Metal Catalyzed Cross-Coupling Reactions in the Decoration of Pyrimidine, Pyridazine, and Pyrazine

  • Laurin Wimmer
  • Lukas Rycek
  • Moumita Koley
  • Michael Schnürch
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 45)


This chapter treats the cross-coupling chemistry of electron-deficient N-heterocycles containing two nitrogen atoms. The chapter is ordered according to heterocycle, coupling method, and the role of the N-heterocycle within the coupling process. The focus lies on new developments in the field, e.g., regarding new catalytic systems, and covers literature from 2008 until late 2013.


Cross-coupling Metal catalysis Palladium Pyrazine Pyridazine Pyrimidine 

















Copper(I) 3-methylsalicilate


Copper(I) thiophene-2-carboxylate
















Bis[(2-diphenylphosphino)phenyl] ether


1,1′-Bis( diphenylphosphino) ferrocene




Dye-sensitized solar cell




Electron donating group


Electron withdrawing group


Heteroatom-substituted secondary phosphine oxide


1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride






N-methyliminodiacetic acid


Methyl t-butylether


N-heterocyclic carbene




Organic light-emitting diode


Polyethylene glycol




[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium(II) dichloride




Polyoxyethanyl-α-tocopheryl sebacate


Bromotripyrrolidinophosphonium hexafluorophosphate


Room temperature






Silicadiphenyl phosphinite


Sodium dodecylsulfate




Substitution nucleophilic aromatic




Secondary phosphine oxide


Tetrabutylammonium bromide


Tetrabutylammonium fluoride












Turnover number






  1. 1.
    Kinzel T, Zhang Y, Buchwald SL (2010) A new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J Am Chem Soc 132(40):14073–14075CrossRefGoogle Scholar
  2. 2.
    Fleckenstein CA, Plenio H (2008) Efficient Suzuki–Miyaura coupling of (Hetero)aryl chlorides with thiophene- and furanboronic acids in aqueous n-butanol. J Org Chem 73(8):3236–3244CrossRefGoogle Scholar
  3. 3.
    Ackermann L, Potukuchi HK (2009) Palladium-catalyzed cross-coupling reactions of 2-pyridylborates with air-stable HASPO preligands. Synlett 17:2852–2856CrossRefGoogle Scholar
  4. 4.
    Zhou Y et al (2008) Dinickel(II) complexes of bis(N-heterocyclic carbene) ligands containing [Ni2(μ-OH)] cores as highly efficient catalysts for the coupling of aryl chlorides. Organometallics 27(22):5911–5920CrossRefGoogle Scholar
  5. 5.
    Liu T et al (2012) General and highly efficient fluorinated-N-heterocyclic carbene-based catalysts for the palladium-catalyzed Suzuki–Miyaura reaction. Tetrahedron 68(32):6535–6547CrossRefGoogle Scholar
  6. 6.
    Kolychev EL et al (2013) Expanded ring diaminocarbene palladium complexes: synthesis, structure, and Suzuki–Miyaura cross-coupling of heteroaryl chlorides in water. Dalton Trans 42(19):6859–6866CrossRefGoogle Scholar
  7. 7.
    Gupta S, Basu B, Das S (2013) Benzimidazole-based palladium-N-heterocyclic carbene: a useful catalyst for C–C cross-coupling reaction at ambient condition. Tetrahedron 69(1):122–128CrossRefGoogle Scholar
  8. 8.
    Tu T et al (2012) Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for Suzuki–Miyaura couplings with sterically hindered substrates. Org Lett 14(16):4250–4253CrossRefGoogle Scholar
  9. 9.
    Kumar MR, Park K, Lee S (2010) Synthesis of amido-N-imidazolium salts and their applications as ligands in Suzuki–Miyaura reactions: coupling of hetero- aromatic halides and the synthesis of milrinone and irbesartan. Adv Synth Catal 352(18):3255–3266CrossRefGoogle Scholar
  10. 10.
    Yang J et al (2012) Room-temperature Suzuki–Miyaura coupling of heteroaryl chlorides and tosylates. Eur J Org Chem 2012(31):6248–6259CrossRefGoogle Scholar
