Skip to main content

Spiro Iminosugars: Structural Diversity and Synthetic Strategies

  • Chapter
  • First Online:
Carbohydrate-spiro-heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 57))

Abstract

From their discovery in the late 1960s, iminosugars have undergone an expansion from an area of science limited to a few researchers to a field that now attracts the interest of members of the whole synthetic organic chemistry community. Indeed, many tasks concern structural modifications of standard iminosugars in order to improve their biological and pharmacological properties. In this way, the introduction of an adjoining spirocycle afforded unprecedented polyhydroxy-azaspiranes, the structures and syntheses of which are presented in this chapter. Special attention is paid to the key steps involved in the generation of the pivotal quaternary spiro atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sinibaldi ME, Canet I (2008) Eur J Org Chem 2008:4391–4399

    Google Scholar 

  2. Dake G (2006) Tetrahedron 62:3467–3492

    CAS  Google Scholar 

  3. Galliford CV, Scheidt KA (2007) Angew Chem Int Ed 46:8748–8758

    CAS  Google Scholar 

  4. Singh GS, Desta ZY (2012) Chem Rev 112:6104–6155

    CAS  PubMed  Google Scholar 

  5. Fujita S, Nishikawa K, Iwata T, Tomiyama T, Ikenaga H, Mastumoto K, Shindo M (2018) Chem Eur J 24:1539–11543

    CAS  PubMed  Google Scholar 

  6. Altman RA, Nilsson BL, Overman LE, Read de Alaniz J, Rohde JM, Taupin V (2010) J Org Chem 75:7519–7534

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burkhard JA, Wagner B, Fischer H, Schuler F, Müller K, Carreira EM (2010) Angew Chem Int Ed 49:3524–3527

    CAS  Google Scholar 

  8. Compain P, Martin OR (2007) Iminosugars from synthesis to therapeutic applications. Wiley, Weinheim

    Google Scholar 

  9. Winchester BG (2009) Tetrahedron Asymm 20:645–651

    CAS  Google Scholar 

  10. Nash RJ, Kato A, Yu CY, Fleet GWJ (2011) Future Med Chem 3:1513–1521

    CAS  PubMed  Google Scholar 

  11. Horne G, Wilson FX (2011) Prog Med Chem 50:135–176

    CAS  PubMed  Google Scholar 

  12. Orsato A, Barbagallo E, Costa B, Olivieri S, De Gioia L, Nicotra F, La Ferla B (2011) Eur J Org Chem 2011:5012–5019

    CAS  Google Scholar 

  13. Decroocq C, Stauffert F, Pamlard O, Oulaïdi F, Gallienne E, Martin OR, Guillou C, Compain P (2015) Bioorg Med Chem Lett 25:830–833

    CAS  PubMed  Google Scholar 

  14. Santos C, Stauffert F, Ballereau S, Dehoux C, Rodriguez F, Bodlenner A, Compain P, Génisson Y (2017) Bioorg Med Chem 25:1984–1989

    CAS  PubMed  Google Scholar 

  15. Markham A (2016) Drugs 11:1147–1152

    Google Scholar 

  16. Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, Ortiz Mellet C, Nierengarten JF (2010) Angew Chem Int Ed 49:5753–5756

    CAS  Google Scholar 

  17. Compain P, Bodlenner A (2014) ChemBioChem 15:1239–1251

    CAS  PubMed  Google Scholar 

  18. Gouin S (2014) Chem Eur J 20:11616–11628

    CAS  PubMed  Google Scholar 

  19. Lillelund VH, Jensen HH, Liang X, Bols M (2002) Chem Rev 102:515–553

    CAS  PubMed  Google Scholar 

  20. Gloster TM, Davies GJ (2010) Org Biomol Chem 8:305–320

    CAS  PubMed  Google Scholar 

  21. Zheng Y, Tice CM, Singh SB (2014) Bioorg Med Chem Lett 24:3673–3682

    CAS  PubMed  Google Scholar 

  22. Maaliki C, Gauthier C, Massinon O, Sagar R, Vincent SP, Blériot Y (2014) In: Pilar Rauter A, Lindhorst T, Queneau Y (eds) Carbohydrate chemistry, vol 20. Royal Society of Chemistry, Cambridge, pp 418–444

