Photochemical Synthesis of Heterocycles: Merging Flow Processing and Metal-Catalyzed Visible Light Photoredox Transformations

  • Toma GlasnovEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 56)


The ubiquitous presence of heterocyclic moieties in everyday life justifies the ongoing intensive research within the synthetic community to discover effective methodologies for their construction. As the social concern regarding environmental protection gains importance, the use of light as the ultimate green promoter for chemical reactions has been revived in the scientific community. Specifically, visible-light photoredox processes based on metal- and organic photosensitizer are attracting significant attention and have seen an exceptional advance recently.

Additionally, continuous-flow processing has enabled a safer and more efficient generation of various heterocycles, whilst allowing their syntheses in a scalable manner. In this chapter, recent achievements in the area of continuous-flow aided photoredox synthesis are covered, including some general remarks on instrumentation, theoretical background and selected flow UV-photochemistry examples.


Continuous flow Flow reactor Heterocycles Light source Metal photosensitizers Organic photosensitizers Photoredox catalysis Visible and UV light 



Copper (I) (2,9-dimethyl-1,10-phenanthroline-kN1,kN10)[1,1′-(9,9-dimethyl-9H-xanthene-4,5-diyl)bis[1,1-diphenylphosphine-kP]](T-4) tetrafluoroborate


Do it yourself




fac-Tris(2-phenylpyridine)iridium (III)


Iron (II) tris(1,10-phenanthroline-kN1,kN10)-(OC-6-11) di(1,1,1-trifluoro-N-[(trifluoromethyl)sulfonyl]methanesulfonamide)


[4,4′-Bis(1,1-dimethylethyl)-2,2′-bipyridine-N1,N1′]bis[3,5-difluoro-2-[5-(trifluoromethyl)-2-pyridinyl-N]phenyl-C]Iridium(III) hexafluorophosphate


4,4′-Bis(1,1-dimethylethyl)-2,2′-bipyridine-N1,N1′]bis[2-(2-pyridinyl-N)phenyl-C]iridium(III) hexafluorophosphate


