Skip to main content

Flow Chemistry Approaches Applied to the Synthesis of Saturated Heterocycles

Part of the Topics in Heterocyclic Chemistry book series (TOPICS,volume 56)

Abstract

Continuous-flow processing approaches are having a significant impact on the way we devise and perform chemical synthesis. Flow chemistry has repeatedly demonstrated numerous improvements with respect to synthesis efficiency, process safety and ease of reaction scale-up. In recent years flow chemistry has been applied with remarkable success to the generation of valuable target structures across a range of industries from basic bulk chemical manufacture and materials development to flavours, food and cosmetic applications. However, due to its earlier implementation, it has found so far many more advocates in areas of medicinal and agrochemical research and manufacture. In this review article, we summarise the key developments that continuous-flow synthesis has had in the area of saturated heterocycles, specifically focusing on approaches that generate these important entities from acyclic precursors.

Keywords

  • Continuous processing
  • Flow chemistry
  • Heterocycles
  • Synthesis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/7081_2018_16
  • Chapter length: 50 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-94328-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72

References

  1. Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Beilstein J Org Chem 13:520–542. https://doi.org/10.3762/bjoc.13.51

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ (2015) Angew Chem Int Ed 54:10122–10137. https://doi.org/10.1002/anie.201501618

    CrossRef  CAS  Google Scholar 

  3. Fitzpatrick DE, Battilocchio C, Ley SV (2016) ACS Cent Sci 2:131–138. https://doi.org/10.1021/acscentsci.6b00015

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  4. Newman SG, Jensen KV (2013) Green Chem 15:1456–1472. https://doi.org/10.1039/C3GC40374B

    CrossRef  CAS  Google Scholar 

  5. Baxendale IR, Brocken L, Mallia CJ (2013) Green Process Synth 2:211–230. https://doi.org/10.1515/gps-2013-0029

    CrossRef  CAS  Google Scholar 

  6. Baxendale IR (2013) J Chem Technol Biotechnol 88:519–552. https://doi.org/10.1002/jctb.4012

    CrossRef  CAS  Google Scholar 

  7. Ley SV (2012) Chem Rec 2:378–390. https://doi.org/10.1002/tcr.201100041

    CrossRef  CAS  Google Scholar 

  8. Wegner J, Ceylan S, Kirschning A (2011) Chem Commun 47:4583–4592. https://doi.org/10.1039/C0CC05060A

    CrossRef  CAS  Google Scholar 

  9. Hartman RL, Jensen KV (2009) Lab Chip 9:2495–2507. https://doi.org/10.1039/B906343A

    CrossRef  PubMed  CAS  Google Scholar 

  10. Hessel V (2009) Chem Eng Technol 32:1655–1681. https://doi.org/10.1002/ceat.200900474

    CrossRef  CAS  Google Scholar 

  11. Razzaq T, Glasnov TN, Kappe CO (2009) Chem Eng Technol 32:1702–1716. https://doi.org/10.1002/ceat.200900272

    CrossRef  CAS  Google Scholar 

  12. Razzaq T, Kappe CO (2010) Chem Asian J 5:1274–1289. https://doi.org/10.1002/asia.201000010

    CrossRef  PubMed  CAS  Google Scholar 

  13. Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Chem Eur J 17:1884–1893. https://doi.org/10.1002/chem.201002291

    CrossRef  PubMed  CAS  Google Scholar 

  14. Hessel V, Kralisch D, Kockmann N (eds) (2015) Novel process windows: innovative gates to intensified and sustainable chemical processes. Weinheim, Wiley-VCH

    Google Scholar 

  15. Webb D, Jamison TF (2010) Chem Sci 1:675–680. https://doi.org/10.1039/C0SC00381F

    CrossRef  CAS  Google Scholar 

  16. Wegner J, Ceylan S, Kirschning A (2012) Adv Synth Catal 354:17–57. https://doi.org/10.1002/adsc.201100584

    CrossRef  CAS  Google Scholar 

  17. Britton J, Raston CL (2017) Chem Soc Rev 46:1250–1271. https://doi.org/10.1039/C6CS00830E

    CrossRef  PubMed  CAS  Google Scholar 

  18. Anderson NG (2001) Org Process Res Dev 5:613–621. https://doi.org/10.1021/op0100605

    CrossRef  CAS  Google Scholar 

  19. Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Chem Soc Rev 45:4892–4928. https://doi.org/10.1039/C5CS00902B

