Skip to main content

Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations

Part of the Topics in Heterocyclic Chemistry book series (TOPICS,volume 56)

Abstract

The ubiquitous presence of heterocyclic moieties in everyday life justifies the ongoing intensive research within the synthetic community to discover effective methodologies for their construction. As the social concern regarding environmental protection gains importance, the use of light as the ultimate green promoter for chemical reactions has been revived in the scientific community. Specifically, visible-light photoredox processes based on metal- and organic photosensitizer are attracting significant attention and have seen an exceptional advance recently.

Additionally, continuous-flow processing has enabled a safer and more efficient generation of various heterocycles, whilst allowing their syntheses in a scalable manner. In this chapter, recent achievements in the area of continuous-flow aided photoredox synthesis are covered, including some general remarks on instrumentation, theoretical background and selected flow UV-photochemistry examples.

Keywords

  • Continuous flow
  • Flow reactor
  • Heterocycles
  • Light source
  • Metal photosensitizers
  • Organic photosensitizers
  • Photoredox catalysis
  • Visible and UV light

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7081_2018_20
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-94328-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30

Abbreviations

Cu(Xantphos)(dmp)BF4 :

Copper (I) (2,9-dimethyl-1,10-phenanthroline-kN1,kN10)[1,1′-(9,9-dimethyl-9H-xanthene-4,5-diyl)bis[1,1-diphenylphosphine-kP]](T-4) tetrafluoroborate

DIY:

Do it yourself

DMAP:

N,N-dimethylaminopyridine

fac-Ir(ppy)3 :

fac-Tris(2-phenylpyridine)iridium (III)

Fe(phen)3(NTf2)2 :

Iron (II) tris(1,10-phenanthroline-kN1,kN10)-(OC-6-11) di(1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide)

Ir(dF(CF3)ppy)2(dtbbpy)PF6 :

[4,4′-Bis(1,1-dimethylethyl)-2,2′-bipyridine-N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate

[Ir(dtbbpy)(ppy)2]PF6 :

4,4′-Bis(1,1-dimethylethyl)-2,2′-bipyridine-N1,N1′]bis[2-(2-pyridinyl-N)phenyl-C]iridium(III) hexafluorophosphate

LEDs:

Light-emitting diodes

N-Boc:

N-tert-Butyloxycarbonyl

Ru(bpy)3(PF6)2 :

Tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate

Ru(bpy)3Cl2 :

Tris(bipyridyl)ruthenium(II) dichloride

tert-BuOOH:

tert-Butyl hydroperoxide

TMSCN:

Trimethylsilyl cyanide

TrocN3 :

2,2,2-Trichloroethyl azidoformate

References

  1. Pozharskii AF, Soldatenkov A, Katritzky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications.2nd edn. Wiley, New York

    CrossRef  Google Scholar 

  2. Alvarez-Builla J, Vaquero JJ, Barluenga J (eds) (2011) Modern heterocyclic chemistry, vol 1–4. Wiley VCH, Weinheim

    Google Scholar 

  3. Eicher T, Hauptmann S, Speicher A (2012) The chemistry of heterocycles: structures, reactions, synthesis and applications.3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  4. Su Y, Straathof NJW, Hessel V, Noël T (2014) Chem Eur J 20:10562

    CrossRef  PubMed  CAS  Google Scholar 

  5. Garlets ZJ, Nguyen JD, Stephenson CRJ (2014) Isr J Chem 54:351

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schuster EM, Wipf P (2014) Isr J Chem 54:361

    CrossRef  CAS  Google Scholar 

  7. Staveness D, Bosque I, Stephensen CRJ (2016) Acc Chem Res 49:2295

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Romero NA, Nicewicz DA (2016) Chem Rev 116:10075

    CrossRef  PubMed  CAS  Google Scholar 

  9. Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Chem Rev 116:10276

    CrossRef  PubMed  CAS  Google Scholar 

  10. Zhou L, Hossain ML, Xiao T (2016) Chem Rec 16:319

    CrossRef  PubMed  CAS  Google Scholar 

  11. Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81:6898

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016) J Photochem Photobiol C Photochem Rev 29:107