Light-emitting diodes




Tris(2,2′-bipyridine)ruthenium(II) hexafluorophosphate


Tris(bipyridyl)ruthenium(II) dichloride


tert-Butyl hydroperoxide


Trimethylsilyl cyanide


2,2,2-Trichloroethyl azidoformate


  1. 1.
    Pozharskii AF, Soldatenkov A, Katritzky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications.2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Alvarez-Builla J, Vaquero JJ, Barluenga J (eds) (2011) Modern heterocyclic chemistry, vol 1–4. Wiley VCH, WeinheimGoogle Scholar
  3. 3.
    Eicher T, Hauptmann S, Speicher A (2012) The chemistry of heterocycles: structures, reactions, synthesis and applications.3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Su Y, Straathof NJW, Hessel V, Noël T (2014) Chem Eur J 20:10562PubMedCrossRefGoogle Scholar
  5. 5.
    Garlets ZJ, Nguyen JD, Stephenson CRJ (2014) Isr J Chem 54:351PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Schuster EM, Wipf P (2014) Isr J Chem 54:361CrossRefGoogle Scholar
  7. 7.
    Staveness D, Bosque I, Stephensen CRJ (2016) Acc Chem Res 49:2295PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Romero NA, Nicewicz DA (2016) Chem Rev 116:10075PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Chem Rev 116:10276PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou L, Hossain ML, Xiao T (2016) Chem Rec 16:319PubMedCrossRefGoogle Scholar
  11. 11.
    Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81:6898PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K (2016) J Photochem Photobiol C Photochem Rev 29:107CrossRefGoogle Scholar
  13. 13.
    Ciriminna R, Delisi R, Xu Y-J, Pagliaro M (2016) Org Process Res Dev 20:403CrossRefGoogle Scholar
  14. 14.
    Douglas JJ, Sevrin MJ, Stephenson CRJ (2016) Org Process Res Dev 20:1134CrossRefGoogle Scholar
  15. 15.
    Morse PD, Beingessner RL, Jamison TF (2017) Isr J Chem.
  16. 16.
    Noël T (ed) (2017) Photochemical processes in continuous-flow reactors: from engineering principles to chemical applications. World Scientific Publishing, LondonGoogle Scholar
  17. 17.
    Glasnov T (2016) Continuous-flow chemistry in the research laboratory: modern organic chemistry in dedicated reactors at the dawn of the 21st century. Springer, HeidelbergCrossRefGoogle Scholar
  18. 18.
    Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, Tanibata H, Murata T (2007) Pure Appl Chem 79:1959CrossRefGoogle Scholar
  19. 19.
    Knowles JP, Elliot LD, Booker-Milburn KI (2012) Beilstein J Org Chem 8:2025PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wirth T (ed) (2013) Microreactors in organic chemistry and catalysis.2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Hessel V, Kralish D, Kockmann N (2015) Novel process windows – innovative gates to intensified and sustainable chemical processes. Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    Hedstrand DM, Kruizinga WH, Kellogg RM (1978) Tetrahedron Lett 19:1255CrossRefGoogle Scholar
  23. 23.
    Nicewicz DA, MacMillan DWC (2008) Science 322:77PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ischay MA, Anzovino ME, Du J, Yoon TP (2008) J Am Chem Soc 130:12886PubMedCrossRefGoogle Scholar
  25. 25.
    Tucker JW, Stephenson CRJ (2012) J Org Chem 77:1617PubMedCrossRefGoogle Scholar
  26. 26.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Piter SP, McTiernan CD, Scaiano JC (2016) Acc Chem Res 49:1320CrossRefGoogle Scholar
