Skip to main content

Safe Use of Hazardous Chemicals in Flow

  • Chapter
  • First Online:
Flow Chemistry for the Synthesis of Heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 56))

Abstract

Flow chemistry has evolved into an excellent toolkit for handling challenging chemical transformations during the past decade. Highly exothermic and kinetically fast reactions are difficult to handle even on a small scale, whereas any scale-up poses significant risks when conventional reactors are considered. Flow chemistry enables exquisite control over mixing sequences, reaction time and quenching that ultimately paves the way for the fine-tuning of chemical reactivity in ‘space and time’. This chapter describes recent advances of flow chemistry in controlling and even discovering new reactivities of highly hazardous chemical species and unstable intermediates. This chapter compiles intriguing recent examples manifesting the power of flow chemistry to perform commonly known‚ cryogenic reactions at or near room temperature, safe-handling and in situ production of hazardous or toxic reagents for chemical transformations that are generally considered unsafe in conventional reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mándity IM, Ötvös SB, Fülöp F (2015) Strategic application of residence-time control in continuous-flow reactors. ChemistryOpen 4:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wirth T (2017) Novel organic synthesis through ultrafast chemistry. Angew Chem Int Ed 56:682–684

    Article  CAS  Google Scholar 

  3. Usutani H, Tomida Y, Nagaki A et al (2007) Generation and reactions of o-bromophenyllithium without benzyne formation using a microreader. J Am Chem Soc 129:3046–3047

    Article  CAS  PubMed  Google Scholar 

  4. Nagaki A, Ichinari D, Yoshida JI (2014) Three-component coupling based on flash chemistry. Carbolithiation of benzyne with functionalized aryllithiums followed by reactions with electrophiles. J Am Chem Soc 136:12245–12248

    Article  CAS  PubMed  Google Scholar 

  5. Nagaki A, Kim H, Yoshida J (2009) Nitro-substituted aryl lithium compounds in microreactor synthesis: switch between kinetic and thermodynamic control. Angew Chem Int Ed 48:8063–8065

    Article  CAS  Google Scholar 

  6. Kim H, Min K-I, Inoue K et al (2016) Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing. Science 352:691–694

    Article  CAS  PubMed  Google Scholar 

  7. Kim H, Inoue K, Yoshida J (2017) Harnessing [1,4], [1,5], and [1,6] anionic Fries-type rearrangements by reaction-time control in flow. Angew Chem Int Ed 56:7863–7866

    Article  CAS  Google Scholar 

  8. Kim H, Nagaki A, Yoshida J (2011) A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds. Nat Commun 2:264

    Article  CAS  PubMed  Google Scholar 

  9. Nagaki A, Kenmoku A, Moriwaki Y et al (2010) Cross-coupling in a flow microreactor: space integration of lithiation and Murahashi coupling. Angew Chem Int Ed 49:7543–7547

    Article  CAS  Google Scholar 

  10. Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/Suzuki-Miyaura cross-coupling sequence. Angew Chem Int Ed 50:10665–10669

    Article  CAS  Google Scholar 

  11. Shu W, Buchwald SL (2012) Enantioselective β-arylation of ketones enabled by lithiation/borylation/1,4-addition sequence under flow conditions. Angew Chem Int Ed 51:5355–5358

    Article  CAS  Google Scholar 

  12. Nagaki A, Moriwaki Y, Yoshida J (2012) Flow synthesis of arylboronic esters bearing electrophilic functional groups and space integration with Suzuki–Miyaura coupling without intentionally added base. Chem Commun 48:11211–11213

    Article  CAS  Google Scholar 

  13. Tomida Y, Nagaki A, Yoshida J (2011) Asymmetric carbolithiation of conjugated enynes: a flow microreactor enables the use of configurationally unstable intermediates before they epimerize. J Am Chem Soc 133:3744–3747

    Article  CAS  PubMed  Google Scholar 

  14. Nagaki A, Matsuo C, Kim S et al (2012) Lithiation of 1,2-dichloroethene in flow microreactors: versatile synthesis of alkenes and alkynes by precise residence-time control. Angew Chem Int Ed 51:3245–3248

    Article  CAS  Google Scholar 

  15. Nagaki A, Takahashi Y, Yoshida J (2014) Extremely fast gas/liquid reactions in flow microreactors: carboxylation of short-lived organolithiums. Chem Eur J 20:7931–7934

    Article  CAS  PubMed  Google Scholar 

  16. Pieber B, Glasnov T, Kappe CO (2014) Flash carboxylation: fast lithiation–carboxylation sequence at room temperature in continuous flow. RSC Adv 4:13430–13433

    Article  CAS  Google Scholar 

  17. Kupracz L, Kirschning A (2013) Multiple organolithium generation in the continuous flow synthesis of amitriptyline. Adv Synth Catal 355:3375–3380

    Article  CAS  Google Scholar 

  18. Wu J, Yang X, He Z et al (2014) Continuous flow synthesis of ketones from carbon dioxide and organolithium or grignard reagents. Angew Chem Int Ed 53:8416–8420

