Abstract
Spiroketals are important structural motifs found in diverse natural products, many of which display unique biological activity. Among them, spiroketal phthalane C-glycosides, in which a phthalane ring and sugar unit form a spiroketal framework, have garnered enormous attention from wide research areas because such a fascinating spirocycle motif is found in antibiotic natural products, i.e., papulacandins and their relatives. Moreover, recent reports from pharmaceutical researchers have revealed that spiroketal phthalane C-glycosides are potent drug candidates for type 2 diabetes. Accordingly, the efficient and selective construction of the spiroketal phthalane C-glycoside motif is an important research objective in synthetic organic chemistry. In this chapter, recent advances in the synthesis of spiroketal phthalane C-glycosides will be discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aho JE, Pihko PM, Rissa TK (2005). Chem Rev 105:4406–4440
Sperry J, Wilson ZE, Rathwell DCK, Brimble MA (2010). Nat Prod Rep 27:1117–1137
Atkinson DJ, Brimble MA (2015). Nat Prod Rep 32:811–840
Rihs G, Traxler P (1981). Helv Chim Acta 64:1533–1539
Traxler P, Fritz H, Fuhrer H, Richter WJ (1980). J Antibiot 33:967–978
Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1145–1146
Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1147–1148
Barrett AGM, Peña M, Willardsen JA (1996). J Org Chem 61:1082–1100
Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776
Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759
Somsák L, Bokor É, Czifrák K, Juhász L, Tóth M (2011) Carbohydrate derivatives and glycomimetic compounds in established and investigational therapies of type 2 diabetes mellitus. In: Zimering MB (ed) Topics in the prevention, treatment and complications of type 2 diabetes. InTech, Rijeka, pp 103–126
Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87
Zhang Y, Liu Z-P (2016). Curr Med Chem 23:832–849
Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Process Res Dev 22:467–488
Traxler P, Gruner J, Auden JAL (1977). J Antibiot 30:289–296
Traxler P, Fritz H, Richter WJ (1977). Helv Chim Acta 60:578–584
Pérez P, GarcÃa-Acha I, Durán A (1983). J Gen Microbiol 129:245–250
Baguley BC, Römmele G, Gruner J, Wehrli W (1979). Eur J Biochem 97:345–351
Pérez P, Varona R, Garcia-Acha I, Durán A (1981). FEBS Lett 129:249–252
Varona R, Pérez P, Durán A (1983). FEMS Microbiol Lett 20:243–247
Römmele G, Traxler P, Wefrli W (1983). J Antibiot 36:1539–1542
Traxler P, Tosch W, Zak O (1987). J Antibiot 40:1146–1164
VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991). J Antibiot 44:45–51
VanMiddlesworth F, Dufresne C, Smith J, Wilson KE (1991). Tetrahedron 47:7563–7568
Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schmartz R, Hammond M, Balkovec J, VanMiddlesworth F (1992). Antimicrob Agents Chemother 36:1648–1657
Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:247–250
Chiba H, Kaneto R, Agematu H, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:356–358
Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993). J Antibiot 46:952–960
Okada H, Nagashima M, Suzuki H, Nakajima S, Kojiri K, Suda H (1996). J Antibiot 49:103–106
Chen RH, Tennant S, Frost D, O’Beirne MJ, Karwowski JP, Humphrey PE, Malmberg L-H, Choi W, Brandt KD, West P, Kadam SK, Clement JJ, McAlpine JB (1996). J Antibiot 49:596–598
Ohyama T, Iwadate-Kurihara Y, Hosoya T, Ishikawa T, Miyakoshi S, Hamano K, Inukai M (2002). J Antibiot 55:758–763
Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL, Wilson KE, Turner MJ (1990). Proc Natl Acad Sci U S A 87:5950–5954
Jaramillo C, Knapp S (1994). Synthesis:1–20
Bililign T, Griffith BR, Thorson JS (2005). Nat Prod Rep 22:742–760
Wellington KW, Benner SA (2006). Nuclos Nucleot Nucleic Acids 25:1309–1333
Kitamura K, Ando Y, Matsumoto T, Suzuki K (2018). Chem Rev 118:1495–1598
Bokor É, Kun S, Goyard D, Tóth M, Praly J-P, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764
Yang Y, Yu B (2017). Chem Rev 117:12281–12356
Liao H, Ma J, Yao H, Liu X-W (2018). Org Biomol Chem 16:1791–1806
Schmidt RR, Frick W (1988). Tetrahedron 44:7163–7169
Rosenblum SB, Bihovsky R (1990). J Am Chem Soc 112:2746–2748