  28. 28.
    Arias-Rotondo DM, McCusker JK (2016) Chem Soc Rev 45:5803PubMedCrossRefGoogle Scholar
  29. 29.
    Corrigan N, Shanmugam S, Xu J, Boyer C (2016) Chem Soc Rev 45:6165PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hoffmann N (2017) Eur J Org Chem 2017:1982CrossRefGoogle Scholar
  31. 31.
    Lerch S, Unkel L-N, Wienefeld P, Brasholz M (2014) Synlett 25:2673CrossRefGoogle Scholar
  32. 32.
    Teegardin K, Day JI, Chan J, Weaver J (2016) Org Process Res Dev 20:1156PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Naranynam JM, Stephenson CRJ (2011) Chem Soc Rev 40:102CrossRefGoogle Scholar
  34. 34.
    Boubertakh O, Goddard JP (2017) Eur J Org Chem 2017:2072CrossRefGoogle Scholar
  35. 35.
    Chen J-R, Hu X-Q, Lu L-Q, Xiao W-J (2016) Acc Chem Res 49:1911PubMedCrossRefGoogle Scholar
  36. 36.
    Kärkäs MD, Porco Jr JA, Stephenson CRJ (2016) Chem Rev 116:9683PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Tucker JW, Zhang Y, Jamison TF, Stephenson CRJ (2012) Angew Chem Int Ed 51:4144CrossRefGoogle Scholar
  38. 38.
    Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM (2013) Org Lett 15:1634PubMedCrossRefGoogle Scholar
  39. 39.
    Rackl D, Kais V, Lutsker E, Reiser O (2017) Eur J Org Chem 2017:2130CrossRefGoogle Scholar
  40. 40.
    Ghogare AA, Greer A (2016) Chem Rev 116:9994PubMedCrossRefGoogle Scholar
  41. 41.
    Maurya RA, Park CP, Kim D-P (2011) Beilstein J Org Chem 7:1158PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Park CP, Maurya RA, Lee JH, Kim D-P (2011) Lab Chip 11:1941PubMedCrossRefGoogle Scholar
  43. 43.
    Yavorskyy A, Shvydkiv O, Limburg C, Nolan K, Delaure YMC, Oelgemöller M (2012) Green Chem 14:888CrossRefGoogle Scholar
  44. 44.
    Ziegenbalg D, Kreisel G, Weiß D, Kralisch D (2014) Photochem Photobiol Sci 13:1005PubMedCrossRefGoogle Scholar
  45. 45.
    Wu G, Lv T, Mo W, Yang X, Gao Y, Chen H (2017) Tetrahedron Lett 58:1395CrossRefGoogle Scholar
  46. 46.
    Cremlyn RJ (1996) An introduction to organosulfur chemistry. Wiley-VCH, New YorkGoogle Scholar
  47. 47.
    Talla A, Driessen B, Straathof NJW, Milroy L-G, Brunsveld L, Hesel V, Noël T (2015) Adv Synth Catal 357:2180CrossRefGoogle Scholar
  48. 48.
    Bottecchia C, Erdmann N, Tijssem PMA, Milroy L-G, Brunsveld L, Hessel V, Noël T (2016) ChemSusChem 9:1781PubMedCrossRefGoogle Scholar
  49. 49.
    Thevissen K, Marchand A, Chaltin P, Meert EMK, Cammue BPA (2009) Curr Med Chem 16:2205PubMedCrossRefGoogle Scholar
  50. 50.
    Roy J, Jana AK, Mal D (2012) Tetrahedron 68:6099CrossRefGoogle Scholar
  51. 51.
    Bashir M, Afifa B, Subhan A (2015) Molecules 20:13496PubMedCrossRefGoogle Scholar
  52. 52.
    Parisien-Collette S, Hernandez-Perez AC, Collins SK (2016) Org Lett 18:4994PubMedCrossRefGoogle Scholar
  53. 53.
    Hernandez-Perez AC, Collins SK (2013) Angew Chem Int Ed 52:12696CrossRefGoogle Scholar
  54. 54.
    Hernandez-Perez AC, Caron A, Collins SK (2015) Chem Eur J 21:16673PubMedCrossRefGoogle Scholar
  55. 55.
    Poplata S, Tröster A, Zou Y-Q, Bach T (2016) Chem Rev 116:9748PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kumarasamy E, Raghunathan R, Jockusch S, Ugrinov A, Sivaguru S (2014) J Am Chem Soc 136:8729PubMedCrossRefGoogle Scholar
  57. 57.
    Chandrasekhar D, Borra S, Kapure JS, Shailendra Shivaji GS, Srinivasulu G, Maurya RA (2015) Org Chem Front 2:1308CrossRefGoogle Scholar