    Article  CAS  Google Scholar 

  19. Gross TD, Chou S, Bonneville D et al (2008) Chemical development of NBI-75043. Use of a flow reactor to circumvent a batch-limited metal-halogen exchange reaction. Org Process Res Dev 12:929–939

    Article  CAS  Google Scholar 

  20. Wakami H, Yoshida JI (2005) Grignard exchange reaction using a microflow system: from bench to pilot plant. Org Process Res Dev 9:787–791

    Article  CAS  Google Scholar 

  21. Riva E, Gagliardi S, Martinelli M et al (2010) Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions. Tetrahedron 66:3242–3247

    Article  CAS  Google Scholar 

  22. Deng Q, Shen R, Ding R, Zhang L (2014) Generation of ethynyl-Grignard reagent in a falling film microreactor: an expeditious flow synthesis of propargylic alcohols and analogues. Adv Synth Catal 356:2931–2936

    Article  CAS  Google Scholar 

  23. Kawaguchi T, Miyata H, Ataka K et al (2005) Room-temperature Swern oxidations by using a microscale flow system. Angew Chem Int Ed 44:2413–2416

    Article  CAS  Google Scholar 

  24. Van Der Linden JJM, Hilberink PW, Kronenburg CMP, Kemperman GJ (2008) Investigation of the moffatt-swern oxidation in a continuous flow microreactor system. Org Process Res Dev 12:911–920

    Article  CAS  Google Scholar 

  25. Pelleter J, Renaud F (2009) Facile, fast and safe process development of nitration and bromination reactions using continuous flow reactors. Org Process Res Dev 13:698–705

    Article  CAS  Google Scholar 

  26. Brocklehurst CE, Lehmann H, La Vecchia L (2011) Nitration chemistry in continuous flow using fuming nitric acid in a commercially available flow reactor. Org Process Res Dev 15:1447–1453

    Article  CAS  Google Scholar 

  27. Gage JR, Guo X, Tao J, Zheng C (2012) High output continuous nitration. Org Process Res Dev 16:930−933

    Article  CAS  Google Scholar 

  28. Schwalbe T, Autze V, Hohmann M, Stirner W (2004) Novel innovation systems for a cellular approach to continuous process chemistry from discovery to market. Org Proc Res Dev 8:440–454

    Article  CAS  Google Scholar 

  29. Müller STR, Murat A, Maillos D et al (2015) Rapid generation and safe use of carbenes enabled by a novel flow protocol with in-line IR spectroscopy. Chem Eur J 21:7016–7020

    Article  CAS  PubMed  Google Scholar 

  30. Müller STR, Hokamp T, Ehrmann S et al (2016) Ethyl lithiodiazoacetate: extremely unstable intermediate handled efficiently in flow. Chem Eur J 22:11940–11942

    Article  CAS  PubMed  Google Scholar 

  31. Müller STR, Murat A, Hellier P, Wirth T (2016) Toward a large-scale approach to Milnacipran analogues using diazo compounds in flow chemistry. Org Process Res Dev 20:495–502

    Article  CAS  Google Scholar 

  32. Deadman BJ, Collins SG, Maguire AR (2015) Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds. Chem Eur J 21:2298–2308

    Article  CAS  PubMed  Google Scholar 

  33. Mastronardi F, Gutmann B, Oliver Kappe C (2013) Continuous flow generation and reactions of anhydrous diazomethane using a teflon AF-2400 tube-in-tube reactor. Org Lett 15:5590–5593

    Article  CAS  PubMed  Google Scholar 

  34. Maurya RA, Park CP, Lee JH, Kim DP (2011) Continuous in situ generation, separation, and reaction of diazomethane in a dual-channel microreactor. Angew Chem Int Ed 50:5952–5955

    Article  CAS  Google Scholar 

  35. Bartrum HE, Blakemore DC, Moody CJ, Hayes CJ (2010) Synthesis of β-keto esters in-flow and rapid access to substituted pyrimidines. J Org Chem 75:8674–8676

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Stefanick S, Villani FJ (2004) Application of microreactor technology in process development. Org Process Res Dev 8:455–460

    Article  CAS  Google Scholar 

  37. Fuse S, Tanabe N, Takahashi T (2011) Continuous in situ generation and reaction of phosgene in a microflow system. Chem Commun 47:12661–12663

    Article  CAS  Google Scholar 

  38. Hamano M, Nagy KD, Jensen KF (2012) Continuous flow metal-free oxidation of picolines using air. Chem Commun 48:2086–2088

    Article  CAS  Google Scholar 

  39. He Z, Jamison TF (2014) Continuous-flow synthesis of functionalized phenols by aerobic oxidation of grignard reagents. Angew Chem Int Ed 53:3353–3357

    Article  CAS  Google Scholar 

  40. Pieber B, Martinez ST, Cantillo D, Kappe CO (2013) In situ generation of diimide from hydrazine and oxygen: continuous-flow transfer hydrogenation of olefins. Angew Chem Int Ed 52:10241–10244