    Google Scholar 

  23. Lahiri R, Ansari AA, Vankar YD (2013) Chem Soc Rev 42:5102–5118

    CAS  PubMed  Google Scholar 

  24. Yanagisawa H, Kinoshita M, Umezawa S (1971) Bull Chem Soc Jap 44:3399–3405

    CAS  Google Scholar 

  25. Rios R (2012) Chem Soc Rev 41:1060–1074

    CAS  PubMed  Google Scholar 

  26. Ding A, Meazza M, Guo H, Yang JW, Rios R (2018) Chem Soc Rev 47:5946–5996

    CAS  PubMed  Google Scholar 

  27. Kapferer P, Birault V, Poisson JF, Vasella A (2003) Helv Chim Acta 86:2210–2227

    CAS  Google Scholar 

  28. Ahmadian M, Khare NK, Riordan JM, Klon AE, Borhani DW (2001) Tetrahedron 57:9899–9909

    CAS  Google Scholar 

  29. Brewster K, Harrison JM, Inch TD, Williams NJ (1987) J Chem Soc Perkin Trans 1:21–26

    Google Scholar 

  30. Nocquet PA, Hensienne R, Wencel-Delord J, Wimmer E, Hazelard D, Compain P (2015) Org Biomol Chem 13:9176–9180

    CAS  PubMed  Google Scholar 

  31. Nocquet PA, Hensienne R, Wencel-Delord J, Laigre E, Sidelarbi K, Becq F, Norez C, Hazelard D, Compain P (2016) Org Biomol Chem 14:2780–2796

    CAS  PubMed  Google Scholar 

  32. Nocquet PA, Hazelard D, Gruntz G, Compain P (2013) J Org Chem 78:6751–6757

    CAS  PubMed  Google Scholar 

  33. Hazelard D, Compain P (2017) Org Biomol Chem 15:3806–3827

    CAS  PubMed  Google Scholar 

  34. Lin W, Gupta A, Kim KH, Mendel D, Miller MJ (2009) Org Lett 11:449–452

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Haruyama H, Takayama T, Kinoshita T, Kondo M, Nakajima M, Haneishi T (1991) J Chem Soc Perkin Trans 1:1637–1640

    Google Scholar 

  36. Nakajima M, Itoi K, Takamatsu Y, Kinoshita T, Okazaki T, Kawakubo K, Shindo M, Honma T, Tohjigamori M, Haneishi T (1991) J Antibiot 44:293–300

    CAS  PubMed  Google Scholar 

  37. Soengas RG, da Silva G, Estévez JC (2017) Molecules 22:2028

    PubMed Central  Google Scholar 

  38. Freire R, Martín A, Pérez-Martín I, Suárez E (2002) Tetrahedron Lett 43:5113–5116

    CAS  Google Scholar 

  39. Martín A, Pérez-Martín I, Suárez E (2009) Tetrahedron 65:6147–6155

    Google Scholar 

  40. Fransisco CG, Herrera AJ, Martín A, Pérez-Martín I, Suárez E (2007) Tetrahedron Lett 48:6384–6388

    Google Scholar 

  41. Martín A, Pérez-Martín I, Suárez E (2015) Org Lett 7:2027–2030

    Google Scholar 

  42. Pal APJ, Vankar YD (2010) Tetrahedron Lett 51:2519–2524

    Google Scholar 

  43. Aebisher B, Vasella A (1983) Helv Chem Acta 66:789–794

    Google Scholar 

  44. Somsák L (2001) Chem Rev 101:81–135

    PubMed  Google Scholar 

  45. Toumieux S, Compain P, Martin OR (2005) Tetrahedron Lett 46:4731–4735

    CAS  Google Scholar 

  46. Alves RJ, Castillon S, Dessinges A, Herczegh P, Lopez JC, Lukacs G, Olesker A, Thang TT (1988) J Org Chem 53:4616–4618

