Advertisement

Functionalization of Heteroarenes Under Continuous Flow

  • Joachim Demaerel
  • Vidmantas Bieliūnas
  • Wim M. De Borggraeve
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 56)

Abstract

Aromatic heterocycles are omnipresent motifs in pharmaceutical and agrochemical structures. Functionalization of these ring systems is an important part of many synthetic procedures. In this chapter, an overview is given of how microflow technology has been employed as a powerful tool for the diversification of heteroarenes. An emphasis is put on fine chemical synthesis, although reactor design and problem solving will be discussed when relevant, as it comprises an important part of the research field. Pragmatic translations to microflow are reviewed for existing functionalization protocols, and a few elusive reactions are highlighted that cannot be performed satisfyingly in batch mode.

Keywords

Continuous flow Cross-coupling Functionalization Heterocycles 

References

  1. 1.
    Oger N, Le Grognec E, Felpin F-X (2015) Org Chem Front 2(5):590–614CrossRefGoogle Scholar
  2. 2.
    Movsisyan M, Delbeke EI, Berton JK, Battilocchio C, Ley SV, Stevens CV (2016) Chem Soc Rev 45(18):4892–4928PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Nagaki A, Yoshida J-I (2014) Microreactor technology in lithium chemistry. Lithium compounds in organic synthesis. Wiley-VCH Verlag GmbH, KGaA, Weinheim, pp 491–512CrossRefGoogle Scholar
  4. 4.
    Nagaki A, Yoshida J-I (2016) Preparation and use of organolithium and organomagnesium species in flow. In: Noël T (ed) Organometallic flow chemistry. Topics in organometallic chemistry, vol 57. Springer, Berlin, pp 137–175CrossRefGoogle Scholar
  5. 5.
    Degennaro L, Carlucci C, De Angelis S, Luisi R (2016) J Flow Chem 6(3):136–166CrossRefGoogle Scholar
  6. 6.
    Noel T, Hessel V (2015) Cross-coupling chemistry in continuous flow. New trends in cross-coupling: theory and applications. The Royal Society of Chemistry, London, pp 610–644Google Scholar
  7. 7.
    Noel T, Buchwald SL (2011) Chem Soc Rev 40(10):5010–5029PubMedCrossRefGoogle Scholar
  8. 8.
    Cantillo D, Kappe CO (2014) ChemCatChem 6(12):3286–3305CrossRefGoogle Scholar
  9. 9.
    Baumann M, Baxendale IR, Ley SV (2011) Mol Divers 15(3):613–630PubMedCrossRefGoogle Scholar
  10. 10.
    Wegner J, Ceylan S, Kirschning A (2012) Adv Synth Catal 354(1):17–57CrossRefGoogle Scholar
  11. 11.
    Malet-Sanz L, Susanne F (2012) J Med Chem 55(9):4062–4098PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Porta R, Benaglia M, Puglisi A (2016) Org Process Res Dev 20(1):2–25CrossRefGoogle Scholar
  13. 13.
    Britton J, Raston CL (2017) Chem Soc Rev 46(5):1250–1271PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chinchilla R, Nájera C (2007) Chem Rev 107(3):874–922PubMedCrossRefGoogle Scholar
  15. 15.
    Doucet H, Hierso J-C (2007) Angew Chem Int Ed 46(6):834–871CrossRefGoogle Scholar
  16. 16.
    Chinchilla R, Najera C (2011) Chem Soc Rev 40(10):5084–5121PubMedCrossRefGoogle Scholar
  17. 17.
    Karak M, Barbosa LCA, Hargaden GC (2014) RSC Adv 4(96):53442–53466CrossRefGoogle Scholar
  18. 18.
    Wang D, Gao S (2014) Org Chem Front 1(5):556–566CrossRefGoogle Scholar
  19. 19.
    Kawanami H, Matsushima K, Sato M, Ikushima Y (2007) Angew Chem Int Ed 46(27):5129–5132CrossRefGoogle Scholar
  20. 20.
    Lee HJ, Park K, Bae G, Choe J, Song KH, Lee S (2011) Tetrahedron Lett 52(39):5064–5067CrossRefGoogle Scholar
  21. 21.