    CrossRef  PubMed  CAS  Google Scholar 

  20. Baumann M, Baxendale IR (2015) Beilstein J Org Chem 11:1194–1219. https://doi.org/10.3762/bjoc.11.134

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54:6688–6798. https://doi.org/10.1002/anie.201409318

    CrossRef  CAS  Google Scholar 

  22. Porta R, Benaglia M, Puglisi A (2016) Org Process Res Dev 20:2–25. https://doi.org/10.1021/acs.oprd.5b00325

    CrossRef  CAS  Google Scholar 

  23. Baumann M, Baxendale IR, Ley SV (2011) Mol Divers 15:613–630. https://doi.org/10.1007/s11030-010-9282-1

    CrossRef  PubMed  CAS  Google Scholar 

  24. Glasnov TN, Kappe CO (2011) J Heterocyl Chem 48:11–29. https://doi.org/10.1002/jhet.568

    CrossRef  CAS  Google Scholar 

  25. Movsisyan M, Moens M, Stevens C (2016) In: Scriven EFV, Ramsden CA (eds) Advances in heterocyclic chemistry: flow synthesis of heterocycles, vol 119. Elsevier, Amsterdam, pp 22–57

    Google Scholar 

  26. Lovering F, Bikker J, Humblet C (2009) J Med Chem 52:6752–6756. https://doi.org/10.1021/jm901241e

    CrossRef  PubMed  CAS  Google Scholar 

  27. Lovering F (2013) Med Chem Commun 4:515–519. https://doi.org/10.1039/C2MD20347B

    CrossRef  CAS  Google Scholar 

  28. Birudukota NVS, Frankea R, Hofer B (2016) Org Biomol Chem 14:3821–3837. https://doi.org/10.1039/C5OB02539G

    CrossRef  CAS  Google Scholar 

  29. Karawajczyk A, Giordanetto F, Benningshof J, Hamza D, Kalliokoski T, Pouwer K, Morgentin R, Nelson A, Müller G, Piechot A, Tzalis D (2015) Drug Discov Today 20:1310–1316. https://doi.org/10.1016/j.drudis.2015.09.009

    CrossRef  PubMed  CAS  Google Scholar 

  30. Musio B, Mariani F, Sliwinski EP, Kabeshov MA, Odajima H, Ley SV (2016) Synthesis 48:3515–3526. https://doi.org/10.1055/s-0035-1562579

    CrossRef  CAS  Google Scholar 

  31. Mastronardi F, Gutmann B, Kappe CO (2013) Org Lett 15:5590–5593. https://doi.org/10.1021/ol4027914

    CrossRef  PubMed  CAS  Google Scholar 

  32. Brzozowski M, O’Brien M, Ley SV, Polyzos A (2015) Acc Chem Res 48:346–362. https://doi.org/10.1021/ar500359m

    CrossRef  CAS  Google Scholar 

  33. Mallia CJ, Baxendale IR (2016) Org Process Res Dev 20:327–360. https://doi.org/10.1021/acs.oprd.5b00222

    CrossRef  CAS  Google Scholar 

  34. Britton J, Jamison TF (2017) Angew Chem Int Ed 56:8823–8827. https://doi.org/10.1002/anie.201704529

    CrossRef  CAS  Google Scholar 

  35. Cludius-Brandt S, Kupracz L, Kirschning A (2013) Beilstein J Org Chem 9:1745–1750. https://doi.org/10.3762/bjoc.9.201

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  36. Grafton M, Mansfield AC, Fray MJ (2010) Tetrahedron Lett 51:1026–1029. https://doi.org/10.1016/j.tetlet.2009.12.071

    CrossRef  CAS  Google Scholar 

  37. Baumann M, Baxendale IR, Ley SV (2010) Synlett 5:749–752. https://doi.org/10.1055/s-0029-1219344

    CrossRef  CAS  Google Scholar 

  38. Baumann M, Baxendale IR, Kuratli C, Ley SV, Martin RE, Schneider J (2011) ACS Comb Sci 13:405–413. https://doi.org/10.1021/co2000357

    CrossRef  PubMed  CAS  Google Scholar 

  39. Baumann M, Baxendale IR, Kirschning A, Ley SV, Wegner J (2011) Heterocycles 82:1297–1316. https://doi.org/10.3987/COM-10-S(E)77

