Skip to main content

Mode of Action of Plant Hormones and Plant Growth Regulators During Induction of Somatic Embryogenesis: Molecular Aspects

  • Chapter
  • First Online:
Somatic Embryogenesis

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 2))

Abstract

Plant hormones play critical roles in the establishment of somatic embryogenesis. During this process, somatic plant cells reverse their state of differentiation, acquire pluripotentiality and set up a new developmental program. The identification of the regulatory mechanisms that govern the key events of somatic embryogenesis requires molecular and genetic investigations. One critical issue is how plant hormones and growth regulators act to mediate somatic embryogenesis. Do they function as simple stimuli or participate directly, as central signals, in the reprogramming of the somatic cells towards an embryogenic fate? The latter scenario is now well supported by a number of studies that provide evidence of close interconnections between plant hormones and the molecular pathways that control somatic embryogenesis, including chromatin remodeling, gene expression patterning, reactivation of cell cycle and division and regulation of protein turnover. In this chapter we describe recent advances in the understanding of molecular and genetic mechanisms underlying the early stages of somatic embryogenesis. The roles and mode of action of plant hormones are especially emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

ABP1:

Auxin binding protein 1

ARF:

Auxin-response factors

aza-C:

5-Azacytidine

BBM :

BABY BOOM

BAP:

Benzylaminopurine

CDK:

Cyclin-dependent kinase

DD-RT PCR:

Differential display reverse transcription polymerase chain reaction

ER:

Endoplasmic reticulum

GA:

Gibberellin

IAA:

Indole-3-acetic acid

LEC :

LEAFY COTYLEDON

NAA:

Naphthalene acetic acid

PGR:

Plant growth regulator

PH:

Plant hormone

PKL :

PICKLE

SE:

Somatic embryogenesis

(SERK):

SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE

(WUS):

WUSCHEL

References

  1. Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  CAS  PubMed  Google Scholar 

  2. Barbier-Brygoo H, Ephritkhine G, Klämbt D, Ghislain M, Guern J (1989) Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86:891–895

    Article  CAS  PubMed  Google Scholar 

  3. Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 72:157–162

    CAS  Google Scholar 

  4. Baudino S, Hansen S, Brettschneider R, Hecht VF, Dresselhaus T, Lörz H, Dumas C, Rogowsky PM (2001) Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta 213:1–10

    Article  CAS  PubMed  Google Scholar 

  5. Bauly JM, Sealy IM, Macdonald H, Brearley J, Droge S, Hillmer S, Robinson DG, Venis MA, Blatt MR, Lazarus CM, Napier RM (2000) Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol 124:1229–1238

    Article  CAS  PubMed  Google Scholar 

  6. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  Google Scholar 

  7. Caplan A, Berger PH, Naderi M (1998) Phenotypic variation between transgenic plants: what is making gene expression unpredictable? In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer, Dordrecht, pp 539–562

    Google Scholar 

  8. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  9. Chen JG, Shimomura S, Sitbon F, Sandberg G, Jones AM (2001a) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28:607–617

    Google Scholar 

  10. Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001b) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902–911

    Google Scholar 

  11. Custers JBM, Cordewener JHG, Nöllen Y, Dons JJM, van Lookeren Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  Google Scholar 

  12. De Veylder L, Joubes J, Inze D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  PubMed  CAS  Google Scholar 

  13. del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123:173–183

    Article  Google Scholar 

  14. Dewitte W, Murray JA (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  15. Dharmasiri S, Estelle M (2002) The role of regulated protein degradation in auxin response. Plant Mol Biol 49:401–409

    Article  CAS  PubMed  Google Scholar 

  16. Dudits D, Bögre L, Györgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  17. Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In Vitro embryogenesis in plants. Kluwer, Dordrecht, pp 276–308

    Google Scholar 

  18. Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establisment in carpels of Arabidopsis. Cell 99:199–209

