Skip to main content

Pyrrolidines as Chiral Auxiliaries

  • Chapter
  • First Online:
Heterocycles as Chiral Auxiliaries in Asymmetric Synthesis

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 55))

Abstract

Despite the fact that various enantioselective catalytic reactions are available for many important stereoselective reactions, diastereoselective auxiliary-controlled synthesis is still an important area of organic synthesis. Chiral pyrrolidine auxiliaries are frequently used in this context, due to good availability and efficient transfer of chirality via the rigid pyrrolidine scaffold. The following chapter focusses on recent examples and gives a brief overview of applications of pyrrolidine auxiliaries in diastereoselective syntheses. Illustrative examples were chosen to spotlight the underlying principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 28 July 2020

    The original version of this chapter unfortunately contained few mistakes. In page 162, first paragraph, in line 42, the cross-referred chapter titles were incorrect. The corrected chapter titles are given below.

References

  1. Yamada S, Hiroi K, Achiwa K (1969) Tetrahedron Lett 10(48):4233–4236

    Google Scholar 

  2. Maison W (2012) In: Carreira EM, Yamamoto H (eds) Comprehensive chirality. Elsevier, Amsterdam, pp 1–18. https://doi.org/10.1016/B978-0-08-095167-6.00301-3

  3. Enders D, Eichenauer H (1976) Angew Chem Int Ed Engl 15(9):549–551

    Google Scholar 

  4. Enders D, Eichenauer H (1977) Tetrahedron Lett 18(2):191–194

    Google Scholar 

  5. Enders D, Fey P, Kipphardt H (1993) Org Synth Coll 8:26–31

    Google Scholar 

  6. Enders D, Eichenauer H (1979) Chem Ber 112(8):2933–2960

    Google Scholar 

  7. Enders D, Eichenauer H, Baus U, Schubert H, Kremer KAM (1984) Tetrahedron 40(8):1345–1359

    Google Scholar 

  8. Meyers AI, Williams DR, Druelinger M (1976) J Am Chem Soc 98(10):3032–3033. https://doi.org/10.1021/ja00426a068

  9. Enders D, Kipphardt H, Fey P (1993) Org Synth Coll 8:403–413

    Google Scholar 

  10. Enders D, Wortmann L, Peters R (2000) Acc Chem Res 33(3):157–169

    Google Scholar 

  11. Gnas Y, Glorius F (2006) Synthesis 12:1899–1930. https://doi.org/10.1055/s-2006-942399

  12. Job A, Janeck CF, Bettray W, Peters R, Enders D (2002) Tetrahedron 58(12):2253–2329. https://doi.org/10.1016/S0040-4020(02)00080-7

  13. Ager DJ, Prakash I, Schaad DR (1996) Chem Rev 96(2):835–876. https://doi.org/10.1021/cr9500038

  14. Goettlich R (2007) Sci Synth 25:355–368

    Google Scholar 

  15. Lazny R, Nodzewska A (2010) Chem Rev 110(3):1386–1434

    Google Scholar 

  16. Fukumoto Y, Ohmae A, Hirano M, Chatani N (2013) Asian J Org Chem 2(12):1036–1039. https://doi.org/10.1002/ajoc.201300188