    CrossRef  CAS  Google Scholar 

  40. Yoshida J (2005) Chem Commun 41:4509–4516. https://doi.org/10.1039/B508341A

    CrossRef  Google Scholar 

  41. Suga S, Tsutsi Y, Nagaki A, Yoshida J (2005) Bull Chem Soc Jpn 78:1206–1217. https://doi.org/10.1246/bcsj.78.1206

    CrossRef  CAS  Google Scholar 

  42. Lau S-H, Galvan A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV (2015) Org Lett 17:3218–3221. https://doi.org/10.1021/acs.orglett.5b01307

    CrossRef  PubMed  CAS  Google Scholar 

  43. Griesbaum K, Liu X, Kassiaris A, Scherer M (1997) Liebigs Ann Recueil 1381–1390

    Google Scholar 

  44. Bogdan AR, James K (2011) Org Lett 13:4060–4063. https://doi.org/10.1021/ol201567s

    CrossRef  PubMed  CAS  Google Scholar 

  45. Fernandez-Suarez M, Wong SYF, Warrington BH (2002) Lab Chip 2:170–174. https://doi.org/10.1039/B202324E

    CrossRef  PubMed  CAS  Google Scholar 

  46. Yoshida J (2010) Chem Rec 10:332

    CrossRef  CAS  PubMed  Google Scholar 

  47. Yoshida J, Takahashi Y, Nagaki A (2013) Chem Commun 49:9896–9904. https://doi.org/10.1039/C3CC44709J

    CrossRef  CAS  Google Scholar 

  48. Tsoung J, Wang Y, Djuric SW (2017) React Chem Eng 2:458–461. https://doi.org/10.1039/C7RE00058H

    CrossRef  CAS  Google Scholar 

  49. Martin RE, Morawitz F, Kuratli C, Alker AM, Alanine AI (2012) Eur J Org Chem 47–52. https://doi.org/10.1002/ejoc.201101538

  50. Snyder DA, Noti C, Seeberger PH, Schael F, Bieber T, Ehrfeld W (2005) Helv Chim Acta 88:1–9. https://doi.org/10.1002/hlca.200490304

    CrossRef  CAS  Google Scholar 

  51. Wiles C, Watts P (2011) Micro reaction technology in organic synthesis. CRC Press, Boca Raton

    Google Scholar 

  52. Hallmark B, Mackley MR, Gadala-Maria F (2005) Adv Eng Mater 7:545–547. https://doi.org/10.1002/adem.200400154

    CrossRef  CAS  Google Scholar 

  53. Hornung CH, Mackley MR, Baxendale IR, Ley SV (2007) Org Process Res Dev 11:399–405. https://doi.org/10.1021/op700015f

    CrossRef  CAS  Google Scholar 

  54. McMullen JP, Jensen KF (2011) Org Process Res Dev 15:398–407. https://doi.org/10.1021/op100300p

    CrossRef  CAS  Google Scholar 

  55. Baxendale IR (2015) Chem Eng Technol 38:1713–1716. https://doi.org/10.1002/ceat.201500255

    CrossRef  CAS  Google Scholar 

  56. Baxendale IR, Hornung C, Ley SV, Molina JMM, Wikström A (2013) Aust J Chem 66:131–144. https://doi.org/10.1071/CH12365

    CrossRef  CAS  Google Scholar 

  57. Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists; strategies, instruments and protocols. Wiley-VCH Verlag GmbH, Weinheim. ISBN: 978-3-527-32097-4

    Google Scholar 

  58. Baxendale IR, Hayward JJ, Ley SV (2007) Comb Chem High Throughput Screen 10:802–836. https://doi.org/10.2174/138620707783220374

    CrossRef  PubMed  CAS  Google Scholar 

  59. Baxendale IR, Pitts MR (2006) Chimica Oggi Chem Today 24:41–45

    CAS  Google Scholar 

  60. Saaby S, Baxendale IR, Ley SV (2005) Org Biomol Chem 3:3365–3368. https://doi.org/10.1039/b509540a

    CrossRef  PubMed  CAS  Google Scholar 

  61. Bogaert-Alvarez RJ, Demena P, Kodersha G, Polomski RE, Soundararajan N, Wang SSY (2001) Org Process Res Dev 5:636–645. https://doi.org/10.1021/op0100504