  11. 11.
    Asano S, Kamioka S, Isobe Y (2012) Suzuki–Miyaura cross-coupling reaction of aryl and heteroaryl pinacol boronates for the synthesis of 2-substituted pyrimidines. Tetrahedron 68(1):272–279CrossRefGoogle Scholar
  12. 12.
    Moseley JD et al (2012) A mild robust generic protocol for the Suzuki reaction using an air stable catalyst. Tetrahedron 68(30):6010–6017CrossRefGoogle Scholar
  13. 13.
    Lou S, Fu GC (2010) Palladium/tris(tert-butyl)phosphine-catalyzed Suzuki cross-couplings in the presence of water. Adv Synth Catal 352:2081–2084CrossRefGoogle Scholar
  14. 14.
    Bedford RB et al (2009) Simple mixed Fe-Zn catalysts for the Suzuki couplings of tetraarylborates with benzyl halides and 2-halopyridines. Chem Commun 2009(42):6430–6432CrossRefGoogle Scholar
  15. 15.
    Liu C, Yang W (2009) A fast and oxygen-promoted protocol for the ligand-free Suzuki reaction of 2-halogenated pyridines in aqueous media. Chem Commun 2009(41):6267–6269CrossRefGoogle Scholar
  16. 16.
    Liu C, Ni Q, Qiu J (2011) Very fast, ligand-free and aerobic protocol for the synthesis of 4-aryl-substituted triphenylamine derivatives. Eur J Org Chem 16:3009–3015CrossRefGoogle Scholar
  17. 17.
    Liu C et al (2011) Oxygen-promoted PdCl2-catalyzed ligand-free Suzuki reaction in aqueous media. Org Biomol Chem 9(4):1054–1060CrossRefGoogle Scholar
  18. 18.
    Colombo M, Giglio M, Peretto I (2008) Simple microwave-assisted ligand-free Suzuki Cross-coupling: functionalization of halo-pyrimidine moieties. J Heterocycl Chem 45(4):1077–1081CrossRefGoogle Scholar
  19. 19.
    Lipshutz BH, Abela AR (2008) Micellar catalysis of Suzuki–Miyaura cross-couplings with heteroaromatics in water. Org Lett 10(23):5329–5332CrossRefGoogle Scholar
  20. 20.
    Vashchenko V et al (2008) Palladium-catalyzed Suzuki cross-coupling reactions in a microemulsion. Tetrahedron Lett 49(9):1445–1449CrossRefGoogle Scholar
  21. 21.
    Mao S-L et al (2012) A highly active catalytic system for Suzuki–Miyaura cross-coupling reactions of aryl and heteroaryl chlorides in water. Org Biomol Chem 10(47):9410–9417CrossRefGoogle Scholar
  22. 22.
    Alacid E, Najera C (2008) First cross-coupling reaction of potassium aryltrifluoroborates with organic chlorides in aqueous media catalyzed by an oxime-derived palladacycle. Org Lett 10(21):5011–5014CrossRefGoogle Scholar
  23. 23.
    Susanto W et al (2012) Development of a fluorous, oxime-based palladacycle for microwave-promoted carbon–carbon coupling reactions in aqueous media. Green Chem 14(1):77–80CrossRefGoogle Scholar
  24. 24.
    Susanto W et al (2012) Fluorous oxime palladacycle: a precatalyst for carbon–carbon coupling reactions in aqueous and organic medium. J Org Chem 77(6):2729–2742CrossRefGoogle Scholar
  25. 25.
    Rao GK et al (2010) Palladacycle containing nitrogen and selenium: highly active pre-catalyst for the Suzuki–Miyaura coupling reaction and unprecedented conversion into nano-sized Pd17Se15. Chem Commun 46(32):5954–5956CrossRefGoogle Scholar
  26. 26.
    Bolliger JL, Frech CM (2010) Dichloro-bis(aminophosphine) complexes of palladium: highly convenient, reliable and extremely active Suzuki–Miyaura catalysts with excellent functional group tolerance. Chem Eur J 16(13):4075–4081CrossRefGoogle Scholar
  27. 27.
    Shi S, Zhang Y (2008) Silica-assisted Suzuki–Miyaura reactions of heteroaryl bromides in aqueous media. Green Chem 10(8):868–872CrossRefGoogle Scholar
  28. 28.
    Razler TM et al (2009) A preparatively convenient ligand-free catalytic PEG 2000 Suzuki–Miyaura coupling. J Org Chem 74(3):1381–1384CrossRefGoogle Scholar
  29. 29.