  17. Enders D, Schubert H (1984) Angew Chem Int Ed Engl 23(5):365–366

    Google Scholar 

  18. Hauck RS, Nau H (1989) Naturwissenschaften 76(11):528–529

    Google Scholar 

  19. Hauck RS, Nau H (1989) Toxicol Lett 49(1):41–48

    Google Scholar 

  20. Enders D, Plant A (1994) Synlett 1994(12):1054–1056

    Google Scholar 

  21. Fernandez R, Gasch C, Lassaletta JM, Llera JM, Vazquez J (1993) Tetrahedron Lett 34(1):141–144

    Google Scholar 

  22. Diez E, Lopez AM, Pareja C, Martin E, Fernandez R, Lassaletta JM (1998) Tetrahedron Lett 39(43):7955–7958

    Google Scholar 

  23. Smith III AB, Liu Z, Simov V (2009) Synlett 19:3131–3134. https://doi.org/10.1055/s-0029-1218352

  24. Bhuniya R, Nanda S (2011) Tetrahedron Asymmetry 22(10):1125–1132. https://doi.org/10.1016/j.tetasy.2011.06.019

  25. Enders D, Kipphardt H, Gerdes P, Brenavalle LJ, Bhushan V (1988) Bull Soc Chim Belg 97(8–9):691–704

    Google Scholar 

  26. Enders D, Muller SE, Raabe G (1999) Angew Chem Int Ed 38(1–2):195–197

    Google Scholar 

  27. Enders D, Muller SF, Raabe G (1999) Synlett 6(6):741–743

    Google Scholar 

  28. Enders D, Muller SF, Raabe G, Runsink J (2000) Eur J Org Chem 2000(6):879–892

    Google Scholar 

  29. Martens J, Lubben S (1990) Liebigs Ann Chem 1990(9):949–952

    Google Scholar 

  30. Wilken J, Thorey C, Groger H, Haase D, Saak W, Pohl S, Muzart J, Martens J (1997) Liebigs Ann Chem 1997(10):2133–2146

    Google Scholar 

  31. Dumoulin D, Lebrun S, Couture A, Deniau E, Grandclaudon P (2009) Tetrahedron Asymmetry 20(16):1903–1911. https://doi.org/10.1016/j.tetasy.2009.07.015

  32. Dumoulin D, Lebrun S, Deniau E, Couture A, Grandclaudon P (2009) Eur J Org Chem 2009(22):3741–3752. https://doi.org/10.1002/ejoc.200900365

  33. Enders D, Herriger C (2007) Eur J Org Chem 2007(7):1085–1090. https://doi.org/10.1002/ejoc.200600895

  34. Muñoz L, Bosch MP, Guerrero A (2007) Tetrahedron Asymmetry 18(5):651–658. https://doi.org/10.1016/j.tetasy.2007.02.022

  35. Kondaiah GCM, Vivekanandareddy M, Reddy LA, Anurkar SV, Gurav VM, Ravikumar M, Bhattacharya A, Bandichhor R (2011) Synth Commun 41(8):1186–1191. https://doi.org/10.1080/00397911003798757

  36. Geden JV, Beasley BO, Clarkson GJ, Shipman M (2013) J Org Chem 78(23):12243–12250. https://doi.org/10.1021/jo4020485

  37. Pancholi AK, Geden JV, Clarkson GJ, Shipman M (2016) J Org Chem 81(17):7984–7992. https://doi.org/10.1021/acs.joc.6b01284

  38. Ameen D, Snape TJ (2014) Eur J Org Chem 2014(9):1925–1934. https://doi.org/10.1002/ejoc.201301716

  39. Clarke SL, McSweeney CM, McGlacken GP (2014) Tetrahedron Asymmetry 25(4):356–361. https://doi.org/10.1016/j.tetasy.2014.01.006

  40. Okada S, Arayama K, Murayama R, Ishizuka T, Hara K, Hirone N, Hata T, Urabe H (2008) Angew Chem Int Ed 47(36):6860–6864. https://doi.org/10.1002/anie.200801928

  41. Iio H, Monden M, Okada K, Tokoroyama T (1987) J Chem Soc Chem Commun 5:358–359

    Google Scholar 

  42. Palacios F, Aparicio D, Delossantos JM (1994) Tetrahedron 50(44):12727–12742

    Google Scholar 

  43. Pearson AJ, Chang K, Mcconville DB, Youngs WJ (1994) Organometallics 13(1):4–5

    Google Scholar 

  44. Enders D, Meyer I, Runsink J, Raabe G (1999) Heterocycles 50(2):995–1024

    Google Scholar 

  45. Enders D, Heider KJ, Raabe G (1993) Angew Chem Int Ed Engl 32(4):598–600

    Google Scholar 

  46. Sammet K, Gastl C, Baro A, Laschat S, Fischer P, Fettig I (2010) Adv Synth Catal 352(13):2281–2290. https://doi.org/10.1002/adsc.201000412