  58. 58.
    Chandrasekhar D, Borra S, Nanubolu JB, Maurya RA (2016) Org Lett 18:2974PubMedCrossRefGoogle Scholar
  59. 59.
    Borra S, Chandrasekhar D, Adhikary S, Rasala S, Gokulnath S, Maurya RA (2017) J Org Chem 82:2249PubMedCrossRefGoogle Scholar
  60. 60.
    Tiwari DK, Maurya RA, Nanubolu JB (2016) Chem Eur J 22:526PubMedCrossRefGoogle Scholar
  61. 61.
    He Z, Bae M, Wu J, Jamison TF (2014) Angew Chem Int Ed 53:14451CrossRefGoogle Scholar
  62. 62.
    Beatty JW, Stephenson CRJ (2014) J Am Chem Soc 136:10270PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Huang C-Y, Doyle AG (2014) Chem Rev 114:8153PubMedCrossRefGoogle Scholar
  64. 64.
    Yudin AK (ed) (2006) Aziridiens and epoxides in organic synthesis. Wiley-VCH, WeinheimGoogle Scholar
  65. 65.
    Scholz SO, Farney EP, Kim S, Bates DM, Yoon TP (2016) Angew Chem Int Ed 55:2239CrossRefGoogle Scholar
  66. 66.
    Trommsdorf H (1834) Ann Chem Pharm 11:190CrossRefGoogle Scholar
  67. 67.
    Ciamician G (1912) Science 36:385PubMedCrossRefGoogle Scholar
  68. 68.
    Nasini R, Brown R, Ree A, Miller WL, Hewitt JT, Dawson HM, Knecht E (1926) J Chem Soc 129:993CrossRefGoogle Scholar
  69. 69.
    Oelgemöller M (2016) Chem Rev 116:9664PubMedCrossRefGoogle Scholar
  70. 70.
    Shvydkiv O, Nolan K, Oelgemöller M (2011) Beilstein J Org Chem 7:1055PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Josland S, Mumatz S, Oelgemöller M (2016) Chem Eng Technol 39:81CrossRefGoogle Scholar
  72. 72.
    DeLaney EN, Lee DS, Elliott LD, Jin J, Booker-Milburn KI, Poliakoff M, George MW (2017) Green Chem 19:1431CrossRefGoogle Scholar
  73. 73.
    Fang Y, Tranmer GK (2016) Org Biomol Chem 14:10799PubMedCrossRefGoogle Scholar
  74. 74.
    Fang Y, Tranmer GK (2016) Med Chem Commun 7:720CrossRefGoogle Scholar
  75. 75.
    Koolman HF, Braje WM, Haupt A (2016) Synlett 27:2561CrossRefGoogle Scholar
  76. 76.
    Fukuyama T, Fujita Y, Rashid MA, Ryu I (2016) Org Lett 18:5444CrossRefGoogle Scholar
  77. 77.
    Bourne RA, Han X, Chapman AO, Arrowsmith NJ, Kawanami H, Poliakoff M, George MW (2008) Chem Commun:4457Google Scholar
  78. 78.
    Levesque F, Seeberger PH (2011) Org Lett 13:5008PubMedCrossRefGoogle Scholar
  79. 79.
    Han X, Bourne RA, Poliakoff M, George MW (2011) Chem Sci 2:1059CrossRefGoogle Scholar
  80. 80.
    Levesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706CrossRefGoogle Scholar
  81. 81.
    Lainchbury MD, Medley MI, Taylor PM, Hirst P, Dohle W, Booker-Milburn KI (2008) J Org Chem 73:6497PubMedCrossRefGoogle Scholar
  82. 82.
    Maskill KG, Knowles JP, Elliott LD, Alder RW, Booker-Milburn KI (2013) Angew Chem Int Ed 52:1499CrossRefGoogle Scholar
  83. 83.
    Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI (2014) Chem Eur J 53:15226CrossRefGoogle Scholar
  84. 84.
    Ralph M, Ng S, Booker-Milburn KI (2016) Org Lett 18:968PubMedCrossRefGoogle Scholar
  85. 85.
    Blanco-Ania D, Gawade SA, Zwinkels LJL, Maartense L, Bolster MG, Benningshof JCJ, Rutjes FPJ (2015) Org Process Res Dev 20:409CrossRefGoogle Scholar
  86. 86.
    Cludius-Brandt S, Kupracz L, Kirschning A (2013) Beilstein J Org Chem 9:1745PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Asano K, Uesugi Y, Yoshida J-I (2013) Org Lett 15:2398PubMedCrossRefGoogle Scholar
  88. 88.
    Vaske YSM, Mahoney ME, Konopelski JP, Rogow DL, McDonald WJ (2010) J Am Chem Soc 132:11379PubMedCrossRefGoogle Scholar
  89. 89.
    Willumstad TP, Haze O, Mak XY, Lam TY, Wang Y-P, Danheiser RL (2013) J Org Chem 78:11450PubMedCrossRefGoogle Scholar
  90. 90.
    Chen M, Yang Y, Wang Y, Li D, Xia W (2016) Org Lett 18:2280PubMedCrossRefGoogle Scholar
  91. 91.
    Cochran JE, Waal N (2016) Org Process Res Dev 20:1533CrossRefGoogle Scholar
  92. 92.
    De Meijere A, Bräse S, Oestreich M (eds) (2014) Metal catalyzed cross-coupling reactions and more. Wiley-VCH, WeinheimGoogle Scholar
  93. 93.
    Ravelli D, Protti S, Fagnoni M (2016) Chem Rev 116:9859CrossRefGoogle Scholar
  94. 94.
    Andrews RS, Becker JJ, Gagne MR (2012) Angew Chem Int Ed 51:4140CrossRefGoogle Scholar
  95. 95.
    Lima FL, Kabeschov MA, Tran DN, Battilochio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley SV (2016) Angew Chem Int Ed 55:14085CrossRefGoogle Scholar
  96. 96.
    Johston CP, Smith RT, Allmendinger S, MacMillan DWC (2016) Nature 536:322CrossRefGoogle Scholar
  97. 97.
    DeLano TJ, Bandarage UK, Palaychuk N, Green J, Boyd MJ (2016) J Org Chem 81:12525PubMedCrossRefGoogle Scholar
  98. 98.
    Palaychuk N, DeLano TJ, Boyd MJ, Green J, Bandarage UK (2016) Org Lett 18:6180PubMedCrossRefGoogle Scholar
  99. 99.
    Joshi-Pangu A, Levesque F, Roth HG, Oliver SF, Campeau L-C, Nicewicz D, DiRocco DA (2016) J Org Chem 81:7244PubMedCrossRefGoogle Scholar
  100. 100.
    Sharma UK, Gemoets HPL, Schröder F, Noël T, van der Eycken EV (2017) ACS Catal 7:3818CrossRefGoogle Scholar
  101. 101.
    Capaldo L, Fagnoni M, Ravelli D (2017) Chem Eur J 23:6527PubMedCrossRefGoogle Scholar
  102. 102.
    Fabry DC, Ho YA, Tremel W, Panthöfer M, Rueping M, Rehm TH (2017) Green Chem 19:1911CrossRefGoogle Scholar
  103. 103.
    Hu J, Wang J, Nguyen TH, Zheng N (2013) Beilstein J Org Chem 9:1977PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Rueping M, Vila C, Bootwicha T (2013) ACS Catal 3:1676CrossRefGoogle Scholar
  105. 105.
    Nauth AM, Lipp A, Lipp B, Opatz T (2017) Eur J Org Chem 2017:2099CrossRefGoogle Scholar
  106. 106.
    Seo H, Katcher MH, Jamison TF (2017) Nat Chem 9:453PubMedCrossRefGoogle Scholar
  107. 107.
    Kirsch P (2004) Modern fluoroorganic chemistry: synthesis, reactivity, applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  108. 108.
    Begue JP, Bonnet-Delpon F (2008) Bioorganic and medicinal chemistry of fluorine. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  109. 109.
    Rehm TH (2016) Chem Eng Technol 39:66CrossRefGoogle Scholar
  110. 110.
    Chatterjee T, Iqbal N, You Y, Cho EJ (2016) Acc Chem Res 49:2284PubMedCrossRefGoogle Scholar
  111. 111.
    Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noël T (2014) ChemSusChem 7:1612PubMedCrossRefGoogle Scholar
  112. 112.
    Beatty JW, Douglas JJ, Cole KP, Stephenson CRJ (2015) Nat Commun 6:7919PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CRJ (2016) Chem 1:456PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Nguyen JD, Reiss B, Dai C, Stephenson CRJ (2013) Chem Commun 49:4352CrossRefGoogle Scholar
  115. 115.
    Weaver JD (2014) Synlett 25:1946CrossRefGoogle Scholar
  116. 116.
    Perkowski AJ, Cruz CL, Nicewicz DA (2015) J Am Chem Soc 137:15684PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Roslin S, Odell R (2017) Eur J Org Chem 2017:1993CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of GrazGrazAustria

Personalised recommendations