    Tao L et al (2009) Generation of Pd nanoparticles in situ from PdCl2 in TBAF: an efficient and reusable catalytic system for the Suzuki–Miyaura reaction under ligand- and solvent-free conditions. Chin J Chem 27(7):1365–1373CrossRefGoogle Scholar
  30. 30.
    Islam RU et al (2011) Conjugated polymer stabilized palladium nanoparticles as a versatile catalyst for Suzuki cross-coupling reactions for both aryl and heteroaryl bromide systems. Catal Sci Technol 1(2):308–315CrossRefGoogle Scholar
  31. 31.
    Lee D-H, Jung J-Y, Jin M-J (2010) Highly active and recyclable silica gel-supported palladium catalyst for mild cross-coupling reactions of unactivated heteroaryl chlorides. Green Chem 12(11):2024–2029CrossRefGoogle Scholar
  32. 32.
    Kitamura Y et al (2010) Ligand-free and heterogeneous palladium on carbon-catalyzed hetero-Suzuki–Miyaura cross-coupling. Adv Synth Catal 352(4):718–730CrossRefGoogle Scholar
  33. 33.
    Firouzabadi H et al (2011) Agarose hydrogel as an effective bioorganic ligand and support for the stabilization of palladium nanoparticles. Application as a recyclable catalyst for Suzuki–Miyaura reaction in aqueous media. RSC Adv 1(6):1013–1019CrossRefGoogle Scholar
  34. 34.
    Firouzabadi H et al (2011) Palladium nanoparticles supported on aminopropyl-functionalized clay as efficient catalysts for phosphine-free C–C bond formation via Mizoroki–Heck and Suzuki–Miyaura reactions. Bull Chem Soc Jpn 84(1):100–109CrossRefGoogle Scholar
  35. 35.
    Schoeps D et al (2009) Solvent-resistant nanofiltration of enlarged (NHC)Pd(allyl)Cl complexes for cross-coupling reactions. Organometallics 28(13):3922–3927CrossRefGoogle Scholar
  36. 36.
    Borhade SR, Waghmode SB (2011) Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls. Beilstein J Org Chem 7(41):310–319CrossRefGoogle Scholar
  37. 37.
    Amoroso F et al (2009) An efficient and reusable catalyst based on Pd/CeO2 for the room temperature aerobic Suzuki–Miyaura reaction in water/ethanol. J Mol Catal A Chem 315(2):197–204CrossRefGoogle Scholar
  38. 38.
    Zhang P-P et al (2009) Pd-CNT-catalyzed ligand-less and additive-free heterogeneous Suzuki–Miyaura cross-coupling of aryl bromides. Tetrahedron Lett 50(31):4455–4458CrossRefGoogle Scholar
  39. 39.
    Fernando DP et al (2012) Spiroazetidine-piperidine bromoindane as a key modular template to access a variety of compounds via C–C and C–N bond-forming reactions. Tetrahedron Lett 53(47):6351–6354CrossRefGoogle Scholar
  40. 40.
    Siddle JS, Batsanov AS, Bryce MR (2008) Sequential metal-catalyzed N-heteroarylation and C–C cross-coupling reactions: an expedient route to tris(hetero)aryl systems. Eur J Org Chem 16:2746–2750CrossRefGoogle Scholar
  41. 41.
    Anderson SC, Handy ST (2010) One-pot double Suzuki couplings of dichloropyrimidines. Synthesis 16:2721–2724Google Scholar
  42. 42.
    Tasch BOA, Merkul E, Mueller TJJ (2011) One-pot synthesis of diazine-bridged bisindoles and concise synthesis of the marine alkaloid hyrtinadine A. Eur J Org Chem 2011(24):4532–4535CrossRefGoogle Scholar
  43. 43.
    Merkul E, Schaefer E, Mueller TJJ (2011) Rapid synthesis of bis(hetero)aryls by one-pot Masuda borylation-Suzuki coupling sequence and its application to concise total syntheses of meridianins A and G. Org Biomol Chem 9(9):3139–3141CrossRefGoogle Scholar
  44. 44.
    Grob JE et al (2011) One-pot reductive amination and Suzuki–Miyaura cross-coupling of formyl aryl and heteroaryl MIDA boronates in array format. J Org Chem 76(12):4930–4940CrossRefGoogle Scholar
  45. 45.
    Molander GA, Trice SLJ, Kennedy SM (2012) Scope of the two-step, one-pot palladium-catalyzed borylation/Suzuki cross-coupling reaction utilizing bis-boronic acid. J Org Chem 77(19):8678–8688CrossRefGoogle Scholar