    Placzek MS, Chmielecki JM, Houghton C, Calder A, Wiles C, Jones GB (2013) J Flow Chem 3(2):46–50CrossRefGoogle Scholar
  22. 22.
    Shu W, Buchwald SL (2011) Chem Sci 2(12):2321–2325CrossRefGoogle Scholar
  23. 23.
    Naber JR, Buchwald SL (2010) Angew Chem 122(49):9659–9664CrossRefGoogle Scholar
  24. 24.
    Negishi E-i, Kotora M, Xu C (1997) J Org Chem 62(25):8957–8960CrossRefGoogle Scholar
  25. 25.
    Znidar D, Hone CA, Inglesby P, Boyd A, Kappe CO (2017) Org Process Res Dev 21:878–884CrossRefGoogle Scholar
  26. 26.
    Xue F, Deng H, Xue C, Mohamed DKB, Tang KY, Wu J (2017) Chem Sci 8:3623–3627CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kuhn S, Hartman RL, Sultana M, Nagy KD, Marre S, Jensen KF (2011) Langmuir 27(10):6519–6527PubMedCrossRefGoogle Scholar
  28. 28.
    Hawbaker N, Wittgrove E, Christensen B, Sach N, Blackmond DG (2016) Org Process Res Dev 20(2):465–473CrossRefGoogle Scholar
  29. 29.
    Teci M, Tilley M, McGuire MA, Organ MG (2016) Chem Eur J 22(48):17407–17415PubMedCrossRefGoogle Scholar
  30. 30.
    Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51(21):5062–5085CrossRefGoogle Scholar
  31. 31.
    Torborg C, Beller M (2009) Adv Synth Catal 351:3027CrossRefGoogle Scholar
  32. 32.
    Miyaura N, Suzuki A (1995) Chem Rev 95(7):2457–2483CrossRefGoogle Scholar
  33. 33.
    Düfert MA, Billingsley KL, Buchwald SL (2013) J Am Chem Soc 135(34):12877–12885PubMedCrossRefGoogle Scholar
  34. 34.
    Len C, Bruniaux S, Delbecq F, Parmar V (2017) Catalysts 7(5):146CrossRefGoogle Scholar
  35. 35.
    Shore G, Morin S, Organ MG (2006) Angew Chem Int Ed 45(17):2761–2766CrossRefGoogle Scholar
  36. 36.
    Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Chem Eur J 12(16):4407–4416PubMedCrossRefGoogle Scholar
  37. 37.
    Yamada YMA, Watanabe T, Beppu T, Fukuyama N, Torii K, Uozumi Y (2010) Chem Eur J 16(37):11311–11319PubMedCrossRefGoogle Scholar
  38. 38.
    Trinh TN, Hizartzidis L, Lin AJS, Harman DG, McCluskey A, Gordon CP (2014) Org Biomol Chem 12(47):9562–9571PubMedCrossRefGoogle Scholar
  39. 39.
    Mateos C, Rincón JA, Martín-Hidalgo B, Villanueva J (2014) Tetrahedron Lett 55(27):3701–3705CrossRefGoogle Scholar
  40. 40.
    Pascanu V, Hansen PR, Bermejo Gómez A, Ayats C, Platero-Prats AE, Johansson MJ, Pericàs MÀ, Martín-Matute B (2015) ChemSusChem 8(1):123–130PubMedCrossRefGoogle Scholar
  41. 41.
    Yang G-R, Bae G, Choe J-H, Lee S-W, Song K-H (2010) Bull Kor Chem Soc 31(1):250–252CrossRefGoogle Scholar
  42. 42.
    de Muñoz JM, Alcázar J, de la Hoz A, Díaz-Ortiz A (2012) Adv Synth Catal 354(18):3456–3460CrossRefGoogle Scholar
  43. 43.
    Egle B, Muñoz J, Alonso N, De Borggraeve W, de la Hoz A, Díaz-Ortiz A, Alcázar J (2015) J Flow Chem 4(1):22–25CrossRefGoogle Scholar
  44. 44.
    Miller PW, Long NJ, de Mello AJ, Vilar R, Audrain H, Bender D, Passchier J, Gee A (2007) Angew Chem Int Ed 46(16):2875–2878CrossRefGoogle Scholar
  45. 45.
