Advertisement

Flow Chemistry Approaches Applied to the Synthesis of Saturated Heterocycles

  • Marcus Baumann
  • Ian R. BaxendaleEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 56)

Abstract

Continuous-flow processing approaches are having a significant impact on the way we devise and perform chemical synthesis. Flow chemistry has repeatedly demonstrated numerous improvements with respect to synthesis efficiency, process safety and ease of reaction scale-up. In recent years flow chemistry has been applied with remarkable success to the generation of valuable target structures across a range of industries from basic bulk chemical manufacture and materials development to flavours, food and cosmetic applications. However, due to its earlier implementation, it has found so far many more advocates in areas of medicinal and agrochemical research and manufacture. In this review article, we summarise the key developments that continuous-flow synthesis has had in the area of saturated heterocycles, specifically focusing on approaches that generate these important entities from acyclic precursors.

Keywords

Continuous processing Flow chemistry Heterocycles Synthesis 

Notes

Acknowledgements

We gratefully acknowledge support from the Royal Society (MB and IRB).

References

  1. 1.
    Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Beilstein J Org Chem 13:520–542.  https://doi.org/10.3762/bjoc.13.51 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ (2015) Angew Chem Int Ed 54:10122–10137.  https://doi.org/10.1002/anie.201501618 CrossRefGoogle Scholar
  3. 3.
    Fitzpatrick DE, Battilocchio C, Ley SV (2016) ACS Cent Sci 2:131–138.  https://doi.org/10.1021/acscentsci.6b00015 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Newman SG, Jensen KV (2013) Green Chem 15:1456–1472.  https://doi.org/10.1039/C3GC40374B CrossRefGoogle Scholar
  5. 5.
    Baxendale IR, Brocken L, Mallia CJ (2013) Green Process Synth 2:211–230.  https://doi.org/10.1515/gps-2013-0029 CrossRefGoogle Scholar
  6. 6.
    Baxendale IR (2013) J Chem Technol Biotechnol 88:519–552.  https://doi.org/10.1002/jctb.4012 CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Wegner J, Ceylan S, Kirschning A (2011) Chem Commun 47:4583–4592.  https://doi.org/10.1039/C0CC05060A CrossRefGoogle Scholar
  9. 9.
    Hartman RL, Jensen KV (2009) Lab Chip 9:2495–2507.  https://doi.org/10.1039/B906343A CrossRefPubMedGoogle Scholar
  10. 10.
    Hessel V (2009) Chem Eng Technol 32:1655–1681.  https://doi.org/10.1002/ceat.200900474 CrossRefGoogle Scholar
  11. 11.
    Razzaq T, Glasnov TN, Kappe CO (2009) Chem Eng Technol 32:1702–1716.  https://doi.org/10.1002/ceat.200900272 CrossRefGoogle Scholar
  12. 12.
    Razzaq T, Kappe CO (2010) Chem Asian J 5:1274–1289.  https://doi.org/10.1002/asia.201000010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Chem Eur J 17:1884–1893.  https://doi.org/10.1002/chem.201002291 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hessel V, Kralisch D, Kockmann N (eds) (2015) Novel process windows: innovative gates to intensified and sustainable chemical processes. Weinheim, Wiley-VCHGoogle Scholar
  15. 15.
    Webb D, Jamison TF (2010) Chem Sci 1:675–680.  https://doi.org/10.1039/C0SC00381F CrossRefGoogle Scholar
  16. 16.
    Wegner J, Ceylan S, Kirschning A (2012) Adv Synth Catal 354:17–57.  https://doi.org/10.1002/adsc.201100584 CrossRefGoogle Scholar
  17. 17.
    Britton J, Raston CL (2017) Chem Soc Rev 46:1250–1271.  https://doi.org/10.1039/C6CS00830E CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Anderson NG (2001) Org Process Res Dev 5:613–621.  https://doi.org/10.1021/op0100605 CrossRefGoogle Scholar
  19. 19.
    Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Chem Soc Rev 45:4892–4928.  https://doi.org/10.1039/C5CS00902B CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Baumann M, Baxendale IR (2015) Beilstein J Org Chem 11:1194–1219.  https://doi.org/10.3762/bjoc.11.134 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54:6688–6798.  https://doi.org/10.1002/anie.201409318 CrossRefGoogle Scholar
  22. 22.