  46. 46.
    Avitia B et al (2011) Single-flask preparation of polyazatriaryl ligands by sequential borylation/Suzuki–Miyaura coupling. Tetrahedron Lett 52(14):1631–1634CrossRefGoogle Scholar
  47. 47.
    Whelligan DK et al (2010) Two-step synthesis of aza- and diazaindoles from chloroamino-N-heterocycles using ethoxyvinylborolane. J Org Chem 75(1):11–15CrossRefGoogle Scholar
  48. 48.
    Roy S et al (2010) Direct synthesis of Cbz-protected (2-amino)-6-(2-aminoethyl)pyridines. Tetrahedron 66(11):1973–1979CrossRefGoogle Scholar
  49. 49.
    Achelle S et al (2008) Bis- and tris(arylethynyl)pyrimidine oligomers: synthesis and light-emitting properties. Tetrahedron 64(12):2783–2791CrossRefGoogle Scholar
  50. 50.
    Achelle S et al (2009) Star-shaped ethynylpyrimidine with long alkoxyl side chains: synthesis, fluorescence and 2D self-assembling. Tetrahedron Lett 50(50):7055–7058CrossRefGoogle Scholar
  51. 51.
    Hussain M et al (2010) Synthesis of aryl-substituted pyrimidines by site-selective Suzuki–Miyaura cross-coupling reactions of 2,4,5,6-tetrachloropyrimidine. Adv Synth Catal 352(9):1429–1433CrossRefGoogle Scholar
  52. 52.
    Molander GA, Sandrock DL (2009) Utilization of potassium vinyltrifluoroborate in the development of a 1,2-dianion equivalent. Org Lett 11(11):2369–2372CrossRefGoogle Scholar
  53. 53.
    Noel T, Musacchio AJ (2011) Suzuki–Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow. Org Lett 13(19):5180–5183CrossRefGoogle Scholar
  54. 54.
    Shu W et al (2011) Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/Suzuki–Miyaura cross-coupling sequence. Angew Chem Int Ed 50(45):10665–10669CrossRefGoogle Scholar
  55. 55.
    Oberli MA, Buchwald SL (2012) A general method for Suzuki-Miyaura coupling reactions using lithium triisopropyl borates. Org Lett 14(17):4606–4609CrossRefGoogle Scholar
  56. 56.
    Radkowski K, Seidel G, Fuerstner A (2011) Suzuki–Miyaura cross coupling reactions of B-allenyl-9-BBN. Chem Lett 40(9):950–952CrossRefGoogle Scholar
  57. 57.
    Billingsley KL, Buchwald SL (2008) A general and efficient method for the Suzuki–Miyaura coupling of 2-pyridyl nucleophiles. Angew Chem Int Ed 47(25):4695–4698CrossRefGoogle Scholar
  58. 58.
    Dick GR, Woerly EM, Burke MD (2012) A general solution for the 2-pyridyl problem. Angew Chem Int Ed 51(11):2667–2672, S2667/1-S2667/80CrossRefGoogle Scholar
  59. 59.
    Molander GA, Canturk B (2008) Preparation of potassium alkoxymethyltrifluoroborates and their cross-coupling with aryl chlorides. Org Lett 10(11):2135–2138CrossRefGoogle Scholar
  60. 60.
    Molander GA, Hiebel M-A (2010) Synthesis of amidomethyltrifluoroborates and their use in cross-coupling reactions. Org Lett 12(21):4876–4879CrossRefGoogle Scholar
  61. 61.
    Fleury-Bregeot N et al (2012) Suzuki-Miyaura cross-coupling of potassium alkoxyethyltrifluoroborates: access to aryl/heteroarylethyloxy motifs. J Org Chem 77(22):10399–10408CrossRefGoogle Scholar
  62. 62.
    Math SK et al (2012) Substituted potassium internal vinyltrifluoroborates: preparation and use in Suzuki–Miyaura cross-coupling reactions. Tetrahedron Lett 53(23):2847–2849CrossRefGoogle Scholar
  63. 63.
    Thakur A, Zhang K, Louie J (2012) Suzuki–Miyaura coupling of heteroaryl boronic acids and vinyl chlorides. Chem Commun 48(2):203–205CrossRefGoogle Scholar
  64. 64.
    Molander GA, Canturk B, Kennedy LE (2009) Scope of the Suzuki–Miyaura cross-coupling reactions of potassium heteroaryltrifluoroborates. J Org Chem 74(3):973–980CrossRefGoogle Scholar
  65. 65.