    Hartwig JF (2015) J Am Chem Soc 138(1):2–24PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fabry DC, Ho YA, Zapf R, Tremel W, Panthöfer M, Rueping M, Rehm TH (2017) Green Chem 19(8):1911–1918CrossRefGoogle Scholar
  47. 47.
    Zhang L, Geng M, Teng P, Zhao D, Lu X, Li J-X (2012) Ultrason Sonochem 19(2):250–256PubMedCrossRefGoogle Scholar
  48. 48.
    Frost CG, Mutton L (2010) Green Chem 12(10):1687CrossRefGoogle Scholar
  49. 49.
    Wilson NS, Sarko CR, Roth GP (2004) Org Process Res Dev 8(3):535–538CrossRefGoogle Scholar
  50. 50.
    Noël T, Musacchio AJ (2011) Org Lett 13(19):5180–5183PubMedCrossRefGoogle Scholar
  51. 51.
    Li J-H, Liu W-J, Xie Y-X (2005) J Org Chem 70(14):5409–5412PubMedCrossRefGoogle Scholar
  52. 52.
    Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL (2011) Angew Chem Int Ed 50(26):5943–5946CrossRefGoogle Scholar
  53. 53.
    Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Angew Chem Int Ed 50(45):10665–10669CrossRefGoogle Scholar
  54. 54.
    Nagaki A, Moriwaki Y, Yoshida J (2012) Chem Commun 48(91):11211–11213CrossRefGoogle Scholar
  55. 55.
    Christakakou M, Schön M, Schnürch M, Mihovilovic MD (2013) Synlett 24(18):2411–2418CrossRefGoogle Scholar
  56. 56.
    Dalla-Vechia L, Reichart B, Glasnov T, Miranda LSM, Kappe CO, de Souza ROMA (2013) Org Biomol Chem 11(39):6806–6813PubMedCrossRefGoogle Scholar
  57. 57.
    Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG (2012) Angew Chem Int Ed 51(14):3314–3332CrossRefGoogle Scholar
  58. 58.
    Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J-i (2010) Angew Chem Int Ed 49(41):7543–7547CrossRefGoogle Scholar
  59. 59.
    Linghu X, Wong N, Jost V, Fantasia S, Sowell CG, Gosselin F (2017) Org Process Res DevGoogle Scholar
  60. 60.
    Schlosser M (2005) Angew Chem Int Ed 44(3):376–393CrossRefGoogle Scholar
  61. 61.
    Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) J Med Chem 58(21):8315–8359PubMedCrossRefGoogle Scholar
  62. 62.
    Becker MR, Ganiek MA, Knochel P (2015) Chem Sci 6(11):6649–6653PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Becker MR, Knochel P (2016) Org Lett 18(6):1462–1465PubMedCrossRefGoogle Scholar
  64. 64.
    Roesner S, Buchwald SL (2016) Angew Chem Int Ed 55(35):10463–10467CrossRefGoogle Scholar
  65. 65.
    Lange PP, Gooßen LJ, Podmore P, Underwood T, Sciammetta N (2011) Chem Commun 47(12):3628CrossRefGoogle Scholar
  66. 66.
    Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) Org Lett 18(8):1732–1735PubMedCrossRefGoogle Scholar
  67. 67.
    Santos CIM, Barata JFB, Faustino MAF, Lodeiro C, Neves MGPMS (2013) RSC Adv 3(42):19219CrossRefGoogle Scholar
  68. 68.
    Bourne SL, O'Brien M, Kasinathan S, Koos P, Tolstoy P, Hu DX, Bates RW, Martin B, Schenkel B, Ley SV (2013) ChemCatChem 5(1):159–172CrossRefGoogle Scholar
  69. 69.
    Gemoets HPL, Hessel V, Noël T (2014) Org Lett 16(21):5800–5803PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pieber B, Glasnov T, Kappe CO (2014) RSC Adv 4(26):13430–13433CrossRefGoogle Scholar
  71. 71.
    Puglisi A, Benaglia M, Chiroli V (2013) Green Chem 15(7):1790CrossRefGoogle Scholar
  72. 72.
    Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J-I (2011) Green Chem 13(5):1110–1113CrossRefGoogle Scholar
  73. 73.
    Kim H, Nagaki A, Yoshida J (2011) Nat Commun:2Google Scholar
  74. 74.
