Skip to main content

Carbohydrate-Derived Spiroketals and Spirocyclic Lactones

  • Chapter
  • First Online:
Carbohydrate-spiro-heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 57))

Abstract

Various methods for the synthesis of carbohydrate-derived spiroketals and spirocyclic lactones starting from endo- and exo-glycals are discussed. Further conversion of the spiroketals and spirolactones to the natural products is also emphasized wherever applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ac:

Acetyl

Bn:

Benzyl

Bu:

Butyl

Cp:

Cyclopentadienyl

CSA:

Camphor-10-sulfonic acid

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DMDO:

3,3-Dimethyldioxirane

DMF:

N,N-dimethylformamide

DMP:

Dess-Martin periodinane

DMSO:

Dimethyl sulfoxide

EDA:

Ethyl diazoacetate

IBX:

2-Iodoxybenzoic acid

i-Pr:

Isopropyl

LAH:

Lithium aluminum hydride

LiDBB:

Lithium 4,4′-di-tert-butylbiphenylide

LiHMDS:

Lithium hexamethyldisilazide

mCPBA:

m-chloroperoxybenzoic acid

MDA:

Methyl diazoacetate

MS:

Molecular sieves

NBS:

N-bromosuccinimide

NIS:

N-iodosuccinimide

PMB:

p-methoxybenzyl

PPTS:

Pyridinium p-toluenesulfonate

SIBX:

Stabilized 2-iodoxybenzoic acid

TBDPS:

tert-butyldiphenylsilyl

TBS:

tert-butyldimethylsilyl

t-Bu:

tert-butyl

Tf:

Trifluoromethanesulfonyl

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

TIPS:

Triisopropylsilyl

TMEDA:

N,N,N′,N′-tetramethylethylenediamine

TMS:

Trimethylsilyl

TMSOTf:

Trimethylsilyl trifluoromethanesulfonate

Ts:

p-toluenesulfonyl

References

  1. Nicolaou KC, Mitchell HJ (2001) Adventures in carbohydrate chemistry: new synthetic technologies, chemical synthesis, molecular design, and chemical biology. Angew Chem Int Ed 40:1576–1624

    CAS  Google Scholar 

  2. Perron F, Albizati KF (1989) Chemistry of spiroketals. Chem Rev 89:1617–1661

    CAS  Google Scholar 

  3. Jacobs MF, Kitching W (1998) Spiroacetals of marine origin. Curr Org Chem 2:395–436

    CAS  Google Scholar 

  4. Mead KT, Brewer BN (2003) Strategies in spiroketal synthesis revisited: recent applications and advances. Curr Org Chem 7:227–256

    CAS  Google Scholar 

  5. Brimble MA, Furkert DP (2003) Chemistry of bis-spiroacetal systems: natural products, synthesis and stereochemistry. Curr Org Chem 7:1461–1484

    CAS  Google Scholar 

  6. Ley SV, Milroy LG, Myers RM (2007) Product class 9: spiroketals. Sci Synth 29:613–690

    CAS  Google Scholar 

  7. Verano AL, Tan DS (2017) Stereocontrolled synthesis of spiroketals: an engine for chemical and biological discovery. Isr J Chem 57:279–291

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Macial FA, Galindo JLG, Varela RM, Torres A, Molinillo JMG, Fronczek FR (2006) Heliespirones B and C: two new plant heliespiranes with a novel spiro heterocyclic sesquiterpene skeleton. Org Lett 8:4513–4516

    Google Scholar 

  9. Noguchi N, Nakada M (2006) Synthetic studies on (+)-ophiobolin A: asymmetric synthesis of the spirocyclic CD-ring moiety. Org Lett 8:2039–2042

    CAS  PubMed  Google Scholar 

  10. Entzeroth M, Blackman AJ, Myndersel JS, Moore RE (1985) Structures and stereochemistries of oscillatoxin B, 31-noroscillatoxin B, oscillatoxin D, and 30-methyloscillatoxin D. J Org Chem 50:1255–1259