    Molander GA, Beaumard F (2010) Nickel-catalyzed C–O activation of phenol derivatives with potassium heteroaryltrifluoroborates. Org Lett 12(18):4022–4025CrossRefGoogle Scholar
  66. 66.
    Molander GA et al (2010) Nickel-catalyzed cross-coupling of potassium aryl- and heteroaryltrifluoroborates with unactivated alkyl halides. Org Lett 12(24):5783–5785CrossRefGoogle Scholar
  67. 67.
    Grimm JB, Wilson KJ, Witter DJ (2009) A divergent approach to the synthesis of 3-substituted-2-pyrazolines: Suzuki cross-coupling of 3-sulfonyloxy-2-pyrazolines. J Org Chem 74(16):6390–6393CrossRefGoogle Scholar
  68. 68.
    Menard F, Lautens M (2008) Chemodivergence in enantioselective desymmetrization of diazabicycles: ring-opening versus reductive arylation. Angew Chem Int Ed 47(11):2085–2088CrossRefGoogle Scholar
  69. 69.
    Panteleev J, Menard F, Lautens M (2008) Ligand control in enantioselective desymmetrization of bicyclic hydrazines: Rhodium(I)-catalyzed ring-opening versus hydroarylation. Adv Synth Catal 350(18):2893–2902CrossRefGoogle Scholar
  70. 70.
    Bexrud J, Lautens M (2010) A rhodium IBiox[(-)-menthyl] complex as a highly selective catalyst for the asymmetric hydroarylation of azabicyles: an alternative route to epibatidine. Org Lett 12(14):3160–3163CrossRefGoogle Scholar
  71. 71.
    Hattori K et al (2009) Formation of highly selective and efficient interstrand cross-linking to thymine without photo-irradiation. Chem Commun 2009(42):6463–6465CrossRefGoogle Scholar
  72. 72.
    Wicke L, Engels JW (2012) Postsynthetic on column RNA Labeling via stille coupling. Bioconjugate Chem 23(3):627–642Google Scholar
  73. 73.
    Sun Q, Suzenet F, Guillaumet G (2010) Desulfitative cross-coupling of protecting group-free 2-thiouracil derivatives with organostannanes. J Org Chem 75(10):3473–3476Google Scholar
  74. 74.
    Bukovec C, Kazmaier U (2011) Stannylated allyl carbonates as versatile building blocks for the diversity oriented synthesis of allylic amines and amides. Org Biomol Chem 9(8):2743–2750Google Scholar
  75. 75.
    Hadad C et al (2011) 4-Arylvinyl-2,6-di(pyridin-2-yl)pyrimidines: synthesis and optical properties. J Org Chem 76(10):3837–3845Google Scholar
  76. 76.
    Nyffenegger C et al (2008) An efficient route to polynitrogen-fused tricycles via a nitrene-mediated N–N bond formation under microwave irradiation. Tetrahedron 64(40):9567–9573CrossRefGoogle Scholar
  77. 77.
    Suzuki M et al (2009) Pd0-Mediated rapid coupling between methyl iodide and heteroarylstannanes: an efficient and general method for the incorporation of a positron-emitting 11C radionuclide into heteroaromatic frameworks. Chem Eur J 15(45):12489–12495CrossRefGoogle Scholar
  78. 78.
    Hirano Y, Kojima S, Yamamoto Y (2011) A hypervalent pentacoordinate boron compound with an N-B-N three-center four-electron bond. J Org Chem 76(7):2123–2131Google Scholar
  79. 79.
    Joubert N et al (2008) Modular synthesis of 4-aryl- and 4-amino-substituted benzene C-2′-deoxyribonucleosides. Synthesis 12:1918–1932Google Scholar
  80. 80.
    Bardagi JI, Rossi RA (2008) A novel approach to the synthesis of 6-substituted uracils in three-step, one-pot reactions. J Org Chem 73(12):4491–4495CrossRefGoogle Scholar
  81. 81.
    Calimsiz S et al (2010) Pd-PEPPSI-IPent: low-temperature negishi cross-coupling for the preparation of highly functionalized, tetra-ortho-substituted biaryls. Angew Chem Int Ed 49(11):2014–2017Google Scholar
  82. 82.
    Bolliger JL, Frech CM (2010) Pd(Cl)2{P(NC5H10)(C6H11)2}2 – a highly effective and extremely versatile palladium-based negishi catalyst that efficiently and reliably operates at low catalyst loadings. Chem Eur J 16(36):11072–11081Google Scholar
  83. 83.