  47. Dumoulin D, Lebrun S, Couture A, Deniau E, Grandclaudon P (2010) Tetrahedron Asymmetry 21(2):195–201. https://doi.org/10.1016/j.tetasy.2009.12.026

  48. Fustero S, Báez C, Sánchez-Roselló M, Asensio A, Miro J, del Pozo C (2012) Synthesis 44(12):1863–1873. https://doi.org/10.1055/s-0031-1290964

  49. Grigg R, Inman M, Kilner C, Köppen I, Marchbank J, Selby P, Sridharan V (2007) Tetrahedron 63(27):6152–6169. https://doi.org/10.1016/j.tet.2007.03.044

  50. Aldous DJ, Batsanov AS, Yufit DS, Dalençon AJ, Dutton WM, Steel PG (2006) Org Biomol Chem 4(15):2912–2927. https://doi.org/10.1039/B604952D

  51. Kubel B, Hofle G, Steglich W (1975) Angew Chem Int Ed Engl 14(1):58–59

    Google Scholar 

  52. Bartlett PA, Barstow JF (1982) J Org Chem 47(20):3933–3941

    Google Scholar 

  53. Kazmaier U (1994) Angew Chem Int Ed Engl 33(9):998–999

    Google Scholar 

  54. Sakaguchi K, Suzuki H, Ohfune Y (2001) Chirality 13(7):357–365

    Google Scholar 

  55. Qu H, Gu X, Liu Z, Min BJ, Hruby VJ (2007) Org Lett 9(20):3997–4000. https://doi.org/10.1021/ol701704h

  56. Liu Z, Qu H, Gu X, Min BJ, Nyberg J, Hruby VJ (2008) Org Lett 10(18):4105–4108. https://doi.org/10.1021/ol801657q

  57. Liu Z, Mehta SJ, Lee K-S, Grossman B, Qu H, Gu X, Nichol GS, Hruby VJ (2012) J Org Chem 77(3):1289–1300. https://doi.org/10.1021/jo201753q

  58. Raubo P, Giuliano C, Hill AW, Huscroft IT, London C, Reeve A, Seward EM, Swain CG, Kulagowski JJ (2006) Synlett 2006(04):0600–0604. https://doi.org/10.1055/s-2006-932489

  59. Friedemann NM, Härter A, Brandes S, Groß S, Gerlach D, Münch W, Schollmeyer D, Nubbemeyer U (2012) Eur J Org Chem 2012(12):2346–2358. https://doi.org/10.1002/ejoc.201200073

  60. Madelaine C, Valerio V, Maulide N (2010) Angew Chem Int Ed 49(9):1583–1586. https://doi.org/10.1002/anie.200906416

  61. Lachia M, Poriel C, Slawin AMZ, Moody CJ (2007) Chem Commun 3:286–288. https://doi.org/10.1039/B613716D

  62. Denmark SE, Edwards JP, Weber T, Piotrowski DW (2010) Tetrahedron-Asymmetry 21(9–10):1278–1302. https://doi.org/10.1016/j.tetasy.2010.04.042

  63. Enders D, Moll A, Bats JW (2006) Eur J Org Chem 2006(5):1271–1284. https://doi.org/10.1002/ejoc.200500860

  64. Enders D, Del Signore G, Raabe G (2013) Turk J Chem 37(4):492–518

    Google Scholar 

  65. Enders D, Noll S, Raabe G, Runsink J (2008) Synthesis 2008(08):1288–1296. https://doi.org/10.1055/s-2008-1042941

  66. Rabasso N, Fadel A (2008) Synthesis 2008(15):2353–2362. https://doi.org/10.1055/s-2008-1067130

  67. Pair E, Monteiro N, Bouyssi D, Baudoin O (2013) Angew Chem Int Ed 52(20):5346–5349. https://doi.org/10.1002/anie.201300782