    CrossRef  CAS  Google Scholar 

  13. Ciriminna R, Delisi R, Xu Y-J, Pagliaro M (2016) Org Process Res Dev 20:403

    CrossRef  CAS  Google Scholar 

  14. Douglas JJ, Sevrin MJ, Stephenson CRJ (2016) Org Process Res Dev 20:1134

    CrossRef  CAS  Google Scholar 

  15. Morse PD, Beingessner RL, Jamison TF (2017) Isr J Chem. https://doi.org/10.1002/ijch.201600095

  16. Noël T (ed) (2017) Photochemical processes in continuous-flow reactors: from engineering principles to chemical applications. World Scientific Publishing, London

    Google Scholar 

  17. Glasnov T (2016) Continuous-flow chemistry in the research laboratory: modern organic chemistry in dedicated reactors at the dawn of the 21st century. Springer, Heidelberg

    CrossRef  Google Scholar 

  18. Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, Tanibata H, Murata T (2007) Pure Appl Chem 79:1959

    CrossRef  CAS  Google Scholar 

  19. Knowles JP, Elliot LD, Booker-Milburn KI (2012) Beilstein J Org Chem 8:2025

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wirth T (ed) (2013) Microreactors in organic chemistry and catalysis.2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  21. Hessel V, Kralish D, Kockmann N (2015) Novel process windows – innovative gates to intensified and sustainable chemical processes. Wiley-VCH, Weinheim

    Google Scholar 

  22. Hedstrand DM, Kruizinga WH, Kellogg RM (1978) Tetrahedron Lett 19:1255

    CrossRef  Google Scholar 

  23. Nicewicz DA, MacMillan DWC (2008) Science 322:77

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ischay MA, Anzovino ME, Du J, Yoon TP (2008) J Am Chem Soc 130:12886

    CrossRef  PubMed  CAS  Google Scholar 

  25. Tucker JW, Stephenson CRJ (2012) J Org Chem 77:1617

    CrossRef  PubMed  CAS  Google Scholar 

  26. Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  27. Piter SP, McTiernan CD, Scaiano JC (2016) Acc Chem Res 49:1320

    CrossRef  CAS  Google Scholar 

  28. Arias-Rotondo DM, McCusker JK (2016) Chem Soc Rev 45:5803

    CrossRef  PubMed  CAS  Google Scholar 

  29. Corrigan N, Shanmugam S, Xu J, Boyer C (2016) Chem Soc Rev 45:6165

    CrossRef  PubMed  CAS  Google Scholar 

  30. Hoffmann N (2017) Eur J Org Chem 2017:1982

    CrossRef  CAS  Google Scholar 

  31. Lerch S, Unkel L-N, Wienefeld P, Brasholz M (2014) Synlett 25:2673

    CrossRef  CAS  Google Scholar 

  32. Teegardin K, Day JI, Chan J, Weaver J (2016) Org Process Res Dev 20:1156

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  33. Naranynam JM, Stephenson CRJ (2011) Chem Soc Rev 40:102

    CrossRef  Google Scholar 

  34. Boubertakh O, Goddard JP (2017) Eur J Org Chem 2017:2072

    CrossRef  CAS  Google Scholar 

  35. Chen J-R, Hu X-Q, Lu L-Q, Xiao W-J (2016) Acc Chem Res 49:1911

    CrossRef  PubMed  CAS  Google Scholar 

  36. Kärkäs MD, Porco Jr JA, Stephenson CRJ (2016) Chem Rev 116:9683

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tucker JW, Zhang Y, Jamison TF, Stephenson CRJ (2012) Angew Chem Int Ed 51:4144

    CrossRef  CAS  Google Scholar 

  38. Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM (2013) Org Lett 15:1634

    CrossRef  PubMed  CAS  Google Scholar 

  39. Rackl D, Kais V, Lutsker E, Reiser O (2017) Eur J Org Chem 2017:2130

    CrossRef  CAS  Google Scholar 

  40. Ghogare AA, Greer A (2016) Chem Rev 116:9994

    CrossRef  PubMed  CAS  Google Scholar 

  41. Maurya RA, Park CP, Kim D-P (2011) Beilstein J Org Chem 7:1158

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  42. Park CP, Maurya RA, Lee JH, Kim D-P (2011) Lab Chip 11:1941