    Article  CAS  PubMed  Google Scholar 

  19. Fehér A, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Google Scholar 

  20. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    Article  CAS  PubMed  Google Scholar 

  21. Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  22. Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380

    Article  CAS  PubMed  Google Scholar 

  23. Gaspar T, Kevers C, Faivre-Rampant O, Crèvecoeur M, Penel C, Greppin H, Dommes J (2003) Changing concepts in plant hormone action. In Vitro Cell Dev Biol Plant 39:85–105

    Article  CAS  Google Scholar 

  24. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  25. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–786

    Article  CAS  PubMed  Google Scholar 

  26. Gubler F, Jacobsen JV (1992) Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell 4:1435–1441

    Article  CAS  PubMed  Google Scholar 

  27. Guilfoyle T, Hagen G, Ulmasov T, Murfett J (1998) How does auxin turn on genes? Plant Physiol 118:341–347

    Article  CAS  PubMed  Google Scholar 

  28. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  29. Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    Article  CAS  PubMed  Google Scholar 

  30. Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inze D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5:1711–1723

    Article  CAS  PubMed  Google Scholar 

  31. Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    Article  CAS  PubMed  Google Scholar 

  32. Hirt H, Pay A, Györgyey J, Bako L, Nemeth K, Bogre L, Schweyen RJ, Heberle-Bors E, Dudits D (1991) Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci USA 88:1636–1640

    Article  CAS  PubMed  Google Scholar 

  33. Inohara N, Shimomura S, Fukui T, Futai M (1989) Auxin-binding protein located in the endoplasmic reticulum of maize shoots: molecular cloning and complete primary structure. Proc Natl Acad Sci USA 86:3564–3568

    Article  CAS  PubMed  Google Scholar 

  34. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063

    Article  CAS  PubMed  Google Scholar 

  35. Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Rev Bras Fisiol Veg 13:196–223

    Article  Google Scholar 

  36. John PCL, Zhang K, Dongg C, Diederich L, Wightman F (1993) A p34cdc2 related protein in control of cell cycle progression, the switch between division and differentiation in tissue development and stimulation of division by auxin and cytokinin. Aust J Plant Physiol 20:503–526

    Article  CAS  Google Scholar 

  37. Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117

    Article  CAS  PubMed  Google Scholar 

  38. Kitamiya E, Suzuki S, Sano T, Nagata T (2000) Isolation of two genes that were induced upon the initiation of somatic embryogenesis on carrot hypocotyls by high concentrations of 2,4-D. Plant Cell Rep 19:551–557

    Article  CAS  Google Scholar 

  39. Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    Article  CAS  PubMed  Google Scholar 

  40. Kulaeva ON, Prokoptseva OS (2004) Recent advances in the study of mechanisms of action of phytohormones. Biochemistry (Moscow) 69:233–247

    CAS  PubMed  Google Scholar 

  41. Laureys F, Dewitte W, Witters E, Van Montagu M, Inze D, Van Onckelen H (1998) Zeatin is indispensable for the G2-M transition in tobacco BY-2 cells. FEBS Lett 426:29–32

    Article  CAS  PubMed  Google Scholar 

  42. Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  43. Leblanc N, David K, Grosclaude J, Pradier JM, Barbier-Brygoo H, Labiau S, Perrot-Rechenmann C (1999) A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J Biol Chem 274:28314–28320

    Article  CAS  PubMed  Google Scholar 

  44. Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  CAS  PubMed  Google Scholar 

  45. Li G, Hall TC, Holmes-Davis R (2002) Plant chromatin: development and gene control. Bioassays 24:234–243

    Article  CAS  Google Scholar 

  46. Lin X, Hwang GJ, Zimmerman JL (1996) Isolation and characterization of a diverse set of genes from carrot somatic embryos. Plant Physiol 112:1365–1374

    Article  CAS  PubMed  Google Scholar 

  47. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  48. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205