  68. Boeckman RK, Miller Y, Ryder TR (2010) Org Lett 12(20):4524–4527. https://doi.org/10.1021/ol101831b

  69. Maison W (2008) In: Schaumann E, Enders D (eds) Science of synthesis, vol 40a. Thieme, Stuttgart, pp 343–363

    Google Scholar 

  70. Vicario J, Aparicio D, Palacios F (2011) Tetrahedron Lett 52(32):4109–4111. https://doi.org/10.1016/j.tetlet.2011.05.119

  71. Dubois M, Deniau E, Couture A, Grandclaudon P (2012) Tetrahedron 68(35):7140–7147. https://doi.org/10.1016/j.tet.2012.06.037

  72. Kametani T, Takagi N, Toyota M, Honda T, Fukumoto K (1981) J Chem Soc Perk Trans 1(11):2830–2834

    Google Scholar 

  73. Takai K, Oshima K, Nozaki H (1980) Tetrahedron Lett 21(26):2531–2534

    Google Scholar 

  74. Munoz SB, Aloia AN, Moore AK, Papp A, Mathew T, Fustero S, Olah GA, Surya Prakash GK (2016) Org Biomol Chem 14(1):85–92. https://doi.org/10.1039/C5OB02187A

  75. Lachia M, Jung PMJ, De Mesmaeker A (2012) Tetrahedron Lett 53(34):4514–4517. https://doi.org/10.1016/j.tetlet.2012.06.013

  76. Liu R, Gutierrez O, Tantillo DJ, Aubé J (2012) J Am Chem Soc 134(15):6528–6531. https://doi.org/10.1021/ja300369c

  77. Maison W, Prenzel AHGP (2005) Synthesis 7:1031–1048

    Google Scholar 

  78. Bernal-Albert P, Faustino H, Gimeno A, Asensio G, Mascareñas JL, López F (2014) Org Lett 16(23):6196–6199. https://doi.org/10.1021/ol503121q

  79. van Christiane W, Döpp D, Henkel G (2006) Z Naturforsch B 61(3):301. https://doi.org/10.1515/znb-2006-0310

  80. Kündig EP, Bellido A, Kaliappan KP, Pape AR, Radix S (2006) Org Biomol Chem 4(2):342–351. https://doi.org/10.1039/B513261D

  81. Guéret SM, O’Connor PD, Brimble MA (2009) Org Lett 11(4):963–966. https://doi.org/10.1021/ol8029017

  82. Jousseaume T, Retailleau P, Chabaud L, Guillou C (2012) Tetrahedron Lett 53(11):1370–1372. https://doi.org/10.1016/j.tetlet.2012.01.008

  83. Paul T, Malachowski WP, Lee J (2007) J Org Chem 72(3):930–937. https://doi.org/10.1021/jo0621423

  84. Casimiro-Garcia A, Schultz AG (2006) Lett 47(16):2739–2742. https://doi.org/10.1016/j.tetlet.2006.02.093

  85. Paul T, Malachowski WP, Lee J (2006) Org Lett 8(18):4007–4010

    Google Scholar 

  86. Schultz AG (1999) Chem Commun 14:1263–1271

    Google Scholar 

  87. Nubbemeyer U (2003) Synthesis 2003(7):961–1008

    Google Scholar 

  88. Pandey G, Raikar SB (2006) Tetrahedron Lett 47(12):2029–2032. https://doi.org/10.1016/j.tetlet.2006.01.038

  89. Ross TM, Burke SJ, Malachowski WP (2014) Tetrahedron Lett 55(33):4616–4618. https://doi.org/10.1016/j.tetlet.2014.06.085

  90. Burke SJ, Malachowski WP, Mehta SK, Appenteng R (2015) Org Biomol Chem 13(9):2726–2744. https://doi.org/10.1039/C4OB02489C

  91. Lee WK, Park YS, Beak P (2009) Acc Chem Res 42(2):224–234

    Google Scholar 

  92. Gawley RE (2010) Top Stereochem 26:93–133

    Article  CAS  Google Scholar 

  93. Coldham I, Sheikh NS (2010) Top Stereochem 26:253–293

    Article  CAS  Google Scholar 

  94. Hoppe D, Christoph G (2004) In: Rappoport Z, Marek I (eds) The chemistry of organolithium compounds. Wiley, New York, pp 1055–1164

    Chapter  Google Scholar 

  95. Coldham I, Raimbault S, Whittaker DTE, Chovatia PT, Leonori D, Patel JJ, Sheikh NS (2010) Chem Eur J 16(13):4082–4090. https://doi.org/10.1002/chem.200903059

    Article  CAS  PubMed  Google Scholar 

  96. Lotz M, Pugin B, Kesselgruber M, Thommen M, Spindler F, Blaser H-U, Pfaltz A, Schoenleber M (2010) Tetrahedron Asymmetry 21(9):1199–1202. https://doi.org/10.1016/j.tetasy.2010.05.028

    Article  CAS  Google Scholar 

  97. Voituriez A, Panossian A, Fleury-Brégeot N, Retailleau P, Marinetti A (2009) Adv Synth Catal 351(11–12):1968–1976. https://doi.org/10.1002/adsc.200900193

    Article  CAS  Google Scholar 

  98. Enders D, Lochtman R (1997) Synlett 1997(04):355–356. https://doi.org/10.1055/s-1997-5788

  99. Belokon YN (1992) Pure Appl Chem 64(12):1917–1924

    Google Scholar 

  100. Saghyan AS, Dadayan AS, Dadayan SA, Mkrtchyan AF, Geolchanyan AV, Manasyan LL, Ajvazyan HR, Khrustalev VN, Hambardzumyan HH, Maleev VI (2010) Tetrahedron Asymmetry 21(24):2956–2965. https://doi.org/10.1016/j.tetasy.2010.11.024

  101. Nicolaou KC, Pulukuri KK, Rigol S, Buchman M, Shah AA, Cen N, McCurry MD, Beabout K, Shamoo Y (2017) J Am Chem Soc 139(44):15868–15877. https://doi.org/10.1021/jacs.7b08749

  102. Deniau E, Couture A, Grandclaudon P (2008) Tetrahedron Asymmetry 19(23):2735–2740. https://doi.org/10.1016/j.tetasy.2008.11.021

  103. Periasamy M, Sanjeevakumar N, Dalai M, Gurubrahamam R, Reddy PO (2012) Org Lett 14(12):2932–2935. https://doi.org/10.1021/ol300717e

  104. Sallio R, Lebrun S, Agbossou-Niedercorn F, Michon C, Deniau E (2012) Tetrahedron Asymmetry 23(13):998–1004. https://doi.org/10.1016/j.tetasy.2012.06.024

  105. Sallio R, Lebrun S, Gigant N, Gillaizeau I, Deniau E (2014) Eur J Org Chem 2014(20):4381–4388. https://doi.org/10.1002/ejoc.201402202

  106. Bauer JO, Strohmann C (2014) Angew Chem Int Ed 53(3):720–724. https://doi.org/10.1002/anie.201307826

  107. Gwon D, Lee D, Kim J, Park S, Chang S (2014) Chem Eur J 20(39):12421–12425. https://doi.org/10.1002/chem.201404151

  108. Berdeja A, Hart CE, Swayze EE, Vasquez G, Gaus H, Murray HM, Nichols JG, Migawa MT, Seth PP, Lee S, Lima WF, Wan WB (2014) Nucleic Acids Res 42(22):13456–13468. https://doi.org/10.1093/nar/gku1115

  109. Koziolkiewicz M, Krakowiak A, Kwinkowski M, Boczkowska M, Stec WJ (1995) Nucleic Acids Res 23(24):5000–5005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Maison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maison, W. (2019). Pyrrolidines as Chiral Auxiliaries. In: Braun, M. (eds) Heterocycles as Chiral Auxiliaries in Asymmetric Synthesis. Topics in Heterocyclic Chemistry, vol 55. Springer, Cham. https://doi.org/10.1007/7081_2019_34

Download citation

Publish with us

Policies and ethics