    CrossRef  PubMed  CAS  Google Scholar 

  43. Yavorskyy A, Shvydkiv O, Limburg C, Nolan K, Delaure YMC, Oelgemöller M (2012) Green Chem 14:888

    CrossRef  CAS  Google Scholar 

  44. Ziegenbalg D, Kreisel G, Weiß D, Kralisch D (2014) Photochem Photobiol Sci 13:1005

    CrossRef  PubMed  CAS  Google Scholar 

  45. Wu G, Lv T, Mo W, Yang X, Gao Y, Chen H (2017) Tetrahedron Lett 58:1395

    CrossRef  CAS  Google Scholar 

  46. Cremlyn RJ (1996) An introduction to organosulfur chemistry. Wiley-VCH, New York

    Google Scholar 

  47. Talla A, Driessen B, Straathof NJW, Milroy L-G, Brunsveld L, Hesel V, Noël T (2015) Adv Synth Catal 357:2180

    CrossRef  CAS  Google Scholar 

  48. Bottecchia C, Erdmann N, Tijssem PMA, Milroy L-G, Brunsveld L, Hessel V, Noël T (2016) ChemSusChem 9:1781

    CrossRef  PubMed  CAS  Google Scholar 

  49. Thevissen K, Marchand A, Chaltin P, Meert EMK, Cammue BPA (2009) Curr Med Chem 16:2205

    CrossRef  PubMed  CAS  Google Scholar 

  50. Roy J, Jana AK, Mal D (2012) Tetrahedron 68:6099

    CrossRef  CAS  Google Scholar 

  51. Bashir M, Afifa B, Subhan A (2015) Molecules 20:13496

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  52. Parisien-Collette S, Hernandez-Perez AC, Collins SK (2016) Org Lett 18:4994

    CrossRef  PubMed  CAS  Google Scholar 

  53. Hernandez-Perez AC, Collins SK (2013) Angew Chem Int Ed 52:12696

    CrossRef  CAS  Google Scholar 

  54. Hernandez-Perez AC, Caron A, Collins SK (2015) Chem Eur J 21:16673

    CrossRef  PubMed  CAS  Google Scholar 

  55. Poplata S, Tröster A, Zou Y-Q, Bach T (2016) Chem Rev 116:9748

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kumarasamy E, Raghunathan R, Jockusch S, Ugrinov A, Sivaguru S (2014) J Am Chem Soc 136:8729

    CrossRef  PubMed  CAS  Google Scholar 

  57. Chandrasekhar D, Borra S, Kapure JS, Shailendra Shivaji GS, Srinivasulu G, Maurya RA (2015) Org Chem Front 2:1308

    CrossRef  CAS  Google Scholar 

  58. Chandrasekhar D, Borra S, Nanubolu JB, Maurya RA (2016) Org Lett 18:2974

    CrossRef  PubMed  CAS  Google Scholar 

  59. Borra S, Chandrasekhar D, Adhikary S, Rasala S, Gokulnath S, Maurya RA (2017) J Org Chem 82:2249

    CrossRef  PubMed  CAS  Google Scholar 

  60. Tiwari DK, Maurya RA, Nanubolu JB (2016) Chem Eur J 22:526

    CrossRef  PubMed  CAS  Google Scholar 

  61. He Z, Bae M, Wu J, Jamison TF (2014) Angew Chem Int Ed 53:14451

    CrossRef  CAS  Google Scholar 

  62. Beatty JW, Stephenson CRJ (2014) J Am Chem Soc 136:10270

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  63. Huang C-Y, Doyle AG (2014) Chem Rev 114:8153

    CrossRef  PubMed  CAS  Google Scholar 

  64. Yudin AK (ed) (2006) Aziridiens and epoxides in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  65. Scholz SO, Farney EP, Kim S, Bates DM, Yoon TP (2016) Angew Chem Int Ed 55:2239