    Article  CAS  PubMed  Google Scholar 

  49. Luerssen H, Kirik V, Herrmann P, Misera S (1998) FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J 15:755–764

    Article  CAS  PubMed  Google Scholar 

  50. Marcotte WR Jr, Guiltinan MJ, Quatrano RS (1992) ABA-regulated gene expression: cis-acting sequences and trans-acting factors. Biochem Soc Trans 20:93–97

    CAS  PubMed  Google Scholar 

  51. Martinez MC, Jorgensen JE, Lawton MA, Lamb CJ, Doerner PW (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci USA 89:7360–7364

    Article  CAS  PubMed  Google Scholar 

  52. Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  CAS  PubMed  Google Scholar 

  53. McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1:523–532

    Article  CAS  PubMed  Google Scholar 

  54. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66:895–905

    Article  CAS  PubMed  Google Scholar 

  55. Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Article  CAS  PubMed  Google Scholar 

  56. Meller Y, Sessa G, Eyal Y, Fluhr R (1993) DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol 23:453–463

    Article  CAS  PubMed  Google Scholar 

  57. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    Article  CAS  PubMed  Google Scholar 

  58. Miao GH, Hong Z, Verma DP (1993) Two functional soybean genes encoding p34cdc2 protein kinases are regulated by different plant developmental pathways. Proc Natl Acad Sci USA 90:943–947

    Article  CAS  PubMed  Google Scholar 

  59. Mordhorst AP, Voerman KJ, Hartog MV, Meijer EA, van Went J, Koornneef M, de Vries SC (1998) Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149:549–563

    CAS  Google Scholar 

  60. Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  61. Nakano Y, Steward N, Sekine M, Kusano T, Sano H (2000) A tobacco NtMET1 cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotypes of transgenic tobacco plants. Plant Cell Physiol 41:448–457

    CAS  Google Scholar 

  62. Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both root-forming and embryogenic cultures. Plant Physiol 133:218–230

    Article  CAS  PubMed  Google Scholar 

  63. Ogas J, Cheng JC, Sung ZR, Somerville C (1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277:91–94

    Article  CAS  PubMed  Google Scholar 

  64. Ogas J, Kaufmann S, Henderson J, Somerville C (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc Natl Acad Sci USA 96:13839–13844

    Article  CAS  PubMed  Google Scholar 

  65. Redig P, Shaul O, Inze D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    Article  CAS  PubMed  Google Scholar 

  66. Rider SD Jr, Henderson JT, Jerome RE, Edenberg HJ, Romero-Severson J, Ogas J (2003) Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J 35:33–43

    Article  CAS  Google Scholar 

  67. Rider SD Jr, Hemm MR, Hostetler HA, Li HC, Chapple C, Ogas J (2004) Metabolic profiling of the Arabidopsis pkl mutant reveals selective derepression of embryonic traits. Planta 219:489–499

    Article  CAS  PubMed  Google Scholar 

  68. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  CAS  PubMed  Google Scholar 

  69. Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544

    Article  CAS  PubMed  Google Scholar 

  70. Roudier F, Fedorova E, Lebris M, Lecomte P, Györgyey J, Vaubert D, Horvath G, Abad P, Kondorosi A, Kondorosi E (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol 131:1091–1103

    Article  CAS  PubMed  Google Scholar 

  71. Rück A, Palme K, Venis MA, Napier R, Felle RH (1993) Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4:41–46

    Article  Google Scholar 

  72. Satoh S, Kamada H, Harada H, Fujii T (1986) Auxin-controlled glycoprotein release into the medium of embryogenic carrot cells. Plant Physiol 81:931–933

    Article  CAS  PubMed  Google Scholar 

  73. Sauter M (1997) Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J 11:181–190

    Article  CAS  PubMed  Google Scholar 

  74. Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    Article  CAS  PubMed  Google Scholar 

  75. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  76. Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  CAS  PubMed  Google Scholar 

  77. Shimomura S, Watanabe S, Hiroaki I (1999) Characterization of auxin-binding protein 1 from tobacco: content, localization and auxin-binding activity. Planta 209:118–125

    Article  CAS  PubMed  Google Scholar 

  78. Somleva MN, Schmidt EDL, de Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19:718–726

    Article  CAS  Google Scholar 

  79. Stals H, Inze D (2001) When plant cells decide to divide. Trends Plant Sci 6:359–364

    Article  CAS  PubMed  Google Scholar 

  80. Steffens B, Feckler C, Palme K, Christian M, Bottger M, Luthen H (2001) The auxin signal for protoplast swelling is perceived by extracellular ABP1. Plant J 27:591–599

    Article  CAS  PubMed  Google Scholar 

  81. Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  CAS  PubMed  Google Scholar 

  82. Swiatek A, Lenjou M, Van Bockstaele D, Inze D, Van Onckelen H (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  CAS  PubMed  Google Scholar 

  83. Takahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T (1989) Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci USA 86:9279–9283

    Article  CAS  PubMed  Google Scholar 

  84. Thiel G, Blatt MR, Fricker MD, White IR, Millner P (1993) Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. Proc Natl Acad Sci USA 90:11493–11497

    Article  CAS  PubMed  Google Scholar 

  85. Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577–583

    Article  CAS  PubMed  Google Scholar 

  86. Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    Article  CAS  PubMed  Google Scholar 

  87. Thomas TL (1993) Gene expression during plant embryogenesis and germination: An overview. Plant Cell 5:1401–1410

    Article  CAS  PubMed  Google Scholar 

  88. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    Article  CAS  PubMed  Google Scholar 

  89. Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755

    Article  CAS  Google Scholar 

  90. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  CAS  PubMed  Google Scholar 

  91. van der Fits L, Memelink J (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J 25:43–53

    Article  PubMed  Google Scholar 

  92. Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  93. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  94. West M, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745

    Article  CAS  PubMed  Google Scholar 

  95. Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA proteins is essential for normal auxin signaling. Plant J 21:553–562

    Article  CAS  PubMed  Google Scholar 

  96. Yamamoto N, Kobayashi H, Togashi T, Mori Y, Kikuchi K, Kuriyama K, Tokuji Y (2005) Formation of embryogenic cell clumps from carrot epidermal cells is suppressed by 5-azacytidine, a DNA methylation inhibitor. J Plant Physiol 162:47–54

    Article  CAS  PubMed  Google Scholar 

  97. Yasuda H, Nakajima M, Ito T, Ohwada T, Masuda H (2001) Partial characterization of genes whose transcripts accumulate preferentially in cell clusters at the earliest stage of carrot somatic embryogenesis. Plant Mol Biol 45:705–712

    Article  CAS  PubMed  Google Scholar 

  98. Yazawa K, Takahata K, Kamada H (2004) Isolation of the gene encoding Carrot leafy cotyledon 1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiol Biochem 42:215–223

    Article  CAS  PubMed  Google Scholar 

  99. Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro Embryogenesis in Plants. Kluwer Academic Publishers, Dordrecht, p 205–248

    Google Scholar 

  100. Zhang K, Letham DS, John PC (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200:2–12

    Article  CAS  PubMed  Google Scholar 

  101. Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778

    Article  CAS  PubMed  Google Scholar 

  102. Zimmerman JL, Thomine S, Guern J, Barbier-Brygoo H (1994) An anion current at the plasma

    Google Scholar 

  103. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Thomas .

Editor information

A. Mujib Jozef Šamaj

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Thomas, C., Jiménez, V.M. Mode of Action of Plant Hormones and Plant Growth Regulators During Induction of Somatic Embryogenesis: Molecular Aspects. In: Mujib, A., Šamaj, J. (eds) Somatic Embryogenesis. Plant Cell Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_040

Download citation

Publish with us

Policies and ethics