    Porta R, Benaglia M, Puglisi A (2016) Org Process Res Dev 20:2–25.  https://doi.org/10.1021/acs.oprd.5b00325 CrossRefGoogle Scholar
  23. 23.
    Baumann M, Baxendale IR, Ley SV (2011) Mol Divers 15:613–630.  https://doi.org/10.1007/s11030-010-9282-1 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Glasnov TN, Kappe CO (2011) J Heterocyl Chem 48:11–29.  https://doi.org/10.1002/jhet.568 CrossRefGoogle Scholar
  25. 25.
    Movsisyan M, Moens M, Stevens C (2016) In: Scriven EFV, Ramsden CA (eds) Advances in heterocyclic chemistry: flow synthesis of heterocycles, vol 119. Elsevier, Amsterdam, pp 22–57Google Scholar
  26. 26.
    Lovering F, Bikker J, Humblet C (2009) J Med Chem 52:6752–6756.  https://doi.org/10.1021/jm901241e CrossRefPubMedGoogle Scholar
  27. 27.
    Lovering F (2013) Med Chem Commun 4:515–519.  https://doi.org/10.1039/C2MD20347B CrossRefGoogle Scholar
  28. 28.
    Birudukota NVS, Frankea R, Hofer B (2016) Org Biomol Chem 14:3821–3837.  https://doi.org/10.1039/C5OB02539G CrossRefGoogle Scholar
  29. 29.
    Karawajczyk A, Giordanetto F, Benningshof J, Hamza D, Kalliokoski T, Pouwer K, Morgentin R, Nelson A, Müller G, Piechot A, Tzalis D (2015) Drug Discov Today 20:1310–1316.  https://doi.org/10.1016/j.drudis.2015.09.009 CrossRefPubMedGoogle Scholar
  30. 30.
    Musio B, Mariani F, Sliwinski EP, Kabeshov MA, Odajima H, Ley SV (2016) Synthesis 48:3515–3526.  https://doi.org/10.1055/s-0035-1562579 CrossRefGoogle Scholar
  31. 31.
    Mastronardi F, Gutmann B, Kappe CO (2013) Org Lett 15:5590–5593.  https://doi.org/10.1021/ol4027914 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Brzozowski M, O’Brien M, Ley SV, Polyzos A (2015) Acc Chem Res 48:346–362.  https://doi.org/10.1021/ar500359m CrossRefGoogle Scholar
  33. 33.
    Mallia CJ, Baxendale IR (2016) Org Process Res Dev 20:327–360.  https://doi.org/10.1021/acs.oprd.5b00222 CrossRefGoogle Scholar
  34. 34.
    Britton J, Jamison TF (2017) Angew Chem Int Ed 56:8823–8827.  https://doi.org/10.1002/anie.201704529 CrossRefGoogle Scholar
  35. 35.
    Cludius-Brandt S, Kupracz L, Kirschning A (2013) Beilstein J Org Chem 9:1745–1750.  https://doi.org/10.3762/bjoc.9.201 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Grafton M, Mansfield AC, Fray MJ (2010) Tetrahedron Lett 51:1026–1029.  https://doi.org/10.1016/j.tetlet.2009.12.071 CrossRefGoogle Scholar
  37. 37.
    Baumann M, Baxendale IR, Ley SV (2010) Synlett 5:749–752.  https://doi.org/10.1055/s-0029-1219344 CrossRefGoogle Scholar
  38. 38.
    Baumann M, Baxendale IR, Kuratli C, Ley SV, Martin RE, Schneider J (2011) ACS Comb Sci 13:405–413.  https://doi.org/10.1021/co2000357 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Baumann M, Baxendale IR, Kirschning A, Ley SV, Wegner J (2011) Heterocycles 82:1297–1316.  https://doi.org/10.3987/COM-10-S(E)77 CrossRefGoogle Scholar
  40. 40.
    Yoshida J (2005) Chem Commun 41:4509–4516.  https://doi.org/10.1039/B508341A CrossRefGoogle Scholar
  41. 41.