    CrossRef  CAS  Google Scholar 

  62. Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI (2005) J Org Chem 70:7558–7564. https://doi.org/10.1021/jo050705p

    CrossRef  PubMed  CAS  Google Scholar 

  63. Lainchbury MD, Medley MI, Taylor PM, Hirst P, Dohle W, Booker-Milburn KI (2008) J Org Chem 73:6497–6505. https://doi.org/10.1021/jo801108h

    CrossRef  PubMed  CAS  Google Scholar 

  64. Elliott LD, Berry M, Harji B, Klauber D, Leonard J, Booker-Milburn KI (2016) Org Process Res Dev 20:1806–1811. https://doi.org/10.1021/acs.oprd.6b00277

    CrossRef  CAS  Google Scholar 

  65. Blackham EE, Booker-Milburn KI (2017) Angew Chem 56:6613–6616. https://doi.org/10.1002/anie.201701775

    CrossRef  CAS  Google Scholar 

  66. Mukae H, Maeda H, Nashihara S, Mizuno K (2007) Bull Chem Soc Jpn 80:1157–1161. https://doi.org/10.1246/bcsj.80.1157

    CrossRef  CAS  Google Scholar 

  67. Shvydkiv O, Nolan K, Oelgemöller M (2011) Beilstein J Org Chem 7:1055–1063. https://doi.org/10.3762/bjoc.7.121

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  68. DeLaney EN, Lee DS, Elliott LD, Jin J, Booker-Milburn KI, Poliakoff M, George MW (2017) Green Chem 19:1431–1438. https://doi.org/10.1039/C6GC02888H

    CrossRef  CAS  Google Scholar 

  69. Baumann M, Baxendale IR (2016) Synlett 27:159–163. https://doi.org/10.1055/s-0035-1560391

    CrossRef  CAS  Google Scholar 

  70. Hsueh N, Clarkson GJ, Shipman M (2015) Org Lett 17:3632–3635. https://doi.org/10.1021/acs.orglett.5b01777

    CrossRef  PubMed  CAS  Google Scholar 

  71. Hsueh N, Clarkson GJ, Shipman M (2016) Org Lett 18:4908–4911. https://doi.org/10.1021/acs.orglett.6b02349

    CrossRef  PubMed  CAS  Google Scholar 

  72. Baumann M, Baxendale IR, Ley SV (2008) Synlett 14:2111–2114. https://doi.org/10.1055/s-2008-1078026

    CrossRef  CAS  Google Scholar 

  73. Baumann M, Baxendale IR, Martin LJ, Ley SV (2009) Tetrahedron 65:6611–6625. https://doi.org/10.1016/j.tet.2009.05.083

    CrossRef  CAS  Google Scholar 

  74. Battilocchio C, Baumann M, Baxendale IR, Biava M, Kitching MO, Ley SV, Martin RE, Ohnmacht SA, Tappin NDC (2012) Synthesis 44:635–647. https://doi.org/10.1055/s-0031-1289676

    CrossRef  CAS  Google Scholar 

  75. Baumann M, Baxendale IR, Brasholz M, Hayward JJ, Ley SV, Nikbin N (2011) Synlett 22:1375–1380. https://doi.org/10.1055/s-0030-1260573

    CrossRef  CAS  Google Scholar 

  76. Fernandez A, Levine ZG, Baumann M, Sulzer-Mosse S, Sparr C, Schläger S, Metzger A, Baxendale IR, Ley SV (2013) Synlett 24:514–518. https://doi.org/10.1055/s-0032-1318109

    CrossRef  CAS  Google Scholar 

  77. Glöckner S, Tran DN, Ingham RJ, Fenner S, Wilson ZE, Battilocchio C, Ley SV (2015) Org Biomol Chem 13:207–214. https://doi.org/10.1039/C4OB02105C

    CrossRef  PubMed  CAS  Google Scholar 

  78. Kim H, Nagaki A, Yoshida J (2011) Nat Commun 2:264–272. https://doi.org/10.1038/ncomms1264

    CrossRef  PubMed  CAS  Google Scholar 

  79. Carter CF, Baxendale IR, O’Brien M, Pavey JBJ, Ley SV (2009) Org Biomol Chem 7:4594–4597. https://doi.org/10.1039/B917289K

