters necessary to affect the dynamics of Ca 2+, K+, pH and others ions observed in polarized tip growth, and then show how pollen transcriptomics and molecular genetic tools are beginning to reveal the roles of specific transporters in microgametogenesis, pollen tube growth and male fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MR, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101:15621–15626

    Article  CAS  PubMed  Google Scholar 

  2. Blevins DG, Lukaszewski KM (1998) Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol 49:481–500

    Article  CAS  PubMed  Google Scholar 

  3. Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics. Plant Physiol. (accepted)

    Google Scholar 

  4. Bonza MC, Morandini P, Luoni L, Geisler M, Palmgren MG, De Michelis MI (2000) At-ACA8encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a calmodulin-binding domain at the N terminus. Plant Physiol 123:1495–1506

    Article  CAS  PubMed  Google Scholar 

  5. Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  CAS  Google Scholar 

  6. Busch W, Saier MH Jr (2004) The IUBMB-endorsed transporter classification system. Mol Biotechnol 27:253–262

    Article  CAS  PubMed  Google Scholar 

  7. Cho MH, Spalding EP (1996) An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA 93:8134–8138

    Article  CAS  PubMed  Google Scholar 

  8. Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK Jr, Bent AF (2000) The Arabidopsis dnd1 defense, no death gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  CAS  PubMed  Google Scholar 

  9. Dettmer J, Schubert D, Calvo-Weimar O, Stierhof YD, Schmidt R, Schumacher K (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124

    Article  CAS  PubMed  Google Scholar 

  10. Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406

    Article  CAS  PubMed  Google Scholar 

  11. Fan LM, Wang YF, Wang H, Wu WH (2001) In vitro Arabidopsis pollen germination and characterization of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614

    Article  CAS  PubMed  Google Scholar 

  12. Fan LM, Wang YF, Wu WH (2003) Outward K+ channels in Brassica chinensis pollen protoplasts are regulated by external and internal pH. Protoplasma 220:143–152

    Article  CAS  PubMed  Google Scholar 

  13. Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144:483–496

    Article  PubMed  Google Scholar 

  14. Fricker MD, White NS, Obermeyer G (1997) pH gradients are not associated with tip growth in pollen tubes of Lilium longoflorum. J Cell Sci 110:1729–1740

    CAS  PubMed  Google Scholar 

  15. Garrill A, Jackson SL, Lew RR, Heath IB (1993) Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol 60:358–365

    CAS  PubMed  Google Scholar 

  16. Graham RD (1975) Male sterility in wheat plants deficient in copper. Nature 254:514–515

    Article  CAS  Google Scholar 

  17. Griessner M, Obermeyer G (2003) Characterization of whole-cell K+ currents across the plasma membrane of pollen grain and tube protoplasts of Lilium longiflorum. J Membr Biol 193:99–108

    Article  CAS  PubMed  Google Scholar 

  18. Hicks GR, Rojo E, Hong S, Carter DG, Raikhel NV (2004) Geminating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol 134:1227–1239

    Article  CAS  PubMed  Google Scholar 

  19. Holdaway-Clarke TI, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  20. Holdaway-Clarke TL, Feijó JA, Hackett GR, Kunkel JG, Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx Is delayed. Plant Cell 9:1999–2010

    Article  CAS  PubMed  Google Scholar 

  21. Holdaway-Clarke TL, Weddle NM, Kim S, Robi A, Parris C, Kunkel JG, Hepler PK (2003) Effect of extracellular calcium, pH and borate on growth oscillations in Lilium formosanum pollen tubes. J Exp Bot 380:65–72

    Article  Google Scholar 

  22. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  23. Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361

    Article  CAS  PubMed  Google Scholar 

  24. Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  PubMed  Google Scholar 

  25. Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A (2004) Ca2+ dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant Physiol 136:3562–3571

    Article  CAS  PubMed  Google Scholar 

  26. Jaffe LA, Weisenseel MH, Jaffe LF (1975) Calcium accumulations within the growing tips of pollen tubes. J Cell Biol 67:488–492

    Article  CAS  PubMed  Google Scholar 

  27. Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982

    Article  CAS  Google Scholar 

  28. Kuhtreiber WM, Jaffe LF (1990) Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol 110:1565–1573

    Article  CAS  PubMed  Google Scholar 

  29. Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  CAS  PubMed  Google Scholar 

  30. Malhó R, Camacho L, Moutinho A (2000) Signalling pathways in pollen tube growth and reorientation. Ann Bot 85(suppl A):59–68

    Google Scholar 

  31. Malhó R, Read ND, Trewavas AJ, Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7:1173–1184

    Article  PubMed  Google Scholar 

  32. Malhó R, Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8:1935–1949

    Article  PubMed  Google Scholar 

  33. Matveyeva NP, Andreyuk DS, Yermakov IP (2003) Transport of Cl across the plasma membrane during pollen grain germination in tobacco. Biochemistry (Mosc) 68:1247–1251

    CAS  PubMed  Google Scholar 

  34. Messerli M, Robinson KR (1997) Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. J Cell Sci 110(Pt 11):1269–1278

    Google Scholar 

  35. Messerli MA, Robinson KR (1998) Cytoplasmic acidification and current influx follow growth pulses of Lilium longiflorum pollen tubes. Plant Journal 16:87–91

    Article  CAS  Google Scholar 

  36. Messerli MA, Smith PJ, Lewis RC, Robinson KR (2004) Chloride fluxes in lily pollen tubes: a critical reevaluation. Plant J 40:799–812

    Article  CAS  PubMed  Google Scholar 

  37. Mouline K, Very AA, Gaymard F, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud JB, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K(+) channel in Arabidopsis. Genes Dev 16:339–350