    Article  CAS  Google Scholar 

  41. Pieber B, Glasnov T, Kappe CO (2015) Continuous flow reduction of artemisinic acid utilizing multi-injection strategies - closing the gap towards a fully continuous synthesis of antimalarial drugs. Chem Eur J 21:4368–4376

    Article  CAS  PubMed  Google Scholar 

  42. Gutmann B, Weigl U, Cox DP, Kappe CO (2016) Batch- and continuous-flow aerobic oxidation of 14-hydroxy opioids to 1,3-oxazolidines – a concise synthesis of noroxymorphone. Chem Eur J 22:10393–10398

    Article  CAS  PubMed  Google Scholar 

  43. Gutmann B, Elsner P, Cox DP et al (2016) Toward the synthesis of noroxymorphone via aerobic palladium-catalyzed continuous flow N-demethylation strategies. ACS Sustain Chem Eng 4:6048–6061

    Article  CAS  Google Scholar 

  44. Gemoets HPL, Hessel V, Noël T (2014) Aerobic C-H olefination of indoles via a cross-dehydrogenative coupling in continuous flow. Org Lett 16:5800–5803

    Article  CAS  PubMed  Google Scholar 

  45. Bourne SL, Ley SV (2013) A continuous flow solution to achieving efficient aerobic anti-Markovnikov Wacker oxidation. Adv Synth Catal 355:1905–1910

    Article  CAS  Google Scholar 

  46. Petersen TP, Polyzos A, O’Brien M et al (2012) The oxygen-mediated synthesis of 1,3-butadiynes in continuous flow: using teflon AF-2400 to effect gas/liquid contact. ChemSusChem 5:274–277

    Article  CAS  PubMed  Google Scholar 

  47. Brzozowski M, Forni JA, Savage GP, Polyzos A (2015) The direct α-C(sp3)–H functionalisation of N-aryl tetrahydroisoquinolines via an iron-catalysed aerobic nitro-Mannich reaction and continuous flow processing. Chem Commun 51:334–337

    Article  CAS  Google Scholar 

  48. Park JH, Park CY, Kim MJ et al (2015) Continuous-flow synthesis of meta-substituted phenol derivatives. Org Process Res Dev 19:812–818

    Article  CAS  Google Scholar 

  49. Brzozowski M, O’Brien M, Ley SV, Polyzos A (2015) Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor. Acc Chem Res 48:349−362

    Article  CAS  Google Scholar 

  50. Greene JF, Preger Y, Stahl SS, Root TW (2015) PTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidation. Org Process Res Dev 19:858–864

    Article  CAS  Google Scholar 

  51. Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The Hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893

    Article  CAS  PubMed  Google Scholar 

  52. Wootton RCR, Fortt R, De Mello AJ (2002) A microfabricated nanoreactor for safe, continuous generation and use of singlet oxygen. Org Process Res Dev 6:187−189

    Article  CAS  Google Scholar 

  53. Lumley EK, Dyer CE, Pamme N, Boyle RW (2012) Comparison of photo-oxidation reactions in batch and a new photosensitizer-immobilized microfluidic device. Org Lett 22:5724–5727

    Article  CAS  Google Scholar 

  54. Lévesque F, Seeberger PH (2011) Highly efficient continuous flow reactions using singlet oxygen as a “Green” reagent. Org Lett 13:5008–5011

    Article  CAS  PubMed  Google Scholar 

  55. Lévesque F, Seeberger PH (2012) Continuous-flow synthesis of the anti-malaria drug artemisinin. Angew Chem Int Ed 51:1706–1709

    Article  CAS  Google Scholar 

  56. Kopetzki D, Lévesque F, Seeberger PH (2013) A continuous-flow process for the synthesis of artemisinin. Chem Eur J 19:5450–5456

    Article  CAS  PubMed  Google Scholar 

  57. Ushakov DB, Gilmore K, Kopetzki D et al (2014) Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen. Angew Chem Int Ed 53:557–561

    Article  CAS  Google Scholar 

  58. Ushakov DB, Plutschack MB, Gilmore K, Seeberger PH (2015) Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen. Chem Eur J 21:6528–6534

    Article  CAS  PubMed  Google Scholar 

  59. Cantillo D, Kappe CO (2017) Halogenation of organic compounds using continuous flow and microreactor technology. React Chem Eng 2:7–19

    Article  CAS  Google Scholar 

  60. Breen JR, Sandford G, Yufit DS (2011) Continuous gas/liquid-liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination. Beilstein J Org Chem 7:1048–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baumann M, Baxendale IR, Martin LJ, Ley SV (2009) Development of fluorination methods using continuous-flow microreactors. Tetrahedron 65:6611–6625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.T., Wirth, T. (2018). Safe Use of Hazardous Chemicals in Flow. In: Sharma, U., Van der Eycken, E. (eds) Flow Chemistry for the Synthesis of Heterocycles. Topics in Heterocyclic Chemistry, vol 56. Springer, Cham. https://doi.org/10.1007/7081_2018_17

Download citation

Publish with us

Policies and ethics