    Tricotet T, O’Shea DF (2010) Chem Eur J 16(22):6678–6686PubMedCrossRefGoogle Scholar
  75. 75.
    Sipőcz T, Lengyel L, Sipos G, Kocsis L, Dormán G, Jones RV, Darvas F (2016) J Flow Chem 6(2):117–122CrossRefGoogle Scholar
  76. 76.
    Putra AE, Takigawa K, Tanaka H, Ito Y, Oe Y, Ohta T (2013) Eur J Org Chem 2013(28):6344–6354CrossRefGoogle Scholar
  77. 77.
    Ishitani H, Saito Y, Tsubogo T, Kobayashi S (2016) Org Lett 18(6):1346–1349PubMedCrossRefGoogle Scholar
  78. 78.
    Osorio-Planes L, Rodríguez-Escrich C, Pericàs MA (2014) Chem Eur J 20(8):2367–2372PubMedCrossRefGoogle Scholar
  79. 79.
    Mohapatra SS, Wilson ZE, Roy S, Ley SV (2017) Tetrahedron 73(14):1812–1819CrossRefGoogle Scholar
  80. 80.
    Haas D, Hammann JM, Greiner R, Knochel P (2016) ACS Catal 6(3):1540–1552CrossRefGoogle Scholar
  81. 81.
    Phapale VB, Cárdenas DJ (2009) Chem Soc Rev 38(6):1598PubMedCrossRefGoogle Scholar
  82. 82.
    Alonso N, Miller LZ, de Muñoz JM, Alcázar J, McQuade DT (2014) Adv Synth Catal 356(18):3737–3741CrossRefGoogle Scholar
  83. 83.
    Price GA, Bogdan AR, Aguirre AL, Iwai T, Djuric SW, Organ MG (2016) Cat Sci Technol 6(13):4733–4742CrossRefGoogle Scholar
  84. 84.
    Zhang H, Buchwald SL (2017) J Am Chem Soc 139(33):11590–11594PubMedCrossRefGoogle Scholar
  85. 85.
    Wu XF, Neumann H, Beller M (2012) Chem Asian J 7(8):1744–1754PubMedCrossRefGoogle Scholar
  86. 86.
    Chen M, Buchwald SL (2013) Angew Chem Int Ed 52(44):11628–11631CrossRefGoogle Scholar
  87. 87.
    Kiyohide M, Etsuko T, Midori A, Kiyosi K (1981) Chem Lett 10(12):1719–1720CrossRefGoogle Scholar
  88. 88.
    Liu H, Gu Z, Jiang X (2013) Adv Synth Catal 355(4):617–626CrossRefGoogle Scholar
  89. 89.
    Monteiro JL, Carneiro PF, Elsner P, Roberge DM, Wuts PGM, Kurjan KC, Gutmann B, Kappe CO (2017) Chem Eur J 23(1):176–186PubMedCrossRefGoogle Scholar
  90. 90.
    Baciocchi E, Muraglia E (1993) Tetrahedron Lett 34(23):3799–3800CrossRefGoogle Scholar
  91. 91.
    Tran DN, Battilocchio C, Lou S-B, Hawkins JM, Ley SV (2015) Chem Sci 6(2):1120–1125PubMedCrossRefGoogle Scholar
  92. 92.
    Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV (2016) Nat Chem 8(4):360–367PubMedCrossRefGoogle Scholar
  93. 93.
    Booth G (2000) Nitro compounds, aromatic. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH, KGaA, WeinheimGoogle Scholar
  94. 94.
    Henke L, Winterbauer H (2005) Chem Eng Technol 28(7):749–752CrossRefGoogle Scholar
  95. 95.
    Burns JR, Ramshaw C (2002) Chem Eng Commun 189(12):1611–1628CrossRefGoogle Scholar
  96. 96.
    Dummann G, Quittmann U, Gröschel L, Agar DW, Wörz O, Morgenschweis K (2003) Catal Today 79:433–439CrossRefGoogle Scholar
  97. 97.
    Yang Jiu-Long LIJ-FLUY (2009) Acta Phys -Chim Sin 25(10):2045–2049Google Scholar
  98. 98.
    Ferstl W, Klahn T, Schweikert W, Billeb G, Schwarzer M, Loebbecke S (2007) Chem Eng Technol 30(3):370–378CrossRefGoogle Scholar
  99. 99.