    Suga S, Tsutsi Y, Nagaki A, Yoshida J (2005) Bull Chem Soc Jpn 78:1206–1217.  https://doi.org/10.1246/bcsj.78.1206 CrossRefGoogle Scholar
  42. 42.
    Lau S-H, Galvan A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV (2015) Org Lett 17:3218–3221.  https://doi.org/10.1021/acs.orglett.5b01307 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Griesbaum K, Liu X, Kassiaris A, Scherer M (1997) Liebigs Ann Recueil 1381–1390Google Scholar
  44. 44.
    Bogdan AR, James K (2011) Org Lett 13:4060–4063.  https://doi.org/10.1021/ol201567s CrossRefPubMedGoogle Scholar
  45. 45.
    Fernandez-Suarez M, Wong SYF, Warrington BH (2002) Lab Chip 2:170–174.  https://doi.org/10.1039/B202324E CrossRefPubMedGoogle Scholar
  46. 46.
    Yoshida J (2010) Chem Rec 10:332CrossRefPubMedGoogle Scholar
  47. 47.
    Yoshida J, Takahashi Y, Nagaki A (2013) Chem Commun 49:9896–9904.  https://doi.org/10.1039/C3CC44709J CrossRefGoogle Scholar
  48. 48.
    Tsoung J, Wang Y, Djuric SW (2017) React Chem Eng 2:458–461.  https://doi.org/10.1039/C7RE00058H CrossRefGoogle Scholar
  49. 49.
    Martin RE, Morawitz F, Kuratli C, Alker AM, Alanine AI (2012) Eur J Org Chem 47–52.  https://doi.org/10.1002/ejoc.201101538
  50. 50.
    Snyder DA, Noti C, Seeberger PH, Schael F, Bieber T, Ehrfeld W (2005) Helv Chim Acta 88:1–9.  https://doi.org/10.1002/hlca.200490304 CrossRefGoogle Scholar
  51. 51.
    Wiles C, Watts P (2011) Micro reaction technology in organic synthesis. CRC Press, Boca RatonGoogle Scholar
  52. 52.
    Hallmark B, Mackley MR, Gadala-Maria F (2005) Adv Eng Mater 7:545–547.  https://doi.org/10.1002/adem.200400154 CrossRefGoogle Scholar
  53. 53.
    Hornung CH, Mackley MR, Baxendale IR, Ley SV (2007) Org Process Res Dev 11:399–405.  https://doi.org/10.1021/op700015f CrossRefGoogle Scholar
  54. 54.
    McMullen JP, Jensen KF (2011) Org Process Res Dev 15:398–407.  https://doi.org/10.1021/op100300p CrossRefGoogle Scholar
  55. 55.
    Baxendale IR (2015) Chem Eng Technol 38:1713–1716.  https://doi.org/10.1002/ceat.201500255 CrossRefGoogle Scholar
  56. 56.
    Baxendale IR, Hornung C, Ley SV, Molina JMM, Wikström A (2013) Aust J Chem 66:131–144.  https://doi.org/10.1071/CH12365 CrossRefGoogle Scholar
  57. 57.
    Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists; strategies, instruments and protocols. Wiley-VCH Verlag GmbH, Weinheim. ISBN: 978-3-527-32097-4Google Scholar
  58. 58.
    Baxendale IR, Hayward JJ, Ley SV (2007) Comb Chem High Throughput Screen 10:802–836.  https://doi.org/10.2174/138620707783220374 CrossRefPubMedGoogle Scholar
  59. 59.
    Baxendale IR, Pitts MR (2006) Chimica Oggi Chem Today 24:41–45Google Scholar
  60. 60.
    Saaby S, Baxendale IR, Ley SV (2005) Org Biomol Chem 3:3365–3368.  https://doi.org/10.1039/b509540a CrossRefPubMedGoogle Scholar
  61. 61.
    Bogaert-Alvarez RJ, Demena P, Kodersha G, Polomski RE, Soundararajan N, Wang SSY (2001) Org Process Res Dev 5:636–645.  https://doi.org/10.1021/op0100504 CrossRefGoogle Scholar
  62. 62.