    CAS  Google Scholar 

  47. Tardy S, Vicente JL, Tatibouët A, Dujardin G, Rollin P (2008) Synthesis 2008:3108–3120

    Google Scholar 

  48. Bourgeois JM (1976) Helv Chem Acta 59:2114–2124

    CAS  Google Scholar 

  49. Bourgeois JM (1974) Helv Chem Acta 57:2553–2557

    CAS  Google Scholar 

  50. Bourgeois JM (1975) Helv Chem Acta 58:363–372

    CAS  Google Scholar 

  51. Sayago FJ, Pradera MÁ, Gasch C, Fuentes J (2006) Tetrahedron 62:915–921

    CAS  Google Scholar 

  52. Roy A, Achari B, Mandal SB (2006) Tetrahedron Lett 47:3875–3879

    CAS  Google Scholar 

  53. Mascitti V, Robinson RP, Préville C, Thuma BA, Carr CL, Resse MR, Maguire RJ, Leininger MT, Lowe A, Steppan CM (2010) Tetrahedron Lett 51:1880–1883

    CAS  Google Scholar 

  54. Chincholkbar PM, Puranik VG, Deshmukh ARAS (2007) Tetrahedron 63:9179–9187

    Google Scholar 

  55. Maity JK, Ghosh R, Drew MGB, Achari B, Mandal SB (2008) J Org Chem 73:4305–4308

    CAS  PubMed  Google Scholar 

  56. Mio S, Kumagawa Y, Sugai S (1991) Tetrahedron 47:2133–2144

    CAS  Google Scholar 

  57. Sano H, Mio S, Kitagawa J, Sugai S (1994) Tetrahedron Asymm 5:2233–2240

    CAS  Google Scholar 

  58. Zhang K, Schweizer F (2005) Synlett 20:3111–3115

    Google Scholar 

  59. Zhang K, Schweizer F (2009) Carbohydr Res 344:576–585

    CAS  PubMed  Google Scholar 

  60. Hazelard D, Compain P (2017) Top Heterocycl Chem 47:111–154

    Google Scholar 

  61. Compain P (2007) Adv Synth Catal 349:1829–1846

    CAS  Google Scholar 

  62. Felpin FX, Lebreton J (2003) Eur J Org Chem 2003:3693–3712

    Google Scholar 

  63. Dragutan I, Dragutan V, Mitan C, Vosloo HCM, Delaude L, Demonceau A (2011) Belstein J Org Chem 2011:699–716

    Google Scholar 

  64. Deiters A, Martin SF (2004) Chem Rev 104:2199–2238

    CAS  PubMed  Google Scholar 

  65. Pal APJ, Gupta P, Reddy YS, Vankar YD (2010) Eur J Org Chem 2010:6957–6966

    Google Scholar 

  66. Robertson J, Stevens K (2017) Nat Prod Rep 34:62–89

    CAS  PubMed  Google Scholar 

  67. Davies SG, Fletcher AM, Roberts PM, Thomson JE (2017) Synlett 26:2697–2706

    Google Scholar 

  68. Pansare SV, Thorat RG (2013) Targets Heterocycl Syst 17:57–86

    CAS  Google Scholar 

  69. Kim IS, Jung YH (2011) Heterocycles 83:2489–2507

    CAS  Google Scholar 

  70. Rowicki T (2016) Targets Heterocycl Syst 20:409–447

    CAS  Google Scholar 

  71. Forcher G, Clousier N, Beauseigneur A, Setzer P, Boeda F, Pearson-Long MSM, Karoyan P, Szymoniak J, Bertus P (2015) Synthesis 47:992–1006

    CAS  Google Scholar 

  72. Szalata C, Szymoniak J, Fabis F, Butt-Gueule S, Rault S, Bertus P, Gerard S, Sapi J (2013) ChemMedChem 8:70–73

    CAS  PubMed  Google Scholar 

  73. Wolan A, Six Y (2010) Tetrahedron 66:15–61

    CAS  Google Scholar 

  74. Bertus P, Szymoniak J, Jeanneau E, Docsa T, Gergely P, Praly JP, Vidal S (2008) Bioorg Med Chem Lett 18:4774–4778

    CAS  PubMed  Google Scholar 

  75. Bertus P, Szymoniak J (2007) Synlett 2007:1346–1356

    Google Scholar 

  76. Pearson MSM, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2007) Synthesis 2007:3589–3594

    Google Scholar 

  77. Pearson MSM, Floquet N, Bello C, Vogel P, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2009) Bioorg Med Chem 17:8020–8026

    CAS  PubMed  Google Scholar 

  78. Laroche C, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB (2006) Synlett 2006:223–226

    Google Scholar 

  79. Laroche C, Behr JB, Szymoniak J, Bertus P, Schütz C, Vogel P, Plantier-Royon R (2006) Bioorg Med Chem 14:4047–4054

    CAS  PubMed  Google Scholar 

  80. Dhand V, Draper JA, Moore J, Britton R (2013) Org Lett 15:1914–1917

    CAS  PubMed  Google Scholar 

  81. Chen W, Pinto BM (2007) Carbohydr Res 342:2163–2172

    PubMed  Google Scholar 

  82. Morozov DA, Kirilyuk IA, Komarov DA, Goti A, Bagryanskaya IY, Kuratieva NV, Grigor’ev IA (2012) J Org Chem 77:10688–10698

    CAS  PubMed  Google Scholar 

  83. Malik M, Witkowski G, Ceborska M, Jarosz S (2013) Org Lett 15:6214–6217

    CAS  PubMed  Google Scholar 

  84. Behr JB, Kalla A, Harakat D, Plantier-Royon R (2008) J Org Chem 73:3612–3615

    CAS  PubMed  Google Scholar 

  85. D’Orazio G, Martorana AM, Filippi G, Polissi A, De Gioia L, La Ferla B (2016) ChemistrySelect 1:2444–2447

    Google Scholar 

  86. Hottin A, Scandolera A, Duca L, Wright DW, Davies GJ, Behr JB (2016) Bioorg Med Chem Lett 26:1546–1549

    CAS  PubMed  Google Scholar 

  87. Hottin A, Wright DW, Dubar F, Steenackers A, Delannoy P, Biot C, Davies GJ, Behr JB (2013) Chem Eur J 19:9526–9533

    CAS  PubMed  Google Scholar 

  88. Hottin A, Dubar F, Steenackers A, Delannoy P, Biot C, Behr JB (2012) Org Biomol Chem 10:5592–5597

    CAS  PubMed  Google Scholar 

  89. Garcia-Moreno MI, Diaz-Perez P, Ortiz Mellet C, Garcia Fernandez JM (2002) Chem Commun 8:848–849

    Google Scholar 

  90. Zhou Y, Zhao Y, Boyle KMO, Murphy PV (2008) Bioorg Med Chem 18:954–958

    CAS  Google Scholar 

  91. Chavan SR, Gavale KS, Khan A, Joshi R, Kumbhar N, Chakravarty D, Dhavale DD (2017) ACS Omega 2:7203–7218

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chavan SR, Gavale KS, Kamble KM, Pingale SS, Dhavale DD (2017) Tetrahedron 73:365–372

    CAS  Google Scholar 

  93. Kui EL, Kanazawa A, Philouze C, Poisson JF, Py S (2017) Eur J Org Chem 2017:363–372

    Google Scholar 

  94. Eum H, Choi J, Cho CG, Ha HJ (2015) Asian J Org Chem 4:1399–1409

    CAS  Google Scholar 

  95. Parihar VS, Pawar NJ, Ghosh S, Chopade B, Kumbhar N, Dhavale DD (2015) RSC Adv 5:52907–52915

    CAS  Google Scholar 

  96. Kazmierski WM, Furfine E, Spaltenstein A, Wright LL (2002) Bioorg Med Chem Lett 12:3431–3433

    CAS  PubMed  Google Scholar 

  97. Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM (2012) Pharmacol Biochem Behav 102:95–100

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Compain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazelard, D., Hensienne, R., Behr, JB., Compain, P. (2019). Spiro Iminosugars: Structural Diversity and Synthetic Strategies. In: Somsák, L. (eds) Carbohydrate-spiro-heterocycles. Topics in Heterocyclic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/7081_2019_29

Download citation

Publish with us

Policies and ethics