    CAS  Google Scholar 

  11. Springer JP, Arison BH, Hirshfield JM, Hoogsteen K (1981) The absolute stereochemistry and conformation of avermectin B2a aglycone and avermectin B1a. J Am Chem Soc 103:4221–4224

    CAS  Google Scholar 

  12. Uemura D, Takahashi K, Yamamoto T, Katayama C, Tanaka J, Okumura Y, Hirata Y (1985) Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc 107:4796–4798

    CAS  Google Scholar 

  13. Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, van Engen D, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471

    CAS  Google Scholar 

  14. Chaney MO, Demarco PV, Jones ND, Occolowitz JL (1974) Structure of A23187, a divalent cation ionophore. J Am Chem Soc 96:1932–1933

    CAS  PubMed  Google Scholar 

  15. Kato Y, Fusetani N, Matsunaga S, Hashimoto K, Fujita S, Furuya T (1986) Bioactive marine metabolites. Part 16. Calyculin A. A novel antitumor metabolite from the marine sponge Discodermia calyx. J Am Chem Soc 108:2780–2781

    CAS  Google Scholar 

  16. Jones ND, Chaney MO, Chamberlin JW, Hamill RL, Shen S (1973) Structure of A204A, a new polyether antibiotic. J Am Chem Soc 95:3399–3400

    CAS  PubMed  Google Scholar 

  17. Deslongchamps P, Rowan DD, Pothier N, Saunders JK (1981) 1,7-Dithia and 1-oxa-7-thiaspiro[5.5]undecanes. Excellent systems for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in the monothio and the dithioacetal functions. Can J Chem 59:1122–1131

    CAS  Google Scholar 

  18. Pothier N, Rowan DD, Deslongchamps P, Saunders JK (1981) 13C chemical shift data for 1,7-dioxaspiro[S.S]undecanes and related compounds. Can J Chem 59:1132–1139

    CAS  Google Scholar 

  19. Moore RE, Blackman AJ, Cheuk CE, Mynderse JS (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489

    CAS  Google Scholar 

  20. Yasumoto T, Murata M, Oshima Y, Sano M, Matsumoto GK, Clardy J (1985) Diarrhetic shellfish toxins. Tetrahedron 41:1019–1025

    CAS  Google Scholar 

  21. Jung JH, Sim CJ, Lee CO (1995) Cytotoxic compounds from a two-sponge association. J Nat Prod 58:1722–1726

    CAS  PubMed  Google Scholar 

  22. Taillefumier C, Chapleur Y (2004) Synthesis and uses of exo-glycals. Chem Rev 104:263–292

    CAS  PubMed  Google Scholar 

  23. Frederic CJM, Vincent SP (2018) Synthesis of exo-glycals and their biochemical applications. Tetrahedron 74:6512–6519

    CAS  Google Scholar 

  24. Pal P, Shaw AK (2017) The evolution of comprehensive strategies for furanoid glycal synthesis and their applications. RSC Adv 7:25897–25963

    CAS  Google Scholar 

  25. Haraguchi K, Konno K, Yamada K, Kitagawa Y, Nakamura KT, Tanaka H (2010) Electrophilic glycosidation employing 3,5-O-(di-tert-butylsilylene)-erythro-furanoid glycal leads to exclusive formation of the β-anomer: synthesis of 2′-deoxynucleosides and its 1′-branched analogues. Tetrahedron 66:4587–4600

    CAS  Google Scholar 

  26. Paquette LA, Brand S, Behrens C (1999) An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position. J Org Chem 64:2010–2025

    CAS  PubMed  Google Scholar 

  27. Boyce RS, Kennedy RM (1994) The oxidative spirocyclization of 2-(ω-(OH)-alkyl)cyclic enol ethers by rhenium (VII)-oxide. Tetrahedron Lett 35:5133–5136