    Hook BDA, Dohle W, Hirst PR, Pickworth M, Berry MB, Booker-Milburn KI (2005) J Org Chem 70:7558–7564.  https://doi.org/10.1021/jo050705p CrossRefPubMedGoogle Scholar
  63. 63.
    Lainchbury MD, Medley MI, Taylor PM, Hirst P, Dohle W, Booker-Milburn KI (2008) J Org Chem 73:6497–6505.  https://doi.org/10.1021/jo801108h CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Elliott LD, Berry M, Harji B, Klauber D, Leonard J, Booker-Milburn KI (2016) Org Process Res Dev 20:1806–1811.  https://doi.org/10.1021/acs.oprd.6b00277 CrossRefGoogle Scholar
  65. 65.
    Blackham EE, Booker-Milburn KI (2017) Angew Chem 56:6613–6616.  https://doi.org/10.1002/anie.201701775 CrossRefGoogle Scholar
  66. 66.
    Mukae H, Maeda H, Nashihara S, Mizuno K (2007) Bull Chem Soc Jpn 80:1157–1161.  https://doi.org/10.1246/bcsj.80.1157 CrossRefGoogle Scholar
  67. 67.
    Shvydkiv O, Nolan K, Oelgemöller M (2011) Beilstein J Org Chem 7:1055–1063.  https://doi.org/10.3762/bjoc.7.121 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    DeLaney EN, Lee DS, Elliott LD, Jin J, Booker-Milburn KI, Poliakoff M, George MW (2017) Green Chem 19:1431–1438.  https://doi.org/10.1039/C6GC02888H CrossRefGoogle Scholar
  69. 69.
    Baumann M, Baxendale IR (2016) Synlett 27:159–163.  https://doi.org/10.1055/s-0035-1560391 CrossRefGoogle Scholar
  70. 70.
    Hsueh N, Clarkson GJ, Shipman M (2015) Org Lett 17:3632–3635.  https://doi.org/10.1021/acs.orglett.5b01777 CrossRefPubMedGoogle Scholar
  71. 71.
    Hsueh N, Clarkson GJ, Shipman M (2016) Org Lett 18:4908–4911.  https://doi.org/10.1021/acs.orglett.6b02349 CrossRefPubMedGoogle Scholar
  72. 72.
    Baumann M, Baxendale IR, Ley SV (2008) Synlett 14:2111–2114.  https://doi.org/10.1055/s-2008-1078026 CrossRefGoogle Scholar
  73. 73.
    Baumann M, Baxendale IR, Martin LJ, Ley SV (2009) Tetrahedron 65:6611–6625.  https://doi.org/10.1016/j.tet.2009.05.083 CrossRefGoogle Scholar
  74. 74.
    Battilocchio C, Baumann M, Baxendale IR, Biava M, Kitching MO, Ley SV, Martin RE, Ohnmacht SA, Tappin NDC (2012) Synthesis 44:635–647.  https://doi.org/10.1055/s-0031-1289676 CrossRefGoogle Scholar
  75. 75.
    Baumann M, Baxendale IR, Brasholz M, Hayward JJ, Ley SV, Nikbin N (2011) Synlett 22:1375–1380.  https://doi.org/10.1055/s-0030-1260573 CrossRefGoogle Scholar
  76. 76.
    Fernandez A, Levine ZG, Baumann M, Sulzer-Mosse S, Sparr C, Schläger S, Metzger A, Baxendale IR, Ley SV (2013) Synlett 24:514–518.  https://doi.org/10.1055/s-0032-1318109 CrossRefGoogle Scholar
  77. 77.
    Glöckner S, Tran DN, Ingham RJ, Fenner S, Wilson ZE, Battilocchio C, Ley SV (2015) Org Biomol Chem 13:207–214.  https://doi.org/10.1039/C4OB02105C CrossRefPubMedGoogle Scholar
  78. 78.
    Kim H, Nagaki A, Yoshida J (2011) Nat Commun 2:264–272.  https://doi.org/10.1038/ncomms1264 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Carter CF, Baxendale IR, O’Brien M, Pavey JBJ, Ley SV (2009) Org Biomol Chem 7:4594–4597.  https://doi.org/10.1039/B917289K CrossRefPubMedGoogle Scholar
  80. 80.
    Carter CF, Baxendale IR, Pavey JBJ, Ley SV (2010) Org Biomol Chem 8:1588–1595.  https://doi.org/10.1039/B924309G CrossRefPubMedGoogle Scholar
  81. 81.
    Prosa N, Turgis R, Piccardi R, Scherrmann M-C (2012) Eur J Org Chem 2188–2200.  https://doi.org/10.1002/ejoc.201101726
  82. 82.
    Bremner WS, Organ MG (2007) J Comb Chem 9:14–16.  https://doi.org/10.1021/cc060130p CrossRefPubMedGoogle Scholar
  83. 83.
    Briggs ME, Slater AG, Lunt N, Jiang S, Little MA, Greenaway RL, Hasell T, Battilocchio C, Ley SV, Cooper AI (2015) Chem Commun 51:17390–17393.  https://doi.org/10.1039/C5CC07447A CrossRefGoogle Scholar
  84. 84.
    Spaccini R, Liguori L, Punta C, Bjorsvik H-R (2012) ChemSusChem 5:261–265.  https://doi.org/10.1002/cssc.201100262 CrossRefPubMedGoogle Scholar
  85. 85.
    Mikami K, Islam MN, Yamanaka M, Itoh Y, Shinoda M, Kudo K (2004) Tetrahedron Lett 45:3681–3683.  https://doi.org/10.1016/j.tetlet.2004.02.157 CrossRefGoogle Scholar
  86. 86.
    Yamamoto H, Sasaki I, Hirai Y, Namba K, Imagawa H, Nishizawa M (2009) Angew Chem Int Ed 48:1244–1247.  https://doi.org/10.1002/anie.200804641 CrossRefGoogle Scholar
  87. 87.
    Hafez AM, Taggi AE, Dudding T, Lectka T (2001) J Am Chem Soc 123:10853–10859.  https://doi.org/10.1021/ja016556j CrossRefPubMedGoogle Scholar
  88. 88.
    Izquierdo J, Pericas MA (2016) ACS Catal 6:348–356.  https://doi.org/10.1021/acscatal.5b02121 CrossRefGoogle Scholar
  89. 89.
    Wang S, Izquierdo J, Rodríguez-Escrich C, Pericàs MA (2017) ACS Catal 7:2780–2785.  https://doi.org/10.1021/acscatal.7b00360 CrossRefGoogle Scholar
  90. 90.
    Osorio-Planes L, Rodriguez-Escrich C, Pericas MA (2016) Cat Sci Technol 6:4686–4689.  https://doi.org/10.1039/C6CY00473C CrossRefGoogle Scholar
  91. 91.
    Kreituss I, Bode JW (2017) Nat Chem 9:446–452.  https://doi.org/10.1038/nchem.2681 CrossRefGoogle Scholar
  92. 92.
    Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520:329–332.  https://doi.org/10.1038/nature14343. Scheme updated based upon presented material at the international conference on organic synthesis 21, IIT Bombay, India, December 2016CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Drop M, Bantreil X, Grychowska K, Mahoro GU, Colacino E, Pawlowski M, Martinez J, Subra G, Zajdel P, Lamaty F (2017) Green Chem 19:1647–1652.  https://doi.org/10.1039/C7GC00235A CrossRefGoogle Scholar
  94. 94.
    Comer E, Organ MG (2005) J Am Chem Soc 127:8160–8167.  https://doi.org/10.1021/ja0512069 CrossRefPubMedGoogle Scholar
  95. 95.
    Lim J, Lee SS, Ying JY (2010) Chem Commun 46:806–808.  https://doi.org/10.1039/B917986K CrossRefGoogle Scholar
  96. 96.
    Clarke AK, James MJ, O'Brien P, Taylor RJK, Unsworth WP (2016) Angew Chem Int Ed 55:13798–13802.  https://doi.org/10.1002/anie.201608263 CrossRefGoogle Scholar
  97. 97.
    Correia CA, Gilmore K, McQuade DT, Seeberger PH (2015) Angew Chem 54:4945–4948.  https://doi.org/10.1002/anie.201411728 CrossRefGoogle Scholar
  98. 98.
    Ouchi T, Battilocchio C, Hawkins JM, Ley SV (2014) Org Process Res Dev 18:1560–1566.  https://doi.org/10.1021/op500208j CrossRefGoogle Scholar
  99. 99.
    Ötvös SB, Mandity IM, Fülöp F (2011) Mol Divers 15:605–611.  https://doi.org/10.1007/s11030-010-9276-z CrossRefPubMedGoogle Scholar
  100. 100.
    Brasholz M, Von Känel K, Hornung CH, Saubern S, Tsanaktsidis J (2011) Green Chem 13:1114–1117.  https://doi.org/10.1039/C1GC15107J CrossRefGoogle Scholar
  101. 101.
    Chieffi G, Braun M, Esposit D (2015) ChemSusChem 8:3590–3594.  https://doi.org/10.1002/cssc.201500804 CrossRefPubMedGoogle Scholar
  102. 102.
    Conde E, Rivilla I, Larumbe A, Cossío FP (2015) J Org Chem 80:11755–11767.  https://doi.org/10.1021/acs.joc.5b01418 CrossRefPubMedGoogle Scholar
  103. 103.
    Viviano M, Milite C, Rescigno D, Castellano S, Sbardella GA (2015) RSC Adv 5:1268–1273.  https://doi.org/10.1039/C4RA13392G CrossRefGoogle Scholar
  104. 104.
    Wiles C, Hammond MJ, Watts P (2009) Beilstein J Org Chem 5(27).  https://doi.org/10.3762/bjoc.5.26
  105. 105.
    Kee S-P, Gavriilidis A (2009) Org Process Res Dev 13:941–951.  https://doi.org/10.1021/op800276a CrossRefGoogle Scholar
  106. 106.
    McPake CB, Murray CB, Sandford G (2009) Tetrahedron Lett 50:1674–1676.  https://doi.org/10.1016/j.tetlet.2008.12.073 CrossRefGoogle Scholar
  107. 107.
    Kestenbaum H, Lange de Oliveira A, Schmidt W, Schüth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Züchner H (2002) Ind Eng Chem Res 41:710–719.  https://doi.org/10.1021/ie010306u CrossRefGoogle Scholar
  108. 108.
    Markowz G, Schirrmeister S, Albrecht J, Becker F, Schütte R, Caspary KJ, Klemm E (2005) Chem Eng Technol 28:459–464.  https://doi.org/10.1002/ceat.200407146 CrossRefGoogle Scholar
  109. 109.
    Alves L, Desidera AL, de Oliveira KT, Newton S, Ley SV, Brocksom T (2015) Org Biomol Chem 13:7633–7642.  https://doi.org/10.1039/C5OB00525F CrossRefGoogle Scholar
  110. 110.
    Ushakov DB, Gilmore K, Seeberger PH (2014) Chem Commun 50:12649–12651.  https://doi.org/10.1039/C4CC04932B CrossRefGoogle Scholar
  111. 111.
    Ullah F, Samarakoon T, Rolfe A, Kurtz RD, Hanson PR, Organ MG (2010) Chem Eur J 16:10959–10962.  https://doi.org/10.1002/chem.201001651 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Fagnoni M, Bonassi F, Palmieri A, Protti S, Ravelli D, Ballini R (2014) Adv Synth Catal 356:753–758.  https://doi.org/10.1002/adsc.201300859 CrossRefGoogle Scholar
  113. 113.
    Cerra B, Mangiavacchi F, Santi C, Lozza AM, Gioiello A (2017) React Chem Eng 2:467–471.  https://doi.org/10.1039/C7RE00083A CrossRefGoogle Scholar
  114. 114.
    Yamada YMA, Torii K, Uozumi Y (2009) Beilstein J Org Chem 5(18).  https://doi.org/10.3762/bjoc.5.18
  115. 115.
    Kopetzki D, Levesque F, Seeberger PH (2013) Chem Eur J 19:5450–5456.  https://doi.org/10.1002/chem.201204558 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Levesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706–1709.  https://doi.org/10.1002/anie.201107446 CrossRefGoogle Scholar
  117. 117.
    Kouridaki A, Huvaere K (2017) React Chem Eng 2:590–597.  https://doi.org/10.1039/C7RE00053G CrossRefGoogle Scholar
  118. 118.
    Ziegenbalg D, Kreisel G, Weiß D, Kralisch D (2014) Photochem Photobiol Sci 13:1005–1015.  https://doi.org/10.1039/C3PP50302J CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Bourne RA, Han X, Poliakoff M, George MW (2009) Angew Chem Int Ed 48:5322–5325.  https://doi.org/10.1002/anie.200901731 CrossRefGoogle Scholar
  120. 120.
    Fukuyama T, Kobayashi M, Rahman MT, Kamata N, Ryo I (2008) Org Lett 10:533–536.  https://doi.org/10.1021/ol702718z CrossRefPubMedGoogle Scholar
  121. 121.
    Bou-Hamdan FR, Lévesque F, O’Brien AG, Seeberger PH (2011) Beilstein J Org Chem 7:1124–1129.  https://doi.org/10.3762/bjoc.7.129 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Zhang X, Stefanick S, Villani FJ (2004) Org Process Res Dev 8:455–460.  https://doi.org/10.1021/op034193x CrossRefGoogle Scholar
  123. 123.
    Treece JL, Goodell JR, Velde DV, Porco JA, Aubé J (2010) J Org Chem 75:2028–2038.  https://doi.org/10.1021/jo100087h CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    McCaw PG, Buckley NM, Eccles KS, Lawrence SE, Maguire AR, Collins SG (2017) J Org Chem 82:3666–3679.  https://doi.org/10.1021/acs.joc.7b00172 CrossRefPubMedGoogle Scholar
  125. 125.
    Silva BV, Violante FA, Pinto AC, Santos LS (2011) Rapid Commun Mass Spectrom 25:423–428.  https://doi.org/10.1002/rcm.4869 CrossRefPubMedGoogle Scholar
  126. 126.
    Buono FG, Eriksson MC, Yang B-S, Kapadia SR, Lee H, Brazzillo J, Lorenz JC, Nummy L, Busacca CA, Yee N, Senanayake C (2014) Org Process Res Dev 18:1527–1534.  https://doi.org/10.1021/op500263m CrossRefGoogle Scholar
  127. 127.
    Payne GB (1967) J Org Chem 32:3351–3355.  https://doi.org/10.1021/jo01286a017 CrossRefGoogle Scholar
  128. 128.
    Mandrelli F, Buco A, Piccioni L, Renner F, Guelat B, Martin B, Schenkel B, Venturoni F (2017) Green Chem 19:1425–1430.  https://doi.org/10.1039/C6GC02840C CrossRefGoogle Scholar
  129. 129.
    Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK (2006) Chem Commun:2566–2568.  https://doi.org/10.1039/B600382F
  130. 130.
    Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Synlett:427–430.  https://doi.org/10.1055/s-2006-926244
  131. 131.
    Kamptmann S, Ley SV (2015) Aust J Chem 68:693–696.  https://doi.org/10.1071/CH14530 CrossRefGoogle Scholar
  132. 132.
    Lücke D, Dalton T, Ley SV, Wilson ZE (2016) Chem Eur J 22:4206–4217.  https://doi.org/10.1002/chem.201504457 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Brasholz M, Macdonald JM, Saubern S, Ryan JH, Holmes AB (2010) Chem Eur J 16:11471–11480.  https://doi.org/10.1002/chem.201001435 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Rao ZX, Patel B, Monaco A, Cao ZJ, Barniol-Xicota M, Pichon E, Ladlow M, Hilton ST (2017) Eur J Org Chem.  https://doi.org/10.1002/ejoc.201701111. Early view
  135. 135.
    Battilocchio C, Baxendale IR, Biava M, Kitching MO, Ley SV (2012) Org Process Res Dev 16:798–810.  https://doi.org/10.1021/op300084z CrossRefGoogle Scholar
  136. 136.
    Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, Monbaliu J-CM, Myerson AS, Revalor EM, Snead DR, Stelzer T, Weeranoppanant N, Wong SY, Zhang P (2016) Science 352:61–67.  https://doi.org/10.1126/science.aaf1337 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DurhamDurhamUK

Personalised recommendations