    CrossRef  PubMed  CAS  Google Scholar 

  80. Carter CF, Baxendale IR, Pavey JBJ, Ley SV (2010) Org Biomol Chem 8:1588–1595. https://doi.org/10.1039/B924309G

    CrossRef  PubMed  CAS  Google Scholar 

  81. Prosa N, Turgis R, Piccardi R, Scherrmann M-C (2012) Eur J Org Chem 2188–2200. https://doi.org/10.1002/ejoc.201101726

  82. Bremner WS, Organ MG (2007) J Comb Chem 9:14–16. https://doi.org/10.1021/cc060130p

    CrossRef  PubMed  CAS  Google Scholar 

  83. Briggs ME, Slater AG, Lunt N, Jiang S, Little MA, Greenaway RL, Hasell T, Battilocchio C, Ley SV, Cooper AI (2015) Chem Commun 51:17390–17393. https://doi.org/10.1039/C5CC07447A

    CrossRef  CAS  Google Scholar 

  84. Spaccini R, Liguori L, Punta C, Bjorsvik H-R (2012) ChemSusChem 5:261–265. https://doi.org/10.1002/cssc.201100262

    CrossRef  PubMed  CAS  Google Scholar 

  85. Mikami K, Islam MN, Yamanaka M, Itoh Y, Shinoda M, Kudo K (2004) Tetrahedron Lett 45:3681–3683. https://doi.org/10.1016/j.tetlet.2004.02.157

    CrossRef  CAS  Google Scholar 

  86. Yamamoto H, Sasaki I, Hirai Y, Namba K, Imagawa H, Nishizawa M (2009) Angew Chem Int Ed 48:1244–1247. https://doi.org/10.1002/anie.200804641

    CrossRef  CAS  Google Scholar 

  87. Hafez AM, Taggi AE, Dudding T, Lectka T (2001) J Am Chem Soc 123:10853–10859. https://doi.org/10.1021/ja016556j

    CrossRef  PubMed  CAS  Google Scholar 

  88. Izquierdo J, Pericas MA (2016) ACS Catal 6:348–356. https://doi.org/10.1021/acscatal.5b02121

    CrossRef  CAS  Google Scholar 

  89. Wang S, Izquierdo J, Rodríguez-Escrich C, Pericàs MA (2017) ACS Catal 7:2780–2785. https://doi.org/10.1021/acscatal.7b00360

    CrossRef  CAS  Google Scholar 

  90. Osorio-Planes L, Rodriguez-Escrich C, Pericas MA (2016) Cat Sci Technol 6:4686–4689. https://doi.org/10.1039/C6CY00473C

    CrossRef  CAS  Google Scholar 

  91. Kreituss I, Bode JW (2017) Nat Chem 9:446–452. https://doi.org/10.1038/nchem.2681

    CrossRef  CAS  Google Scholar 

  92. Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520:329–332. https://doi.org/10.1038/nature14343. Scheme updated based upon presented material at the international conference on organic synthesis 21, IIT Bombay, India, December 2016

    CrossRef  PubMed  CAS  Google Scholar 

  93. Drop M, Bantreil X, Grychowska K, Mahoro GU, Colacino E, Pawlowski M, Martinez J, Subra G, Zajdel P, Lamaty F (2017) Green Chem 19:1647–1652. https://doi.org/10.1039/C7GC00235A

    CrossRef  CAS  Google Scholar 

  94. Comer E, Organ MG (2005) J Am Chem Soc 127:8160–8167. https://doi.org/10.1021/ja0512069

    CrossRef  PubMed  CAS  Google Scholar 

  95. Lim J, Lee SS, Ying JY (2010) Chem Commun 46:806–808. https://doi.org/10.1039/B917986K

    CrossRef  CAS  Google Scholar 

  96. Clarke AK, James MJ, O'Brien P, Taylor RJK, Unsworth WP (2016) Angew Chem Int Ed 55:13798–13802. https://doi.org/10.1002/anie.201608263

    CrossRef  CAS  Google Scholar 

  97. Correia CA, Gilmore K, McQuade DT, Seeberger PH (2015) Angew Chem 54:4945–4948. https://doi.org/10.1002/anie.201411728