    CrossRef  CAS  Google Scholar 

  66. Trommsdorf H (1834) Ann Chem Pharm 11:190

    CrossRef  Google Scholar 

  67. Ciamician G (1912) Science 36:385

    CrossRef  PubMed  CAS  Google Scholar 

  68. Nasini R, Brown R, Ree A, Miller WL, Hewitt JT, Dawson HM, Knecht E (1926) J Chem Soc 129:993

    CrossRef  Google Scholar 

  69. Oelgemöller M (2016) Chem Rev 116:9664

    CrossRef  PubMed  CAS  Google Scholar 

  70. Shvydkiv O, Nolan K, Oelgemöller M (2011) Beilstein J Org Chem 7:1055

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  71. Josland S, Mumatz S, Oelgemöller M (2016) Chem Eng Technol 39:81

    CrossRef  Google Scholar 

  72. DeLaney EN, Lee DS, Elliott LD, Jin J, Booker-Milburn KI, Poliakoff M, George MW (2017) Green Chem 19:1431

    CrossRef  CAS  Google Scholar 

  73. Fang Y, Tranmer GK (2016) Org Biomol Chem 14:10799

    CrossRef  PubMed  CAS  Google Scholar 

  74. Fang Y, Tranmer GK (2016) Med Chem Commun 7:720

    CrossRef  CAS  Google Scholar 

  75. Koolman HF, Braje WM, Haupt A (2016) Synlett 27:2561

    CrossRef  CAS  Google Scholar 

  76. Fukuyama T, Fujita Y, Rashid MA, Ryu I (2016) Org Lett 18:5444

    CrossRef  CAS  PubMed  Google Scholar 

  77. Bourne RA, Han X, Chapman AO, Arrowsmith NJ, Kawanami H, Poliakoff M, George MW (2008) Chem Commun:4457

    Google Scholar 

  78. Levesque F, Seeberger PH (2011) Org Lett 13:5008

    CrossRef  PubMed  CAS  Google Scholar 

  79. Han X, Bourne RA, Poliakoff M, George MW (2011) Chem Sci 2:1059

    CrossRef  CAS  Google Scholar 

  80. Levesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706

    CrossRef  CAS  Google Scholar 

  81. Lainchbury MD, Medley MI, Taylor PM, Hirst P, Dohle W, Booker-Milburn KI (2008) J Org Chem 73:6497

    CrossRef  PubMed  CAS  Google Scholar 

  82. Maskill KG, Knowles JP, Elliott LD, Alder RW, Booker-Milburn KI (2013) Angew Chem Int Ed 52:1499

    CrossRef  CAS  Google Scholar 

  83. Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI (2014) Chem Eur J 53:15226

    CrossRef  CAS  Google Scholar 

  84. Ralph M, Ng S, Booker-Milburn KI (2016) Org Lett 18:968

    CrossRef  PubMed  CAS  Google Scholar 

  85. Blanco-Ania D, Gawade SA, Zwinkels LJL, Maartense L, Bolster MG, Benningshof JCJ, Rutjes FPJ (2015) Org Process Res Dev 20:409

    CrossRef  CAS  Google Scholar 

  86. Cludius-Brandt S, Kupracz L, Kirschning A (2013) Beilstein J Org Chem 9:1745

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  87. Asano K, Uesugi Y, Yoshida J-I (2013) Org Lett 15:2398

    CrossRef  PubMed  CAS  Google Scholar 

  88. Vaske YSM, Mahoney ME, Konopelski JP, Rogow DL, McDonald WJ (2010) J Am Chem Soc 132:11379

    CrossRef  PubMed  CAS  Google Scholar 

  89. Willumstad TP, Haze O, Mak XY, Lam TY, Wang Y-P, Danheiser RL (2013) J Org Chem 78:11450

    CrossRef  PubMed  CAS  Google Scholar 

  90. Chen M, Yang Y, Wang Y, Li D, Xia W (2016) Org Lett 18:2280

    CrossRef  PubMed  CAS  Google Scholar 

  91. Cochran JE, Waal N (2016) Org Process Res Dev 20:1533

    CrossRef  CAS  Google Scholar 

  92. De Meijere A, Bräse S, Oestreich M (eds) (2014) Metal catalyzed cross-coupling reactions and more. Wiley-VCH, Weinheim