    CAS  Google Scholar 

  28. Čorić I, List B (2012) Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483:315–319

    PubMed  Google Scholar 

  29. Yang WB, Chang CF, Wang SH, Teo CF, Lin CH (2001) Expeditious synthesis of C-glycosyl conjugated dienes and aldehydes from sugar lactones. Tetrahedron Lett 42:4657–4660

    CAS  Google Scholar 

  30. Chang CF, Yang WB, Chang CC, Lin CH (2002) Inter- and intramolecular alcohol additions to exo-glycals. Tetrahedron Lett 43:6515–6519

    Google Scholar 

  31. Ramakrishna B, Sridhar PR (2015) Stereoselective synthesis of 1,6-dioxaspirolactones from spiro-cyclopropanecarboxylated sugars: total synthesis of dihydro-pyrenolide D. RSC Adv 5:8142–8145

    CAS  Google Scholar 

  32. Schneider TF, Kaschel J, Werz DB (2014) A new golden age for donor–acceptor cyclopropanes. Angew Chem Int Ed 53:5504–5523

    CAS  Google Scholar 

  33. Agtarap A, Chamberlin JW, Pinkerton M, Steinrauf L (1967) Structure of monensic acid, a new biologically active compound. J Am Chem Soc 89:5737–5739

    CAS  PubMed  Google Scholar 

  34. Haney Jr ME, Hoehn MM (1967) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352

    PubMed  Google Scholar 

  35. Fuwa H, Sakamoto K, Muto T, Sasaki M (2015) Concise synthesis of the C15-C38 fragment of okadaic acid, a specific inhibitor of protein phosphatases 1 and 2A. Tetrahedron 71:6369–6383

    CAS  Google Scholar 

  36. Zhankui S, Grace AW, Alina B, Pavel N (2012) Chiral phosphoric acid-catalyzed enantioselective and diastereoselective spiroketalizations. J Am Chem Soc 134:8074–8077

    Google Scholar 

  37. Potuzak JS, Moilanen SB, Tan DS (2005) Stereocontrolled synthesis of spiroketals via a remarkable methanol-induced kinetic spirocyclization reaction. J Am Chem Soc 127:13796–13797

    CAS  PubMed  Google Scholar 

  38. Wurst JM, Liu G, Tan DS (2011) Hydrogen-bonding catalysis and inhibition by simple solvents in the stereoselective kinetic epoxide-opening spirocyclization of glycal epoxides to form spiroketals. J Am Chem Soc 133:7916–7925

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moilanen SB, Potuzak JS, Tan DS (2006) Stereocontrolled synthesis of spiroketals via Ti(Oi-Pr)4-mediated kinetic spirocyclization of glycal epoxides with retention of configuration. J Am Chem Soc 128:1792–1793

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Takaoka LR, Buckmelter AJ, LaCruz TE, Rychnovsky SD (2005) Rational synthesis of contra-thermodynamic spiroacetals by reductive cyclizations. J Am Chem Soc 127:528–529

    CAS  PubMed  Google Scholar 

  41. Lorenc C, Saur J, Moser A, Buevich AV, Williams AJ, Williamson RT, Martin GE, Peczuh MW (2015) Turning spiroketals inside out: a rearrangement triggered by an enol ether epoxidation. ChemistryOpen 4:577–580

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hasegawa S, Koyanagi H, Hirose Y (1990) Decarboxylated ascorbigens in the heartwood of Chamaecyparis pisifera. Phytochemistry 29:261–266

    CAS  Google Scholar 

  43. Robertson J, Chovatia PT, Fowler TG, Withey JM, Woollaston DJ (2010) Oxidative spirocyclisation routes towards the sawaranospirolides. Synthesis of ent-sawaranospirolides C and D. Org Biomol Chem 8:226–233

    CAS  PubMed  Google Scholar 

  44. Alcaraz ML, Griffin FK, Paterson DE, Taylor RJK (1998) Synthetic applications of Ramberg-Bäcklund derived exo-glycals. Tetrahedron Lett 39:8183–8186