    Antes J, Boskovic D, Krause H, Loebbecke S, Lutz N, Tuercke T, Schweikert W (2003) Chem Eng Res Des 81(7):760–765CrossRefGoogle Scholar
  100. 100.
    Halder R, Lawal A, Damavarapu R (2007) Catal Today 125(1):74–80CrossRefGoogle Scholar
  101. 101.
    Dagade SP, Waghmode SB, Kadam VS, Dongare MK (2002) Appl Catal A 226(1):49–61CrossRefGoogle Scholar
  102. 102.
    Kulkarni AA, Nivangune NT, Kalyani VS, Joshi RA, Joshi RR (2008) Org Process Res Dev 12(5):995–1000CrossRefGoogle Scholar
  103. 103.
    Ducry L, Roberge DM (2005) Angew Chem Int Ed 44(48):7972–7975CrossRefGoogle Scholar
  104. 104.
    Kulkarni AA, Kalyani VS, Joshi RA, Joshi RR (2009) Org Process Res Dev 13(5):999–1002CrossRefGoogle Scholar
  105. 105.
    Knapkiewicz P, Skowerski K, Jaskólska DE, Barbasiewicz M, Olszewski TK (2012) Org Process Res Dev 16(8):1430–1435CrossRefGoogle Scholar
  106. 106.
    Brocklehurst CE, Lehmann H, La Vecchia L (2011) Org Process Res Dev 15(6):1447–1453CrossRefGoogle Scholar
  107. 107.
    Veretennikov EA, Lebedev BA, Tselinskii IV (2001) Russ J Appl Chem 74(11):1872–1876CrossRefGoogle Scholar
  108. 108.
    Yu Z, Lv Y, Yu C, Su W (2013) Org Process Res Dev 17(3):438–442CrossRefGoogle Scholar
  109. 109.
    Chen Y, Zhao Y, Han M, Ye C, Dang M, Chen G (2013) Green Chem 15(1):91–94CrossRefGoogle Scholar
  110. 110.
    Kulkarni AA, Beilstein J (2014) Org Chem 10:405–424Google Scholar
  111. 111.
    Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54(23):6688–6728CrossRefGoogle Scholar
  112. 112.
    De Jong RL, Davidson JG, Dozeman GJ, Fiore PJ, Giri P, Kelly ME, Puls TP, Seamans RE (2001) Org Process Res Dev 5(3):216–225CrossRefGoogle Scholar
  113. 113.
    Panke G, Schwalbe T, Stirner W, Taghavi-Moghadam S, Wille G (2003) Synthesis 2003(18):2827–2830Google Scholar
  114. 114.
    Junkers M (2009) ChemFiles 9(4):7–9Google Scholar
  115. 115.
    Pelleter J, Renaud F (2009) Org Process Res Dev 13(4):698–705CrossRefGoogle Scholar
  116. 116.
    Gage JR, Guo X, Tao J, Zheng C (2012) Org Process Res Dev 16(5):930–933CrossRefGoogle Scholar
  117. 117.
    Wu R, Smidansky ED, Oh HS, Takhampunya R, Padmanabhan R, Cameron CE, Peterson BR (2010) J Med Chem 53(22):7958–7966PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zuckerman NB, Shusteff M, Pagoria PF, Gash AE (2015) J Flow Chem 5(3):178–182CrossRefGoogle Scholar
  119. 119.
    Brown DG, Boström J (2016) J Med Chem 59(10):4443–4458PubMedCrossRefGoogle Scholar
  120. 120.
    Shieh W-C, Lozanov M, Repič O (2003) Tetrahedron Lett 44(36):6943–6945CrossRefGoogle Scholar
  121. 121.
    Herath A, Dahl R, Cosford NDP (2010) Org Lett 12(3):412–415PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Herath A, Cosford NDP, Beilstein J (2017) Org Chem 13:239–246Google Scholar
  123. 123.
    Venturoni F, Nikbin N, Ley SV, Baxendale IR (2010) Org Biomol Chem 8(8):1798–1806PubMedCrossRefGoogle Scholar
  124. 124.
    Guetzoyan L, Nikbin N, Baxendale IR, Ley SV (2013) Chem Sci 4(2):764–769CrossRefGoogle Scholar
  125. 125.