    Xi Z, Zhou Y, Chen W (2008) Efficient negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes. J Org Chem 73(21):8497–8501CrossRefGoogle Scholar
  84. 84.
    Gerber R, Frech CM (2011) Negishi cross-coupling reactions catalyzed by an aminophosphine-based Nickel system: a reliable and general applicable reaction protocol for the high-yielding synthesis of biaryls. Chem Eur J 17(42):11893–11904CrossRefGoogle Scholar
  85. 85.
    Begouin J-M, Gosmini C (2009) Cobalt-catalyzed cross-coupling between in situ prepared arylzinc halides and 2-chloropyrimidine or 2-chloropyrazine. J Org Chem 74(8):3221–3224CrossRefGoogle Scholar
  86. 86.
    Begouin J-M, Rivard M, Gosmini C (2010) Cobalt-catalyzed C-SMe bond activation of heteroaromatic thioethers. Chem Commun (Cambridge, UK) 46(32):5972–5974CrossRefGoogle Scholar
  87. 87.
    Milne JE, Buchwald SL (2004) An extremely active catalyst for the negishi cross-coupling reaction. J Am Chem Soc 126(40):13028–13032CrossRefGoogle Scholar
  88. 88.
    Luzung MR, Patel JS, Yin J (2010) A mild Negishi cross-coupling of 2-heterocyclic organozinc reagents and aryl chlorides. J Org Chem 75(23):8330–8332CrossRefGoogle Scholar
  89. 89.
    Dunst C, Knochel P (2011) Selective Mg insertion into substituted mono- and dichloro arenes in the presence of LiCl: a new preparation of boscalid. Synlett (14):2064–2068Google Scholar
  90. 90.
    Mosrin M, Boudet N, Knochel P (2008) Regio- and chemoselective magnesiation of protected uracils and thiouracils using TMPMgCl · LiCl and TMP2Mg · 2LiCl. Org Biomol Chem 6(18):3237–3239CrossRefGoogle Scholar
  91. 91.
    Bluemke T et al (2010) Preparation of functionalized organoaluminiums by direct insertion of aluminum to unsaturated halides. Nat Chem 2(4):313–318CrossRefGoogle Scholar
  92. 92.
    Bluemke TD et al (2011) New preparation of benzylic aluminum and zinc organometallics by direct insertion of aluminum powder. Org Lett 13(24):6440–6443CrossRefGoogle Scholar
  93. 93.
    Omedes M et al (2008) Diastereoselective addition of organozinc and organomagnesium reagents to 2-(2′-pyrimidyl)ferrocenecarbaldehyde. Tetrahedron 64(18):3953–3959CrossRefGoogle Scholar
  94. 94.
    Hasnik Z, Silhar P, Hocek M (2008) Hydroxymethylations of aryl halides by Pd-catalyzed cross-couplings with (benzoyloxy)methylzinc iodide. Scope and limitations of the reaction. Synlett 4:543–546Google Scholar
  95. 95.
    Suhartono M et al (2010) Synthetic aromatic amino acids from a Negishi cross-coupling reaction. Synthesis 2:293–303Google Scholar
  96. 96.
    Kwak Y-S et al (2009) Efficient and convenient preparation of 3-aryl-2,2-dimethylpropanoates via Negishi coupling. Chem Commun (Cambridge, UK) 2009(16):2145–2147CrossRefGoogle Scholar
  97. 97.
    Beng TK, Gawley RE (2011) Application of catalytic dynamic resolution of N-Boc-2-lithiopiperidine to the asymmetric synthesis of 2-aryl and 2-vinyl piperidines. Org Lett 13(3):394–397CrossRefGoogle Scholar
  98. 98.
    Han C, Buchwald SL (2009) Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides. J Am Chem Soc 131(22):7532–7533CrossRefGoogle Scholar
  99. 99.
    Thaler T et al (2010) Highly diastereoselective Csp3-Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nat Chem 2(2):125–130CrossRefGoogle Scholar
  100. 100.
    Lin L-Y et al (2011) Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer. J Mater Chem 21(16):5950–5958CrossRefGoogle Scholar
  101. 101.
    Manolikakes G et al (2009) Negishi cross-couplings compatible with unprotected amide functions. Chem Eur J 15(6):1324–1328CrossRefGoogle Scholar
  102. 102.
    Gosselin F et al (2012) Heteroarylation of azine N-oxides. Org Lett 14(3):862–865CrossRefGoogle Scholar