    CAS  Google Scholar 

  45. Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009) Synthesis of [n,5]-spiroketals by ring enlargement of donor-acceptor-substituted cyclopropane derivatives. J Org Chem 74:8779–8786

    CAS  PubMed  Google Scholar 

  46. Kulkarni BA, Roth GP, Lobkovsky E, Porco JA (2002) Combinatorial synthesis of natural product-like molecules using a first-generation spiroketal scaffold. J Comb Chem 4:56–72

    CAS  PubMed  Google Scholar 

  47. Lynn DG, Phillips NJ, Hutton WC, Shabanowitz J, Fennell DI, Cole RJ (1983) Talaromycins: application of homonuclear spin correlation maps to structure assignment. J Am Chem Soc 104:7319–7322

    Google Scholar 

  48. Hutton WC, Phillips NJ, Graden DW, Lynn DG (1983) The application of two-dimensional N.M.R. Cross relaxation spectroscopy to natural product structure determination: talaromycin B. J Chem Soc Chem Commun 16:864–866

    Google Scholar 

  49. Phillips NJ, Cole RJ, Lynn DG (1987) Talaromycins C,D,E, and F. Tetrahedron Lett 28:1619–1621

    CAS  Google Scholar 

  50. Petit GR, Cichacs ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JNA (1993) Antineoplastic agents. 257. Isolation and structure of spongistatin 1. J Org Chem 58:1302–1304

    Google Scholar 

  51. Uckun FM, Mao C, Vassilev AO, Huang H, Jan ST (2009) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10:541–545

    Google Scholar 

  52. Mitsuhashi S, Shima H, Kawamura T, Kikuchi K, Oikawa M, Ichihara A, Oikawa H (1999) The spiroketals containing a benzyloxymethyl moiety at C8 position showed the most potent apoptosis-inducing activity. Bioorg Med Chem Lett 9:2007–2012

    CAS  PubMed  Google Scholar 

  53. Conway JC, Urch CJ, Quayle P, Xu J (2006) Spiroketalization reactions on a carbohydrate template. Synlett 5:776–780

    Google Scholar 

  54. Fuwa H, Sasaki M (2008) An efficient strategy for the synthesis of endocyclic enol ethers and its application to the synthesis of spiroacetals. Org Lett 10:2549–2552

    CAS  PubMed  Google Scholar 

  55. Holson EB, Roush WR (2002) Diastereoselective synthesis of the C(17)−C(28) fragment (the C−D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org Lett 4:3719–3722

    CAS  PubMed  Google Scholar 

  56. Holson EB, Roush WR (2002) Synthesis of the C(2)−C(13) fragment (the A−B spiroketal unit) of spongistatin 1 (altohyrtin A): use of a common intermediate for the synthesis of both spongistatin spiroketals. Org Lett 4:3723–3725

    CAS  PubMed  Google Scholar 

  57. Mori K, Ikunaka M (1987) Synthesis of (-)-talaromycins a and b. Tetrahedron 43:45–58

    CAS  Google Scholar 

  58. Corbet M, Bourdon B, Gueyrard D, Goekjian PGA (2008) Julia olefination approach to the synthesis of functionalized enol ethers and their transformation into carbohydrate-derived spiroketals. Tetrahedron Lett 49:750–754

    CAS  Google Scholar 

  59. Lin HC, Chen YB, Lin ZP, Wong FF, Lin CH, Lin SK (2008) Synthesis of 1,7-dioxaspiro[5.5]undecanes and 1-oxa-7-thiaspiro[5.5]undecanes from exo-glycal. Tetrahedron 66:5229–5234

    Google Scholar 

  60. Matsuda S, Yoshida A, Nakagawa J, Watanabe M, Oda Y, Yamanoi T (2014) Stereocontrolled spirocyclization of exo-glucal derivatives for stereodivergent synthesis of spiro[5.5]ketals. Tetrahedron Lett 55:6394–6398

    CAS  Google Scholar 

  61. Yamanoi T, Nara Y, Matsuda S, Oda Y, Yoshida A, Katsuraya K, Watanabe M (2007) Synthetic approach to exo-glycals from 1-C-vinyl-D-glycopyranose derivatives via an SN1′-substitution mechanism. Synlett 5:785–789

    Google Scholar 

  62. Deslongchamps P, Rowan DD, Pothier N, Sauvé G, Saunders JK (1981) 1,7-Dioxaspiro[5.5]undecanes. An excellent system for the study of stereoelectronic effects (anomeric and exo-anomeric effects) in acetals. Can J Chem 59:1105–1121

    CAS  Google Scholar 

  63. Deslongchamps P (1983) Stereoelectronic effects in organic chemistry. Pergamon, Oxford

    Google Scholar 

  64. Paquette LA, Kinney MJ, Dullweber U (1997) Practical synthesis of spirocyclic bis-C,C-glycosides. Mechanistic models in explanation of rearrangement stereoselectivity and the bifurcation of reaction pathways. J Org Chem 62:1713–1722

    CAS  Google Scholar 

  65. Smith MJ, Mazzola EP, Sims JJ, Midland SL, Keen NT, Burton V, Stayton MM (1993) The syringolides: bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahedron Lett 34:223–226

    CAS  Google Scholar 

  66. Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ, Clardy J (1993) The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. Tomato. J Org Chem 58:2940–2945

    CAS  Google Scholar 

  67. Umezawa S, Usui T, Umezawa H, Tsuchiya T, Takeuchi T, Hamada M (1971) A new microbial metabolite, sphydrofuran. I. J Antibiot 24:85–92

    CAS  PubMed  Google Scholar 

  68. Umezawa S, Tsuchiya T, Naganawa H, Takeuchi T, Umezawa H (1971) A new microbial metabolite, sphydrofuran. II. J Antibiot 24:93–106

    PubMed  Google Scholar 

  69. Sridhar PR, Seshadri K, Reddy GD (2012) Stereoselective synthesis of sugar fused β-disubstituted γ-butyro-lactones: C-spiro-glycosides from 1,2-cyclopropanecarboxylated sugars. Chem Commun 48:756–758

    CAS  Google Scholar 

  70. Honda T, Mizutani H, Kanai K (1996) Enantioselective syntheses of syributin 1 and novel C-glycosidic elicitors syringolides 1 and 2. J Org Chem 61:9374–9378

    CAS  Google Scholar 

  71. Mukai C, Moharram SM, Azukizawa S, Hanaoka M (1997) Total syntheses of (+)-secosyrins 1 and 2 and (+)-syributins 1 and 2. J Org Chem 62:8095–8103

    CAS  PubMed  Google Scholar 

  72. Edwards RL, Maitland DJ, Oliver CL, Pacey MS, Shields L, Whalley AJS (1999) Metabolites of the higher fungi. Part 31. Longianone, a C7H6O4 spiro bicyclic lactone from the fungus Xylaria longiana (Rehm.). J Chem Soc Perkin Trans 1:715–720

    Google Scholar 

  73. Sridhar PR, Seshadri K (2012) First enantioselective total synthesis of (S)-(−)-longianone. Tetrahedron 68:3725–3728

    Google Scholar 

  74. Lykakis IN, Zaravinos IP, Raptis C, Stratakis M (2009) Divergent synthesis of the Co-isolated mycotoxins longianone, isopatulin, and (Z)-ascladiol via furan oxidation. J Org Chem 74:6339–6342

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perali Ramu Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sridhar, P.R. (2019). Carbohydrate-Derived Spiroketals and Spirocyclic Lactones. In: Somsák, L. (eds) Carbohydrate-spiro-heterocycles. Topics in Heterocyclic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/7081_2019_32

Download citation

Publish with us

Policies and ethics