    Article  CAS  PubMed  Google Scholar 

  38. Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci USA 98:10481–10486

    Article  CAS  PubMed  Google Scholar 

  39. O'Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  PubMed  Google Scholar 

  40. Padmanaban S, Lin X, Perera I, Kawamura Y, Sze H (2004) Differential expression of vacuolar H+-ATPase subunit c genes in tissues active in membrane trafficking and their roles in plant growth as revealed by RNAi. Plant Physiol 134:1514–1526

    Article  CAS  PubMed  Google Scholar 

  41. Palmgren MG (2001) Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  42. Parton RM, Fischer S, Malhó R, Papasouliotis O, Jelitto T, Leonard T, Read ND (1997) Pronounced cytoplasmic pH gradients are not required for tip growth in plant and fungal cells. J Cell Sci 110:1187–1198

    CAS  PubMed  Google Scholar 

  43. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  CAS  PubMed  Google Scholar 

  44. Reiss HD, Herth W (1978) Visualization of the Ca2+ gradient in growing pollen tubes of Lilium longiflorum with chlorotetraceycline fluorescence. Protoplasma 97:373–377

    Article  Google Scholar 

  45. Robertson WR, Clark K, Young JC, Sussman MR (2004) An Arabidopsis thaliana plasma membrane proton pump is essential for pollen development. Genetics 168:1677–1687

    Article  CAS  Google Scholar 

  46. Rudd JJ, Franklin-Tong VE (2000) Unravelling response-specificity in Ca2+ signaling pathways in plant cells. New Phytol 151:7–33

    Article  Google Scholar 

  47. Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    Article  CAS  PubMed  Google Scholar 

  48. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14 Suppl:S401–S417

    Google Scholar 

  49. Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  CAS  PubMed  Google Scholar 

  50. Schneidereit A, Scholz-Starke J, Buttner M (2003) Functional characterization and expression analyses of the glucose-specific AtSTP9 monosaccharide transporter in pollen of Arabidopsis. Plant Physiol 133:182–190

    Article  CAS  PubMed  Google Scholar 

  51. Schneidereit A, Scholz-Starke J, Sauer N, Buttner M (2005) AtSTP11, a pollen tube-specific monosaccharide transporter in Arabidopsis. Planta 221:48–55

    Article  CAS  PubMed  Google Scholar 

  52. Scholz-Starke J, Buttner M, Sauer N (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol 131:70–77

    Article  CAS  PubMed  Google Scholar 

  53. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  Google Scholar 

  54. Shang ZL, Ma LG, Zhang HL, He RR, Wang XC, Cui SJ, Sun DY (2005) Ca2+ influx into lily pollen grains through a hyperpolarization-activated Ca2+-permeable channel which can be regulated by extracellular CaM. Plant Cell Physiol 46:598–608

    Article  CAS  Google Scholar 

  55. Stadler R, Truernit E, Gahrtz M, Sauer N (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J 19:269–278

    Article  CAS  PubMed  Google Scholar 

  56. Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358

    Article  Google Scholar 

  57. Sze H (1985) H+-translocating ATPases: Advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208

    Article  CAS  Google Scholar 

  58. Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell 11:677–690

    Article  CAS  PubMed  Google Scholar 

  59. Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462

    Article  CAS  PubMed  Google Scholar 

  60. Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, Bock KW, Conejero G, Li X, Twell D, Ward JM, Hirschi KD (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136:2532–2547

    Article  CAS  PubMed  Google Scholar 

  61. Sze H, Schumacher K, Muller ML, Padmanaban S, Taiz L (2002) A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H(+)-ATPase. Trends Plant Sci 7:157–161

    Article  CAS  PubMed  Google Scholar 

  62. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–340

    Article  CAS  PubMed  Google Scholar 

  63. Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    Article  CAS  PubMed  Google Scholar 

  64. Truernit E, Stadler R, Baier K, Sauer N (1999) A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J 17:191–201

    Article  CAS  PubMed  Google Scholar 

  65. Tschieu JH, Fana F, Fink JL, Harper J, Nair TM, Niedner RH, Smith DW, Steube K, Tam TM, Veretnik S, Wang D, Gribskov M (2003) The PlantsP and PlantsT Functional Genomics Databases. Nucleic Acids Res 31:342–344

    Article  Google Scholar 

  66. Very AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  CAS  PubMed  Google Scholar 

  67. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  CAS  PubMed  Google Scholar 

  68. Wang Q, Lu L, Wu X, Li Y, Lin J (2003) Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23:345–351

    CAS  PubMed  Google Scholar 

  69. Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  CAS  PubMed  Google Scholar 

  70. Ward JM (2001) Identification of novel families of membrane proteins from the model plant Arabidopsis thaliana. Bioinformatics 17:560–563

    Article  CAS  PubMed  Google Scholar 

  71. Ward JM, Pei ZM, Schroeder JI (1995) Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    Article  CAS  PubMed  Google Scholar 

  72. Weisenseel MH, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567

    Article  CAS  PubMed  Google Scholar 

  73. Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443–455

    Article  CAS  PubMed  Google Scholar 

  74. Zonia L, Cordeiro S, Tupy J, Feijó JA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3,4,5,6-tetrakisphosphate. Plant Cell 14:2233–2249

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heven Sze .

Editor information

Rui Malhó

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Sze, H., Frietsch, S., Li, X., Bock, K.W., Harper, J.F. Genomic and Molecular Analyses of Transporters in the Male Gametophyte. In: Malhó, R. (eds) The Pollen Tube. Plant Cell Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_044

Download citation

Publish with us

Policies and ethics