Czernecki S, Perlat M-C (1991). J Org Chem 56:6289–6292
Hamdouchi C, Sanchez-Martinez C (2001). Synthesis:833–840
Hamdouchi C, Jaramillo C, Lopez-Prados J, Rubio A (2002). Tetrahedron Lett 43:3875–3878
Parker KA, Georges AT (2000). Org Lett 2:497–499
Friesen RW, Sturino CF (1990). J Org Chem 55:5808–5810
Dubois E, Beau J-M (1990). Tetrahedron Lett 31:5165–5168
Dubois E, Beau J-M (1992). Carbohydr Res 223:157–167
Liu G, Wurst JM, Tan DS (2009). Org Lett 11:3670–3673
Wurst JM, Liu G, Tan DS (2011). J Am Chem Soc 133:7916–7925
Butkevich AN, Corbu A, Meerpoel L, Stanfield I, Angibaud P, Bonnet P, Cossy J (2012). Org Lett 14:4998–5001
Parkan K, Pohl R, Kotora M (2014). Chem A Eur J 20:4414–4419
van der Kaaden M, Breukink E, Pieters RJ (2012). Beilstein J Org Chem 8:732–737
Danishefsky S, Phillips G, Ciufolini M (1987). Carbohydr Res 171:317–327
Balachari D, O’Doherty GA (2000). Org Lett 2:863–866
Balachari D, O’Doherty GA (2000). Org Lett 2:4033–4036
Ahmed MM, O’Doherty GA (2005). Tetrahedron Lett 46:4151–4155
Mainkar PS, Johny K, Rao TP, Chandrasekhar S (2012). J Org Chem 77:2519–2525
DeFronzo RA, Norton L, Abdul-Ghani M (2017). Nat Rev Nephrol 13:11–26
Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J (2005). Diabetes Metab Res Rev 21:31–38
Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu S-Y, Ahn K-H, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840
Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H, Kawai T, Takeda M, Yata T, Kawai M, Fukuzawa T, Kobayashi T, Sato T, Kawabe Y, Ikeda S (2012). J Pharmacol Exp Ther 341:692–701
Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, Beyer U, Beck A, Ciorciaro C, Meyer M, Kadowaki T (2015). Diabetes Obes Exp Metab 17:984–993
Poole RM, Prossler JE (2014). Drugs 74:939–944
Xu B, Lv B, Feng Y, Xu G, Du J, Welihinda A, Sheng Z, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:5632–5635
Lv B, Xu B, Feng Y, Peng K, Xu G, Du J, Zhang L, Zhang W, Zhang T, Zhu L, Ding H, Sheng Z, Welihinda A, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:6877–6881
Lv B, Feng Y, Dong J, Xu M, Xu B, Zhang W, Sheng Z, Welihinda A, Seed B, Chen Y (2010). ChemMedChem 5:827–831
Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu S-Y, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153
Yamane M, Kawashima K, Yamaguchi K, Nagao S, Sato M, Suzuki M, Honda K, Hagita H, Kuhlmann O, Polirier A, Fowler S, Funk C, Simon S, Aso Y, Ikeda S, Ishigai M (2015). Xenobiotica 45:230–238
Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Kimura M, Maeda K, Honma A, Shimizu H (2017). Tetrahedron 73:655–660
Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827
Liu Y-H, Fu T-M, Ou C-Y, Fan W-L, Peng G-P (2013). Chin Chem Lett 24:131–133
Liu Y, Fu T, Chen Z, Ou C (2015). Monatsh Chem 146:1715–1721
McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606
Yamamoto Y, Hashimoto T, Hattori K, Kikuchi M, Nishiyama H (2006). Org Lett 8:3565–3568
Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399
Subrahmanyam AV, Palanichamy K, Kaliappan KP (2010). Chem Eur J 16:8545–8556
Awasaguchi K, Miyazawa M, Uoya I, Inoue K, Nakamura K, Yokoyama H, Kakuda H, Hirai Y (2010). Synlett:2392–2396
Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014). Chem Rev 114:2432–2506
Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). J Med Chem 58:8315–8359
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016). Chem Rev 116:422–518
Yerien DE, Bonesi S, Postigo A (2016). Org Biomol Chem 14:8398–8427
Sadurnà A, Gilmour R (2018). Eur J Org Chem 2018:3684–3687
Bucher C, Gilmour R (2010). Angew Chem Int Ed 49:8724–8728
Sadurnà A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R (2018). Chem Eur J 24:2832–2836
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Yamamoto, Y. (2019). Spiroketal Phthalane C-Glycosides: Synthesis of Papulacandins and SGLT2 Inhibitors. In: Somsák, L. (eds) Carbohydrate-spiro-heterocycles. Topics in Heterocyclic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/7081_2018_27
Download citation
DOI: https://doi.org/10.1007/7081_2018_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31941-0
Online ISBN: 978-3-030-31942-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)