    Butler AJE, Thompson MJ, Maydom PJ, Newby JA, Guo K, Adams H, Chen B (2014) J Org Chem 79(21):10196–10202PubMedCrossRefGoogle Scholar
  126. 126.
    Rassokhina IV, Tikhonova TA, Kobylskoy SG, Babkin IY, Shirinian VZ, Gevorgyan V, Zavarzin IV, Volkova YA (2017) J Org Chem 82:9682–9692PubMedCrossRefGoogle Scholar
  127. 127.
    Chen M, Buchwald SL (2013) Angew Chem Int Ed 52(15):4247–4250CrossRefGoogle Scholar
  128. 128.
    Hamper BC, Tesfu E (2007) Synlett 2007(14):2257–2261CrossRefGoogle Scholar
  129. 129.
    Razzaq T, Glasnov TN, Kappe CO (2009) Eur J Org Chem 2009(9):1321–1325CrossRefGoogle Scholar
  130. 130.
    Petersen TP, Larsen AF, Ritzén A, Ulven T (2013) J Org Chem 78(8):4190–4195PubMedCrossRefGoogle Scholar
  131. 131.
    Hartwig J, Ceylan S, Kupracz L, Coutable L, Kirschning A (2013) Angew Chem Int Ed 52(37):9813–9817CrossRefGoogle Scholar
  132. 132.
    Lee CLK, Sem ZY, Hendra H, Liu XQ, Kwan WL (2013) J Flow Chem 3(4):114–117CrossRefGoogle Scholar
  133. 133.
    Ingham RJ, Riva E, Nikbin N, Baxendale IR, Ley SV (2012) Org Lett 14(15):3920–3923PubMedCrossRefGoogle Scholar
  134. 134.
    Lin H, Dai C, Jamison TF, Jensen KF (2017) Angew Chem Int Ed 56(30):8870–8873CrossRefGoogle Scholar
  135. 135.
    Cole KP, Groh JM, Johnson MD, Burcham CL, Campbell BM, Diseroad WD, Heller MR, Howell JR, Kallman NJ, Koenig TM, May SA, Miller RD, Mitchell D, Myers DP, Myers SS, Phillips JL, Polster CS, White TD, Cashman J, Hurley D, Moylan R, Sheehan P, Spencer RD, Desmond K, Desmond P, Gowran O (2017) Science 356(6343):1144–1150PubMedCrossRefGoogle Scholar
  136. 136.
    Chen Y, Liu B, Liu X, Yang Y, Ling Y, Jia Y (2014) Org Process Res Dev 18(11):1589–1592CrossRefGoogle Scholar
  137. 137.
    Sahoo HR, Kralj JG, Jensen KF (2007) Angew Chem Int Ed 46(30):5704–5708CrossRefGoogle Scholar
  138. 138.
    Baumann M, Baxendale IR, Ley SV, Nikbin N, Smith CD, Tierney JP (2008) Org Biomol Chem 6(9):1577–1586PubMedCrossRefGoogle Scholar
  139. 139.
    Baumann M, Baxendale IR, Ley SV, Nikbin N, Smith CD (2008) Org Biomol Chem 6(9):1587–1593PubMedCrossRefGoogle Scholar
  140. 140.
    O'Brien AG, Levesque F, Seeberger PH (2011) Chem Commun 47(9):2688–2690CrossRefGoogle Scholar
  141. 141.
    Tundel RE, Anderson KW, Buchwald SL (2006) J Org Chem 71(1):430–433PubMedCrossRefGoogle Scholar
  142. 142.
    Sunesson Y, Limé E, Nilsson Lill SO, Meadows RE, Norrby P-O (2014) J Org Chem 79(24):11961–11969PubMedCrossRefGoogle Scholar
  143. 143.
    Pommella A, Tomaiuolo G, Chartoire A, Caserta S, Toscano G, Nolan SP, Guido S (2013) Chem Eng J 223:578–583CrossRefGoogle Scholar
  144. 144.
    Hopkin MD, Baxendale IR, Ley SV (2010) Chem Commun 46(14):2450–2452CrossRefGoogle Scholar
  145. 145.
    Yang JC, Niu D, Karsten BP, Lima F, Buchwald SL (2016) Angew Chem Int Ed 55(7):2531–2535CrossRefGoogle Scholar
  146. 146.
    Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Org Process Res Dev 14(6):1347–1357CrossRefGoogle Scholar
  147. 147.
    Horie T, Sumino M, Tanaka T, Matsushita Y, Ichimura T, Yoshida J-i (2010) Org Process Res Dev 14(2):405–410CrossRefGoogle Scholar
  148. 148.
    Sedelmeier J, Ley SV, Baxendale IR, Baumann M (2010) Org Lett 12(16):3618–3621PubMedCrossRefGoogle Scholar
  149. 149.
    Noel T, Naber JR, Hartman RL, McMullen JP, Jensen KF, Buchwald SL (2011) Chem Sci 2(2):287–290CrossRefGoogle Scholar
  150. 150.
    Kuhn S, Noel T, Gu L, Heider PL, Jensen KF (2011) Lab Chip 11(15):2488–2492PubMedCrossRefGoogle Scholar
  151. 151.
    DeAngelis A, Wang D-H, Buchwald SL (2013) Angew Chem Int Ed 52(12):3434–3437CrossRefGoogle Scholar
  152. 152.
    Monnier F, Taillefer M (2009) Angew Chem Int Ed 48(38):6954–6971CrossRefGoogle Scholar
  153. 153.
    Zhang Y, Jamison TF, Patel S, Mainolfi N (2011) Org Lett 13(2):280–283PubMedCrossRefGoogle Scholar
  154. 154.
    Chen M, Ichikawa S, Buchwald SL (2015) Angew Chem Int Ed 54(1):263–266CrossRefGoogle Scholar
  155. 155.
    Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJB (2017) J Am Chem Soc 139(13):4769–4779PubMedCrossRefGoogle Scholar
  156. 156.
    Singh BK, Stevens CV, Acke DRJ, Parmar VS, Van der Eycken EV (2009) Tetrahedron Lett 50(1):15–18CrossRefGoogle Scholar
  157. 157.
    Bao J, Tranmer GK (2016) Tetrahedron Lett 57(6):654–657CrossRefGoogle Scholar
  158. 158.
    Mallia CJ, Burton PM, Smith AMR, Walter GC, Baxendale IR (2016) Beilstein J Org Chem 12:1598–1607PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Britton J, Jamison TF (2017) Angew Chem Int Ed 56:8823–8827CrossRefGoogle Scholar
  160. 160.
    Lee JK, Fuchter MJ, Williamson RM, Leeke GA, Bush EJ, McConvey IF, Saubern S, Ryan JH, Holmes AB (2008) Chem Commun 39:4780–4782CrossRefGoogle Scholar
  161. 161.
    Benaskar F, Engels V, Patil N, Rebrov EV, Meuldijk J, Hessel V, Hulshof LA, Jefferson DA, Schouten JC, Wheatley AEH (2010) Tetrahedron Lett 51(2):248–251CrossRefGoogle Scholar
  162. 162.
    Benaskar F, Patil NG, Engels V, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Wheatley AEH, Schouten JC (2012) Chem Eng J 207:426–439CrossRefGoogle Scholar
  163. 163.
    He Z, Jamison TF (2014) Angew Chem 126(13):3421–3425CrossRefGoogle Scholar
  164. 164.
    Tagata T, Nishida M, Nishida A (2009) Tetrahedron Lett 50(45):6176–6179CrossRefGoogle Scholar
  165. 165.
    Tagata T, Nishida M, Nishida A (2010) Adv Synth Catal 352(10):1662–1666CrossRefGoogle Scholar
  166. 166.
    Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV (2011) Org Lett 13(13):3312–3315PubMedCrossRefGoogle Scholar
  167. 167.
    Newby JA, Huck L, Blaylock DW, Witt PM, Ley SV, Browne DL (2014) Chem Eur J 20(1):263–271PubMedCrossRefGoogle Scholar
  168. 168.
    Nagaki A, Hirose K, Moriwaki Y, Mitamura K, Matsukawa K, Ishizuka N, Yoshida J (2016) Cat Sci Technol 6(13):4690–4694CrossRefGoogle Scholar
  169. 169.
    Usutani H, Nihei T, Papageorgiou CD, Cork DG (2017) Org Process Res Dev 21:669–673CrossRefGoogle Scholar
  170. 170.