    CrossRef  CAS  Google Scholar 

  98. Ouchi T, Battilocchio C, Hawkins JM, Ley SV (2014) Org Process Res Dev 18:1560–1566. https://doi.org/10.1021/op500208j

    CrossRef  CAS  Google Scholar 

  99. Ötvös SB, Mandity IM, Fülöp F (2011) Mol Divers 15:605–611. https://doi.org/10.1007/s11030-010-9276-z

    CrossRef  PubMed  CAS  Google Scholar 

  100. Brasholz M, Von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Green Chem 13:1114–1117. https://doi.org/10.1039/C1GC15107J

    CrossRef  CAS  Google Scholar 

  101. Chieffi G, Braun M, Esposit D (2015) ChemSusChem 8:3590–3594. https://doi.org/10.1002/cssc.201500804

    CrossRef  PubMed  CAS  Google Scholar 

  102. Conde E, Rivilla I, Larumbe A, Cossío FP (2015) J Org Chem 80:11755–11767. https://doi.org/10.1021/acs.joc.5b01418

    CrossRef  PubMed  CAS  Google Scholar 

  103. Viviano M, Milite C, Rescigno D, Castellano S, Sbardella GA (2015) RSC Adv 5:1268–1273. https://doi.org/10.1039/C4RA13392G

    CrossRef  CAS  Google Scholar 

  104. Wiles C, Hammond MJ, Watts P (2009) Beilstein J Org Chem 5(27). https://doi.org/10.3762/bjoc.5.26

  105. Kee S-P, Gavriilidis A (2009) Org Process Res Dev 13:941–951. https://doi.org/10.1021/op800276a

    CrossRef  CAS  Google Scholar 

  106. McPake CB, Murray CB, Sandford G (2009) Tetrahedron Lett 50:1674–1676. https://doi.org/10.1016/j.tetlet.2008.12.073

    CrossRef  CAS  Google Scholar 

  107. Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Züchner H (2002) Ind Eng Chem Res 41:710–719. https://doi.org/10.1021/ie010306u

    CrossRef  CAS  Google Scholar 

  108. Markowz G, Schirrmeister S, Albrecht J, Becker F, Schütte R, Caspary KJ, Klemm E (2005) Chem Eng Technol 28:459–464. https://doi.org/10.1002/ceat.200407146

    CrossRef  CAS  Google Scholar 

  109. Alves L, Desidera AL, de Oliveira KT, Newton S, Ley SV, Brocksom T (2015) Org Biomol Chem 13:7633–7642. https://doi.org/10.1039/C5OB00525F

    CrossRef  CAS  Google Scholar 

  110. Ushakov DB, Gilmore K, Seeberger PH (2014) Chem Commun 50:12649–12651. https://doi.org/10.1039/C4CC04932B

    CrossRef  CAS  Google Scholar 

  111. Ullah F, Samarakoon T, Rolfe A, Kurtz RD, Hanson PR, Organ MG (2010) Chem Eur J 16:10959–10962. https://doi.org/10.1002/chem.201001651

    CrossRef  PubMed  CAS  Google Scholar 

  112. Fagnoni M, Bonassi F, Palmieri A, Protti S, Ravelli D, Ballini R (2014) Adv Synth Catal 356:753–758. https://doi.org/10.1002/adsc.201300859

    CrossRef  CAS  Google Scholar 

  113. Cerra B, Mangiavacchi F, Santi C, Lozza AM, Gioiello A (2017) React Chem Eng 2:467–471. https://doi.org/10.1039/C7RE00083A

    CrossRef  CAS  Google Scholar 

  114. Yamada YMA, Torii K, Uozumi Y (2009) Beilstein J Org Chem 5(18). https://doi.org/10.3762/bjoc.5.18

  115. Kopetzki D, Levesque F, Seeberger PH (2013) Chem Eur J 19:5450–5456. https://doi.org/10.1002/chem.201204558

    CrossRef  PubMed  CAS  Google Scholar 

  116. Levesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706–1709. https://doi.org/10.1002/anie.201107446

    CrossRef  CAS  Google Scholar 

  117. Kouridaki A, Huvaere K (2017) React Chem Eng 2:590–597. https://doi.org/10.1039/C7RE00053G

    CrossRef  CAS  Google Scholar 

  118. Ziegenbalg D, Kreisel G, Weiß D, Kralisch D (2014) Photochem Photobiol Sci 13:1005–1015. https://doi.org/10.1039/C3PP50302J

    CrossRef  PubMed  CAS  Google Scholar 

  119. Bourne RA, Han X, Poliakoff M, George MW (2009) Angew Chem Int Ed 48:5322–5325. https://doi.org/10.1002/anie.200901731

    CrossRef  CAS  Google Scholar 

  120. Fukuyama T, Kobayashi M, Rahman MT, Kamata N, Ryo I (2008) Org Lett 10:533–536. https://doi.org/10.1021/ol702718z

    CrossRef  PubMed  CAS  Google Scholar 

  121. Bou-Hamdan FR, Lévesque F, O’Brien AG, Seeberger PH (2011) Beilstein J Org Chem 7:1124–1129. https://doi.org/10.3762/bjoc.7.129

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  122. Zhang X, Stefanick S, Villani FJ (2004) Org Process Res Dev 8:455–460. https://doi.org/10.1021/op034193x

    CrossRef  CAS  Google Scholar 

  123. Treece JL, Goodell JR, Velde DV, Porco JA, Aubé J (2010) J Org Chem 75:2028–2038. https://doi.org/10.1021/jo100087h

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  124. McCaw PG, Buckley NM, Eccles KS, Lawrence SE, Maguire AR, Collins SG (2017) J Org Chem 82:3666–3679. https://doi.org/10.1021/acs.joc.7b00172

    CrossRef  PubMed  CAS  Google Scholar 

  125. Silva BV, Violante FA, Pinto AC, Santos LS (2011) Rapid Commun Mass Spectrom 25:423–428. https://doi.org/10.1002/rcm.4869

    CrossRef  PubMed  CAS  Google Scholar 

  126. Buono FG, Eriksson MC, Yang B-S, Kapadia SR, Lee H, Brazzillo J, Lorenz JC, Nummy L, Busacca CA, Yee N, Senanayake C (2014) Org Process Res Dev 18:1527–1534. https://doi.org/10.1021/op500263m

    CrossRef  CAS  Google Scholar 

  127. Payne GB (1967) J Org Chem 32:3351–3355. https://doi.org/10.1021/jo01286a017

    CrossRef  CAS  Google Scholar 

  128. Mandrelli F, Buco A, Piccioni L, Renner F, Guelat B, Martin B, Schenkel B, Venturoni F (2017) Green Chem 19:1425–1430. https://doi.org/10.1039/C6GC02840C

    CrossRef  CAS  Google Scholar 

  129. Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK (2006) Chem Commun:2566–2568. https://doi.org/10.1039/B600382F

  130. Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Synlett:427–430. https://doi.org/10.1055/s-2006-926244

  131. Kamptmann S, Ley SV (2015) Aust J Chem 68:693–696. https://doi.org/10.1071/CH14530

    CrossRef  CAS  Google Scholar 

  132. Lücke D, Dalton T, Ley SV, Wilson ZE (2016) Chem Eur J 22:4206–4217. https://doi.org/10.1002/chem.201504457

    CrossRef  PubMed  CAS  Google Scholar 

  133. Brasholz M, Macdonald JM, Saubern S, Ryan JH, Holmes AB (2010) Chem Eur J 16:11471–11480. https://doi.org/10.1002/chem.201001435

    CrossRef  PubMed  CAS  Google Scholar 

  134. Rao ZX, Patel B, Monaco A, Cao ZJ, Barniol-Xicota M, Pichon E, Ladlow M, Hilton ST (2017) Eur J Org Chem. https://doi.org/10.1002/ejoc.201701111. Early view

  135. Battilocchio C, Baxendale IR, Biava M, Kitching MO, Ley SV (2012) Org Process Res Dev 16:798–810. https://doi.org/10.1021/op300084z

    CrossRef  CAS  Google Scholar 

  136. Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, Monbaliu J-CM, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P (2016) Science 352:61–67. https://doi.org/10.1126/science.aaf1337

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Royal Society (MB and IRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Baxendale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Baumann, M., Baxendale, I.R. (2018). Flow Chemistry Approaches Applied to the Synthesis of Saturated Heterocycles. In: Sharma, U., Van der Eycken, E. (eds) Flow Chemistry for the Synthesis of Heterocycles. Topics in Heterocyclic Chemistry, vol 56. Springer, Cham. https://doi.org/10.1007/7081_2018_16

Download citation