    Google Scholar 

  93. Ravelli D, Protti S, Fagnoni M (2016) Chem Rev 116:9859

    CrossRef  CAS  Google Scholar 

  94. Andrews RS, Becker JJ, Gagne MR (2012) Angew Chem Int Ed 51:4140

    CrossRef  CAS  Google Scholar 

  95. Lima FL, Kabeschov MA, Tran DN, Battilochio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley SV (2016) Angew Chem Int Ed 55:14085

    CrossRef  CAS  Google Scholar 

  96. Johston CP, Smith RT, Allmendinger S, MacMillan DWC (2016) Nature 536:322

    CrossRef  CAS  Google Scholar 

  97. DeLano TJ, Bandarage UK, Palaychuk N, Green J, Boyd MJ (2016) J Org Chem 81:12525

    CrossRef  PubMed  CAS  Google Scholar 

  98. Palaychuk N, DeLano TJ, Boyd MJ, Green J, Bandarage UK (2016) Org Lett 18:6180

    CrossRef  PubMed  CAS  Google Scholar 

  99. Joshi-Pangu A, Levesque F, Roth HG, Oliver SF, Campeau L-C, Nicewicz D, DiRocco DA (2016) J Org Chem 81:7244

    CrossRef  PubMed  CAS  Google Scholar 

  100. Sharma UK, Gemoets HPL, Schröder F, Noël T, van der Eycken EV (2017) ACS Catal 7:3818

    CrossRef  CAS  Google Scholar 

  101. Capaldo L, Fagnoni M, Ravelli D (2017) Chem Eur J 23:6527

    CrossRef  PubMed  CAS  Google Scholar 

  102. Fabry DC, Ho YA, Tremel W, Panthöfer M, Rueping M, Rehm TH (2017) Green Chem 19:1911

    CrossRef  CAS  Google Scholar 

  103. Hu J, Wang J, Nguyen TH, Zheng N (2013) Beilstein J Org Chem 9:1977

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  104. Rueping M, Vila C, Bootwicha T (2013) ACS Catal 3:1676

    CrossRef  CAS  Google Scholar 

  105. Nauth AM, Lipp A, Lipp B, Opatz T (2017) Eur J Org Chem 2017:2099

    CrossRef  CAS  Google Scholar 

  106. Seo H, Katcher MH, Jamison TF (2017) Nat Chem 9:453

    CrossRef  PubMed  CAS  Google Scholar 

  107. Kirsch P (2004) Modern fluoroorganic chemistry: synthesis, reactivity, applications. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  108. Begue JP, Bonnet-Delpon F (2008) Bioorganic and medicinal chemistry of fluorine. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  109. Rehm TH (2016) Chem Eng Technol 39:66

    CrossRef  Google Scholar 

  110. Chatterjee T, Iqbal N, You Y, Cho EJ (2016) Acc Chem Res 49:2284

    CrossRef  PubMed  CAS  Google Scholar 

  111. Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noël T (2014) ChemSusChem 7:1612

    CrossRef  PubMed  CAS  Google Scholar 

  112. Beatty JW, Douglas JJ, Cole KP, Stephenson CRJ (2015) Nat Commun 6:7919

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  113. Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CRJ (2016) Chem 1:456

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nguyen JD, Reiss B, Dai C, Stephenson CRJ (2013) Chem Commun 49:4352

    CrossRef  CAS  Google Scholar 

  115. Weaver JD (2014) Synlett 25:1946

    CrossRef  CAS  Google Scholar 

  116. Perkowski AJ, Cruz CL, Nicewicz DA (2015) J Am Chem Soc 137:15684

    CrossRef  PubMed  CAS  Google Scholar 

  117. Roslin S, Odell R (2017) Eur J Org Chem 2017:1993

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toma Glasnov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Glasnov, T. (2018). Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations. In: Sharma, U., Van der Eycken, E. (eds) Flow Chemistry for the Synthesis of Heterocycles. Topics in Heterocyclic Chemistry, vol 56. Springer, Cham. https://doi.org/10.1007/7081_2018_20

Download citation