    Chen K, Zhang S, He P, Li P (2016) Chem Sci 7(6):3676–3680CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Chen K, Cheung MS, Lin Z, Li P (2016) Org Chem Front 3(7):875–879CrossRefGoogle Scholar
  172. 172.
    Campbell MG, Ritter T (2015) Chem Rev 115(2):612–633PubMedCrossRefGoogle Scholar
  173. 173.
    Nagaki A, Uesugi Y, Kim H, Yoshida J-i (2013) Chem Asian J 8(4):705–708PubMedCrossRefGoogle Scholar
  174. 174.
    Yamada S, Gavryushin A, Knochel P (2010) Angew Chem 122(12):2261–2264CrossRefGoogle Scholar
  175. 175.
    Noël T, Maimone TJ, Buchwald SL (2011) Angew Chem Int Ed 50(38):8900–8903CrossRefGoogle Scholar
  176. 176.
    Watson DA, Su M, Teverovskiy G, Zhang Y, García-Fortanet J, Kinzel T, Buchwald SL (2009) Science 325(5948):1661–1664PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Park NH, Senter TJ, Buchwald SL (2016) Angew Chem 128(39):12086–12090CrossRefGoogle Scholar
  178. 178.
    Yu ZQ, Lv YW, Yu CM, Su WK (2013) Tetrahedron Lett 54(10):1261–1263CrossRefGoogle Scholar
  179. 179.
    Yu Z, Lv Y, Yu C (2012) Org Process Res Dev 16(10):1669–1672CrossRefGoogle Scholar
  180. 180.
    Lob P, Hessel V, Klefenz H, Lowe H, Mazanek K (2005) Lett Org Chem 2(8):767–779CrossRefGoogle Scholar
  181. 181.
    Midorikawa K, Suga S, Yoshida J-i (2006) Chem Commun 36:3794–3796CrossRefGoogle Scholar
  182. 182.
    D'Attoma J, Cozien G, Brun PL, Robin Y, Bostyn S, Buron F, Routier S (2016) ChemistrySelect 1(3):338–342CrossRefGoogle Scholar
  183. 183.
    Petersen TP, Becker MR, Knochel P (2014) Angew Chem Int Ed 53(30):7933–7937CrossRefGoogle Scholar
  184. 184.
    Malet-Sanz L, Madrzak J, Holvey RS, Underwood T (2009) Tetrahedron Lett 50(52):7263–7267CrossRefGoogle Scholar
  185. 185.
    Klapars A, Buchwald SL (2002) J Am Chem Soc 124(50):14844–14845PubMedCrossRefGoogle Scholar
  186. 186.
    Beaulieu F, Snieckus V (1992) Synthesis 1992(1/2):112–118CrossRefGoogle Scholar
  187. 187.
    Lin S, Moon B, Porter KT, Rossman CA, Zennie T, Wemple J (2000) Org Prep Poced Int 32(6):547–555CrossRefGoogle Scholar
  188. 188.
    Stadler O (1884) Ber Dtsch Chem Ges 17(2):2075–2081CrossRefGoogle Scholar
  189. 189.
    Wang X, Cuny GD, Noël T (2013) Angew Chem 125(30):8014–8018CrossRefGoogle Scholar
  190. 190.
    Glasnov T (2018) Photochemical synthesis of heterocycles: merging flow processing and metal-catalyzed visible light photoredox transformations. Top Heterocyclic Chem.  https://doi.org/10.1007/7081_2018_20
  191. 191.
    Malet-Sanz L, Madrzak J, Ley SV, Baxendale IR (2010) Org Biomol Chem 8(23):5324–5332PubMedCrossRefGoogle Scholar
  192. 192.
    Becker MR, Knochel P (2015) Angew Chem Int Ed 54(42):12501–12505CrossRefGoogle Scholar
  193. 193.
    Nagaki A, Yamada D, Yamada S, Doi M, Ichinari D, Tomida Y, Takabayashi N, Yoshida J-I (2013) Aust J Chem 66(2):199–207CrossRefGoogle Scholar
  194. 194.
    Michel B, Greaney MF (2014) Org Lett 16(10):2684–2687PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joachim Demaerel
    • 1
  • Vidmantas Bieliūnas
    • 1
  • Wim M. De Borggraeve
    • 1
  1. 1.Molecular Design and Synthesis, Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations