Radical Cascades in the Total Synthesis of Complex Naturally Occurring Heterocycles

  • Montserrat Rueda-Becerril
  • Jia Yi Mo
  • Glenn M. Sammis
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 54)


Radical cascades reactions have been extensively used in organic synthesis for the rapid construction of molecular complexity, and have shown to be particularly effective in the assembly of polycyclic cores. Through careful substrate design, their application has extended from carbocyclic to heterocyclic frameworks. In this chapter, we describe radical cascade processes that generate oxygen- and nitrogen-containing polycyclic structures in the context of total synthesis. The radical cascades either directly form the heterocycle or incorporate/modify preexisting heterocycles to further elaborate the target’s core. Total syntheses where the radical cascade had no impact on the formation or modification of the heterocyclic moiety are not included in this review.


Azacycles Cascade Domino Heterocycles Natural products Oxacycles Radical Total synthesis 


  1. 1.
    Jasperse CP, Curran DP, Fevig TL (1991) Radical reactions in natural product synthesis. Chem Rev 91:1237–1286CrossRefGoogle Scholar
  2. 2.
    Yoshimitsu T (2014) Endeavors to access molecular complexity: strategic use of free radicals in natural product synthesis. Chem Rec 14:268–279.  https://doi.org/10.1002/tcr.201300024 CrossRefPubMedGoogle Scholar
  3. 3.
    Curran DP, Sisko J, Yeske PE, Liu H (1993) Recent applications of radical reactions in natural product synthesis. Pure Appl Chem 65:1153–1159.  https://doi.org/10.1351/pac199365061153 CrossRefGoogle Scholar
  4. 4.
    Curran DP (1991) Radical cyclizations and sequential radical reactions. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Elsevier, Amsterdam, The Netherlands, pp 779–830CrossRefGoogle Scholar
  5. 5.
    Bowman WR, Bridge CF, Brookes P (2000) Synthesis of heterocycles by radical cyclisation. J Chem Soc Perkin Trans (1):1–14.  https://doi.org/10.1039/a808141g
  6. 6.
    Bowman WR, Cloonan MO, Krintel SL (2001) Synthesis of heterocycles by radical cyclisation. J Chem Soc Perkin Trans 1:2885–2902.  https://doi.org/10.1039/a909340k CrossRefGoogle Scholar
  7. 7.
    Bur SK, Padwa A (2007) The synthesis of heterocycles using cascade chemistry. In: sciencedirect.com. Elsevier, pp 1–105Google Scholar
  8. 8.
    Naito T. Heterocycle synthesis via radical reactions. Pure Appl Chem 80:561. doi:  https://doi.org/10.3987/COM-97-S26 CrossRefGoogle Scholar
  9. 9.
    Renaud P, Sibi MP (2001) Radicals in organic synthesis, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Tietze LF (1996) Domino reactions in organic synthesis. Chem Rev 96:115–136.  https://doi.org/10.1021/cr950027e CrossRefPubMedGoogle Scholar
  11. 11.
    McCarroll AJ, Walton JC (2001) Programming organic molecules: design and management of organic syntheses through free-radical cascade processes. Angew Chem Int Ed 40:2224–2248.  https://doi.org/10.1002/1521-3773(20010618)40:12<2224::AID-ANIE2224>3.0.CO;2-F CrossRefGoogle Scholar
  12. 12.
    Albert M, Fensterbank L, Lacôte E, Malacria M (2006) Tandem radical reactions. In: link.springer.com. Springer, Heidelberg, Berlin, pp 1–62
  13. 13.
    Tietze LF, Brasche G, Gericke KM (2006) Domino reactions in organic synthesis. onlinelibrary.wiley.com. doi:  https://doi.org/10.1002/9783527609925
  14. 14.
    Nicolaou KC, Edmonds DJ, Bulger PG (2006) Cascade reactions in total synthesis. Angew Chem Int Ed 45:7134–7186.  https://doi.org/10.1055/s-1997-6154 CrossRefGoogle Scholar
  15. 15.
    Nicolaou KC, Chen JS (2009) The art of total synthesis through cascade reactions. Chem Soc Rev 38:2993.  https://doi.org/10.1002/anie.200900058 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ardkhean R, Caputo DFJ, Morrow SM, Shi H, Xiong Y, Anderson EA (2016) Cascade polycyclizations in natural product synthesis. Chem Soc Rev 45:1557–1569.  https://doi.org/10.1021/ja2073356 CrossRefPubMedGoogle Scholar
  17. 17.
    Tietze LF, Brasche G, Gericke KM (2006) Radical domino reactions. In: onlinelibrary.wiley.com. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 219–279
  18. 18.
    Curran DP, Chen M-H (1985) Radical-initiated polyolefinic cyclizations in condensed cyclopentanoid synthesis. Total synthesis of (±)-Δ9(12)-capnellene. Tetrahedron Lett 26:4991–4994.  https://doi.org/10.1016/S0040-4039(01)80834-0 CrossRefGoogle Scholar
  19. 19.
    Curran DP, Kuo S-C (1987) The tandem radical cyclization approach to angular triquinanes. Model studies and the total synthesis of (±)-silphiperfolene and (±)-9-episilphiperfolene. Tetrahedron 43:5653–5661.  https://doi.org/10.1016/S0040-4020(01)87744-9 CrossRefGoogle Scholar
  20. 20.
    Fevig TL, Elliott RL, Curran DP (1988) A samarium(II) iodide promoted tandem radical cyclization. The total synthesis of (±)-hypnophilin and the formal synthesis of (+/−)-coriolin. J Am Chem Soc 110:5064–5067.  https://doi.org/10.1021/ja00223a026 CrossRefGoogle Scholar
  21. 21.
    Dhimane A-L, Fensterbank L, Malacria M (2001) Polycyclic compounds via radical cascade reactions. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 350–382Google Scholar
  22. 22.
    Lee E (2001) Synthesis of oxacyclic natural products. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 303–333Google Scholar
  23. 23.
    Griller D, Ingold KU (1980) Free-radical clocks. Acc Chem Res 13:317–323.  https://doi.org/10.1021/ar50153a004 CrossRefGoogle Scholar
  24. 24.
    Lal D, Griller D, Husband S, Ingold KU (1974) Kinetic applications of electron paramagnetic resonance spectroscopy. XVI. Cyclization of the 5-hexenyl radical. J Am Chem Soc 96:6355–6357.  https://doi.org/10.1021/ja00827a018 CrossRefGoogle Scholar
  25. 25.
    Schmid P, Griller D, Ingold KU (1979) The 5-hexenyl cyclization. Int J Chem Kinet 11:333–338.  https://doi.org/10.1039/p29770001504 CrossRefGoogle Scholar
  26. 26.
    Hartung J, Gottwald T (2004) On the 6-exo-trig ring closure of substituted 5-hexen-1-oxyl radicals. Tetrahedron Lett 45:5619–5621.  https://doi.org/10.1016/j.tetlet.2004.05.131 CrossRefGoogle Scholar
  27. 27.
    Hartung J, Daniel K, Rummey C, Bringmann G (2006) On the stereoselectivity of 4-penten-1-oxyl radical 5-exo-trig cyclizations. Org Biomol Chem 4:4089–4100CrossRefGoogle Scholar
  28. 28.
    Zlotorzynska M, Zhai H, Sammis GM (2008) Chemoselective oxygen-centered radical cyclizations onto silyl enol ethers. Org Lett 10:5083–5086.  https://doi.org/10.1021/ol802142k CrossRefPubMedGoogle Scholar
  29. 29.
    Rueda-Becerril M, Leung JCT, Dunbar CR, Sammis GM (2011) Alkoxy radical cyclizations onto silyl enol ethers relative to alkene cyclization, hydrogen atom transfer, and fragmentation reactions. J Org Chem 76:7720–7729.  https://doi.org/10.1021/jo200992m CrossRefPubMedGoogle Scholar
  30. 30.
    Hartung J, Kneuer R (2003) Synthesis of enantiopure (2R)-configured muscarine alkaloids via selective alkoxyl radical ring-closure reactions. Tetrahedron Asymmetry 14:3019–3031CrossRefGoogle Scholar
  31. 31.
    Parker KA, Fokas D (1992) Convergent synthesis of (±)-dihydroisocodeine in 11 steps by the tandem radical cyclization strategy. A formal total synthesis of (±)-morphine. J Am Chem Soc 114:9688–9689.  https://doi.org/10.1021/ja00050a075 CrossRefGoogle Scholar
  32. 32.
    Parker KA, Fokas D (2006) Enantioselective synthesis of (−)-dihydrocodeinone: a short formal synthesis of (−)-morphine. J Org Chem 71:449–455.  https://doi.org/10.1021/jo0513008 CrossRefPubMedGoogle Scholar
  33. 33.
    Boffey RJ, Santagostino M, Kilburn JD, Boffey RJ, Whittingham WG (1998) Diastereoselective SmI2-mediated cascade radical cyclisations of methylenecyclopropane derivatives – a synthesis of paeonilactone B. Chem Commun 1875–1876. doi:  https://doi.org/10.1039/a804297g
  34. 34.
    Boffey RJ, Whittingham WG, Kilburn JD (2001) Diastereoselective SmI2 mediated cascade radical cyclisations of methylenecyclopropane derivatives – syntheses of paeonilactone B and 6-epi-paeonilactone A. J Chem Soc Perkin Trans 1:487–496.  https://doi.org/10.1039/b009513n CrossRefGoogle Scholar
  35. 35.
    Lee E, Yoon CH, Sung Y-S, Kim YK, Yun M, Kim S (1997) Total synthesis of (+)-cladantholide and (−)-estafiatin: 5-exo,7-endo radical cyclization strategy for the construction of guaianolide skeleton. J Am Chem Soc 119:8391–8392.  https://doi.org/10.1021/ja971164r CrossRefGoogle Scholar
  36. 36.
    Cheng X, Micalizio GC (2016) Synthesis of neurotrophic seco-prezizaane sesquiterpenes (1 R,10 S)-2-Oxo-3,4-dehydroneomajucin, (2S)-hydroxy-3,4-dehydroneomajucin, and (−)-jiadifenin. J Am Chem Soc 138:1150–1153.  https://doi.org/10.1021/jacs.5b12694 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Renaud P, Vionnet JP (1993) Radical additions to 7-oxabicyclo[2.2.1]hept-5-en-2-one. Facile preparation of all-cis-Corey lactone. J Org Chem 58:5895–5896.  https://doi.org/10.1021/jo00074a011 CrossRefGoogle Scholar
  38. 38.
    Markó IE, Warriner SL, Augustyns B (2000) Radical-initiated, skeletal rearrangements of bicyclo[2.2.2] lactones. Org Lett 2:3123–3125.  https://doi.org/10.1021/ol006324+ CrossRefPubMedGoogle Scholar
  39. 39.
    Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K (2013) Total synthesis of gelsemiol. Chem A Eur J 19:2589–2591.  https://doi.org/10.1038/nn1074 CrossRefGoogle Scholar
  40. 40.
    He S, Yang W, Zhu L, Du G, Lee C-S (2014) Bioinspired total synthesis of (±)-Yezo’otogirin C. Org Lett 16:496–499.  https://doi.org/10.1021/ol403374h CrossRefPubMedGoogle Scholar
  41. 41.
    Pattenden G, Roberts L, Blake AJ (1998) Cascade radical cyclisations leading to polycyclic diterpenes. Total synthesis of (±)-spongian-16-one. J Chem Soc Perkin Trans 1:863–868.  https://doi.org/10.1039/a708042e CrossRefGoogle Scholar
  42. 42.
    Deng H, Cao W, Liu R, Zhang Y, Liu B (2017) Asymmetric total synthesis of hispidanin A. Angew Chem Int Ed 56:5849–5852.  https://doi.org/10.1021/ja00067a025 CrossRefGoogle Scholar
  43. 43.
    Boehm HM, Handa S, Pattenden G, Roberts L, Blake AJ, Li W-S (2000) Cascade radical cyclisations leading to steroid ring constructions. Regio- and stereo-chemical studies using ester- and fluoro-alkene substituted polyene acyl radical intermediates. J Chem Soc Perkin Trans 1:3522–3538.  https://doi.org/10.1039/b002999h CrossRefGoogle Scholar
  44. 44.
    Ishikawa H, Colby DA, Boger DL (2008) Direct coupling of catharanthine and vindoline to provide vinblastine: total synthesis of (+)- and ent-(−)-vinblastine. J Am Chem Soc 130:420–421.  https://doi.org/10.1021/ja078192m CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ishikawa H, Colby DA, Seto S, Va P, Tam A, Kakei H, Rayl TJ, Hwang I, Boger DL (2009) Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J Am Chem Soc 131:4904–4916.  https://doi.org/10.1021/ja809842b CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Leggans EK, Barker TJ, Duncan KK, Boger DL (2012) Iron(III)/NaBH4-mediated additions to unactivated alkenes: synthesis of novel 20′-vinblastine analogues. Org Lett 14:1428–1431. doi:  https://doi.org/10.1021/ol300173v CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lo JC, Gui J, Yabe Y, Pan C-M, Baran PS (2014) Functionalized olefin cross-coupling to construct carbon–carbon bonds. Nature 516:343–348.  https://doi.org/10.1038/nature09957 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tao DJ, Slutskyy Y, Overman LE (2016) Total synthesis of (−)-chromodorolide B. J Am Chem Soc 138:2186–2189.  https://doi.org/10.1021/jacs.6b00541 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Teplý F (2011) Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect Czechoslov Chem Commun 76:859–917.  https://doi.org/10.1135/cccc2011078 CrossRefGoogle Scholar
  50. 50.
    Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113:5322–5363.  https://doi.org/10.1021/cr300503r CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pratsch G, Lackner GL, Overman LE (2015) Constructing quaternary carbons from N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light photocatalysis. J Org Chem 80:6025–6036.  https://doi.org/10.1021/acs.joc.5b00795 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Okada K, Okamoto K, Morita N, Okubo K, Oda M (1991) Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J Am Chem Soc 113:9401–9402.  https://doi.org/10.1021/ja00024a074 CrossRefGoogle Scholar
  53. 53.
    Okada K, Okubo K, Morita N, Oda M (1992) Reductive decarboxylation of N-(acyloxy)phthalimides via redox-initiated radical chain mechanism. Tetrahedron Lett 33:7377–7380.  https://doi.org/10.1016/S0040-4039(00)60192-2 CrossRefGoogle Scholar
  54. 54.
    Okada K, Okubo K, Morita N, Oda M (1993) Redox-mediated decarboxylative photo-phenylselenenylation of N-acyloxyphthalimides. Chem Lett 22:2021–2024.  https://doi.org/10.1246/cl.1993.2021 CrossRefGoogle Scholar
  55. 55.
    Nicolaou K, Vourloumis D, Winssinger N, Baran PS (2000) The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 39:44–122CrossRefGoogle Scholar
  56. 56.
    Hart DJ (2001) Radical cyclizations in alkaloid synthesis. In: Renaud P, Sibi MP (eds) Radicals in organic synthesis. Wiley-VCH, Weinheim, pp 279–302Google Scholar
  57. 57.
    Li JJ, Corey EJ (2011) Pyrroles and pyrrolidines. In: Li JJ, Corey EJ (eds) onlinelibrary.wiley.com. John Wiley & Sons, Inc, Hoboken, NJ, USA, pp 41–82
  58. 58.
    Majumdar KC, Chattopadhyay SK (2011) Indoles and indolizidines. In: Bronner SM, Im GYJ, Garg NK (eds) onlinelibrary.wiley.com. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 221–265
  59. 59.
    Zard SZ (2008) Recent progress in the generation and use of nitrogen-centred radicals. Chem Soc Rev 37:1603.  https://doi.org/10.1039/b613443m CrossRefGoogle Scholar
  60. 60.
    Xiong T, Zhang Q (2016) New amination strategies based on nitrogen-centered radical chemistry. Chem Soc Rev 45:3069–3087.  https://doi.org/10.1002/anie.201507641 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Patro B, Murphy JA (2000) Tandem radical cyclizations with iodoaryl azides: formal total synthesis of (±)-aspidospermidine. Org Lett 2:3599–3601.  https://doi.org/10.1021/ol006477x CrossRefPubMedGoogle Scholar
  62. 62.
    Callaghan O, Lampard C, Kennedy AR, Murphy JA (1999) A novel total synthesis of (±)-aspidospermidine. J Chem Soc Perkin Trans 1:995–1002.  https://doi.org/10.1039/a900335e CrossRefGoogle Scholar
  63. 63.
    Zhou S-Z, Bommezijn S, Murphy JA (2002) Formal total synthesis of (±)-vindoline by tandem radical cyclization. Org Lett 4:443–445.  https://doi.org/10.1021/ol0171618 CrossRefPubMedGoogle Scholar
  64. 64.
    Ando M, Buechi G, Ohnuma T (1975) Total synthesis of (±)-vindoline. J Am Chem Soc 97:6880–6881.  https://doi.org/10.1021/ja00856a056 CrossRefGoogle Scholar
  65. 65.
    Knueppel D, Martin SF (2009) Total synthesis of cribrostatin 6. Angew Chem Int Ed 48:2569–2571.  https://doi.org/10.1002/anie.200806269 CrossRefGoogle Scholar
  66. 66.
    Pettit GR, Collins JC, Knight JC, Herald DL, Nieman RA, Williams MD, Pettit RK (2003) Antineoplastic agents. 485. Isolation and structure of cribrostatin 6, a dark blue cancer cell growth inhibitor from the marine sponge Cribrochalinasp. †,1a. J Nat Prod 66:544–547.  https://doi.org/10.1021/np020012t CrossRefPubMedGoogle Scholar
  67. 67.
    Nakahara S, Kubo A, Mikami Y, Ito J (2006) Synthesis of cribrostatin 6 and its related compounds. Heterocycles 68:515–520.  https://doi.org/10.3987/COM-06-10674 CrossRefGoogle Scholar
  68. 68.
    Markey MD, Kelly TR (2008) Synthesis of cribrostatin 6. J Org Chem 73:7441–7443.  https://doi.org/10.1021/jo801694w CrossRefPubMedGoogle Scholar
  69. 69.
    Callier-Dublanchet A-C, Cassayre J, Gagosz F, Quiclet-Sire B, Sharp LA, Zard SZ (2008) Amidyls in radical cascades. The total synthesis of (±)-aspidospermidine and (±)-13-deoxyserratine. Tetrahedron 64:4803–4816.  https://doi.org/10.1016/j.tet.2008.02.107 CrossRefGoogle Scholar
  70. 70.
    Biechy A, Hachisu S, Quiclet-Sire B, Ricard L, Zard SZ (2008) The total synthesis of (±)-fortucine and a revision of the structure of kirkine. Angew Chem Int Ed 47:1436–1438.  https://doi.org/10.1002/anie.200704996 CrossRefGoogle Scholar
  71. 71.
    Biechy A, Hachisu S, Quiclet-Sire B, Ricard L, Zard SZ (2009) Application of an amidyl radical cascade to the total synthesis of (±)-fortucine leading to the structural revision of kirkine. Tetrahedron 65:6730–6738.  https://doi.org/10.1016/j.tet.2009.04.027 CrossRefGoogle Scholar
  72. 72.
    Zhang H, Curran DP (2011) A short total synthesis of (±)-epimeloscine and (±)-meloscine enabled by a cascade radical annulation of a divinylcyclopropane. J Am Chem Soc 133:10376–10378.  https://doi.org/10.1021/ja2042854 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Overman LE, Robertson GM, Robichaud AJ (1989) Synthesis applications of cationic aza-cope rearrangements. 20. Total synthesis of (±)-meloscine and (±)-epimeloscine. J Org Chem 54:1236–1238.  https://doi.org/10.1021/jo00267a003 CrossRefGoogle Scholar
  74. 74.
    Overman LE, Robertson GM, Robichaud AJ (1991) Use of aza-cope rearrangement-Mannich cyclization reactions to achieve a general entry to Melodinus and Aspidosperma alkaloids. Stereocontrolled total syntheses of (±)-deoxoapodine, (±)-meloscine, and (±)-epimeloscine and a formal synthesis of (±)-1-acetylaspidoalbidine. J Am Chem Soc 113:2598–2610.  https://doi.org/10.1021/ja00007a038 CrossRefGoogle Scholar
  75. 75.
    Selig P, Bach T (2008) Enantioselective total synthesis of the Melodinus alkaloid (+)-meloscine. Angew Chem Int Ed 47:5082–5084.  https://doi.org/10.1002/anie.200800693 CrossRefGoogle Scholar
  76. 76.
    Selig P, Herdtweck E, Bach T (2009) Total synthesis of meloscine by a [2+2]-photocycloaddition/ring-expansion route. Chem A Eur J 15:3509–3525.  https://doi.org/10.1248/cpb.36.4980 CrossRefGoogle Scholar
  77. 77.
    Hayashi Y, Inagaki F, Mukai C (2011) Total synthesis of (±)-meloscine. Org Lett 13:1778–1780.  https://doi.org/10.1021/ol200311y CrossRefPubMedGoogle Scholar
  78. 78.
    Han G, Liu Y, Wang Q (2013) Total synthesis of phenanthroindolizidine alkaloids through an amidyl radical cascade/rearrangement reaction. Org Lett 15:5334–5337.  https://doi.org/10.1021/ol4025925 CrossRefPubMedGoogle Scholar
  79. 79.
    Tangirala R, Antony S, Agama K, Pommier Y, Curran DP (2005) Total synthesis of luotonin and a small library of AB-ring substituted analogues by cascade radical annulation of isonitriles. Synlett 2005:2843–2846Google Scholar
  80. 80.
    Curran DP, Liu H (1992) New 4 + 1 radical annulations. A formal total synthesis of (±)-camptothecin. J Am Chem Soc 114:5863–5864.  https://doi.org/10.1021/ja00040a060 CrossRefGoogle Scholar
  81. 81.
    Curran DP, Ko S-B, Josien H (1996) Cascade radical reactions of isonitriles: a second-generation synthesis of (20S)-camptothecin, topotecan, irinotecan, and GI-147211C. Angew Chem Int Ed 34:2683–2684.  https://doi.org/10.1002/anie.199526831 CrossRefGoogle Scholar
  82. 82.
    Tangirala RS, Dixon R, Yang D, Ambrus A, Antony S, Agama K, Pommier Y, Curran DP (2005) Total and semisynthesis and in vitro studies of both enantiomers of 20-fluorocamptothecin. Bioorg Med Chem Lett 15:4736–4740.  https://doi.org/10.1016/j.bmcl.2005.07.074 CrossRefPubMedGoogle Scholar
  83. 83.
    Beaume A, Courillon C, Derat E, Malacria M (2008) Unprecedented aromatic homolytic substitutions and cyclization of amide-iminyl radicals: experimental and theoretical study. Chem A Eur J 14:1238–1252.  https://doi.org/10.1248/cpb.12.1446 CrossRefGoogle Scholar
  84. 84.
    Taniguchi T, Tanabe G, Muraoka O, Ishibashi H (2008) Total synthesis of (±)-stemonamide and (±)-isostemonamide using a radical cascade. Org Lett 10:197–199.  https://doi.org/10.1021/ol702563p CrossRefPubMedGoogle Scholar
  85. 85.
    Taniguchi T, Ishibashi H (2008) Total synthesis of (±)-stemonamide, (±)-isostemonamide, (±)-stemonamine, and (±)-isostemonamine using a radical cascade. Tetrahedron 64:8773–8779.  https://doi.org/10.1016/j.tet.2008.06.091 CrossRefGoogle Scholar
  86. 86.
    Hodgson DM, Hachisu S, Andrews MD (2005) Synthesis of α-kainic acid from a 7-azabicyclo[2.2.1]heptadiene by tandem radical addition-homoallylic radical rearrangement. Org Lett 7:815–817.  https://doi.org/10.1021/ol047557u CrossRefPubMedGoogle Scholar
  87. 87.
    Hodgson D, Hachisu S, Andrews M (2005) Syntheses of (±)-α-isokainic acid and (±)-α-dihydroallokainic acid using a decarboxylative Ramberg-Bäcklund reaction. Synlett 2005:1267–1270.  https://doi.org/10.1055/s-2005-868477 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Montserrat Rueda-Becerril
    • 1
  • Jia Yi Mo
    • 1
  • Glenn M. Sammis
    • 1
  1. 1.Department of ChemistryThe University of British ColumbiaVancouverCanada

Personalised recommendations