  103. 103.
    Snegaroff K et al (2010) Deprotonative metalation of substituted benzenes and heteroaromatics using amino/alkyl mixed lithium-zinc combinations. Chem Eur J 16(27):8191–8201CrossRefGoogle Scholar
  104. 104.
    Seggio A et al (2008) Synthesis of unsymmetrical heterobiaryls using palladium-catalyzed cross-coupling reactions of lithium organozincates. Synlett 19:2955–2960Google Scholar
  105. 105.
    Seggio A et al (2009) Palladium-catalyzed cross-couplings of lithium arylzincates with aromatic halides: synthesis of analogues of isomeridianin G and evaluation as GSK-3β, inhibitors. Synthesis 21:3617–3632Google Scholar
  106. 106.
    Melzig L, Metzger A, Knochel P (2011) Pd- and Ni-catalyzed cross-coupling reactions of functionalized organozinc reagents with unsaturated thioethers. Chem Eur J 17(10):2948–2956CrossRefGoogle Scholar
  107. 107.
    Metzger A, Melzig L, Knochel P (2010) Scaled-up transition-metal-catalyzed cross-coupling reactions of thioether-substituted N-heterocycles with organozinc reagents. Synthesis 16:2853–2858Google Scholar
  108. 108.
    Metzger A et al (2009) Pd-catalyzed cross-coupling of functionalized organozinc reagents with thiomethyl-substituted heterocycles. Org Lett 11(18):4228–4231CrossRefGoogle Scholar
  109. 109.
    Metzger A et al (2008) A general preparation of polyfunctional benzylic zinc organometallic compounds. Chem Asian J 3(8–9):1678–1691CrossRefGoogle Scholar
  110. 110.
    Schade MA et al (2008) Nickel-catalyzed cross-coupling reactions of benzylic zinc reagents with aromatic bromides, chlorides and tosylates. Chem Commun (Cambridge, UK) 2008(26):3046–3048CrossRefGoogle Scholar
  111. 111.
    Mosrin M, Knochel P (2009) Regio- and chemoselective metalation of chloropyrimidine derivatives with TMPMgCl · LiCl and TMP2Zn · 2MgCl2 · 2LiCl. Chem Eur J 15(6):1468–1477CrossRefGoogle Scholar
  112. 112.
    Saleh S et al (2009) A straightforward copper-free palladium methodology for the selective alkynylation of a wide variety of S-, O-, and N-based mono- and diheterocyclic bromides and chlorides. Tetrahedron 65(34):7146–7150CrossRefGoogle Scholar
  113. 113.
    Yi T et al (2012) Highly efficient Pd/tetraphosphine catalytic system for copper-free Sonogashira reactions of aryl bromides with terminal alkynes. Catal Lett 142(5):594–600CrossRefGoogle Scholar
  114. 114.
    Ngassa FN, Lindsey EA, Haines BE (2009) The first Cu- and amine-free Sonogashira-type cross-coupling in the C-6-alkynylation of protected 2′-deoxyadenosine. Tetrahedron 65(21):4085–4091CrossRefGoogle Scholar
  115. 115.
    Pu X, Li H, Colacot TJ (2013) Heck alkynylation (copper-free Sonogashira coupling) of aryl and heteroaryl chlorides, using Pd complexes of t-Bu2(p-NMe2C6H4)P: understanding the structure-activity relationships and copper effects. J Org Chem 78(2):568–581CrossRefGoogle Scholar
  116. 116.
    Cordoba M et al (2013) Sonogashira reaction on pyridinium N-haloheteroarylaminides: regioselective synthesis of N-alkyl-3-alkynyl-5-arylpyridin-2-yl amines. Tetrahedron 69(11):2484–2493CrossRefGoogle Scholar
  117. 117.
    Fleckenstein CA, Plenio H (2008) Aqueous/organic cross coupling: Sustainable protocol for Sonogashira reactions of heterocycles. Green Chem 10(5):563–570CrossRefGoogle Scholar
  118. 118.
    Lipshutz BH, Chung DW, Rich B (2008) Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org Lett 10(17):3793–3796CrossRefGoogle Scholar
  119. 119.
    Firouzabadi H, Iranpoor N, Gholinejad M (2010) Recyclable palladium-catalyzed Sonogashira–Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J Mol Catal A Chem 321(1–2):110–116CrossRefGoogle Scholar
  120. 120.
    Barros JC et al (2011) Sonogashira coupling using PdEnCat: a copper-, phosphine-, amine- and microwave-free alternative to the preparation of arylalkynes. Appl Organomet Chem 25(11):820–823CrossRefGoogle Scholar
  121. 121.
    Firouzabadi H, Iranpoor N, Ghaderi A (2011) Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand- and amine-free Sonogashira–Hagihara reaction. Org Biomol Chem 9(3):865–871CrossRefGoogle Scholar
  122. 122.
    Firouzabadi H et al (2011) Magnetite (Fe3O4) nanoparticles-catalyzed Sonogashira-Hagihara reactions in ethylene glycol under ligand-free conditions. Adv Synth Catal 353(1):125–132CrossRefGoogle Scholar
  123. 123.
    Wu M et al (2008) The use of a bifunctional copper catalyst in the cross-coupling reactions of aryl and heteroaryl halides with terminal alkynes. Eur J Org Chem 23:4050–4054CrossRefGoogle Scholar
  124. 124.
    Torborg C, Zapf A, Beller M (2008) Palladium catalysts for highly selective Sonogashira reactions of aryl and heteroaryl bromides. ChemSusChem 1(1–2):91–96CrossRefGoogle Scholar
  125. 125.
    Chowdhury C et al (2009) Expedient and rapid synthesis of 1,2,3-triazolo[5,1-c]morpholines through Palladium-copper catalysis. J Org Chem 74(9):3612–3615CrossRefGoogle Scholar
  126. 126.
    Gendron T, Davioud-Charvet E, Muller TJJ (2012) Versatile synthesis of dissymmetric diarylideneacetones via a palladium-catalyzed coupling-isomerization reaction. Synthesis 44(24):3829–3835CrossRefGoogle Scholar
  127. 127.
    West K et al (2008) Synthesis, structures and reactions of isolable terminal aryl/biaryl-butadiynes (Ar-C≡C-C≡CH). Eur J Org Chem 30:5093–5098CrossRefGoogle Scholar
  128. 128.
    West K et al (2008) Carbon-rich molecules: synthesis and isolation of aryl/heteroaryl terminal bis(butadiynes) (HC≡C-C≡C-Ar-C≡C-C≡CH) and their applications in the synthesis of oligo(arylenebutadiynylene) molecular wires. Org Biomol Chem 6(11):1934–1937CrossRefGoogle Scholar
  129. 129.
    Malik I et al (2011) Synthesis and photophysical properties of alkynylated pyrimidines by site-selective Sonogashira reactions of 2,4,5,6-tetrachloropyrimidine; first synthesis of tetraalkynyl-pyrimidines. Eur J Org Chem 11:2088–2093CrossRefGoogle Scholar
  130. 130.
    Kantchev EAB et al (2008) Practical Heck–Mizoroki coupling protocol for challenging substrates mediated by an N-heterocyclic carbene-ligated palladacycle. Org Lett 10(18):3949–3952CrossRefGoogle Scholar
  131. 131.
    Peh G-R et al (2009) N-Heterocycle carbene (NHC)-ligated cyclopalladated N,N-dimethylbenzylamine: a highly active, practical and versatile catalyst for the Heck–Mizoroki reaction. Org Biomol Chem 7(10):2110–2119CrossRefGoogle Scholar
  132. 132.
    Firouzabadi H, Iranpoor N, Gholinejad M (2009) 2-Aminophenyl diphenylphosphinite as a new ligand for heterogeneous palladium-catalyzed Heck–Mizoroki reactions in water in the absence of any organic co-solvent. Tetrahedron 65(34):7079–7084CrossRefGoogle Scholar
  133. 133.
    Firouzabadi H, Iranpoor N, Ghaderi A (2011) Solvent-free Mizoroki–Heck reaction catalyzed by palladium nanoparticles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support. J Mol Catal A Chem 347(1–2):38–45CrossRefGoogle Scholar
  134. 134.
    Iranpoor N et al (2012) Palladium nanoparticles supported on silicadiphenyl phosphinite (SDPP) as efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. J Organomet Chem 708–709:118–124CrossRefGoogle Scholar
  135. 135.
    Firouzabadi H et al (2012) Palladium nano-particles supported on agarose as efficient catalyst and bioorganic ligand for C–C bond formation via solventless Mizoroki–Heck reaction and Sonogashira–Hagihara reaction in polyethylene glycol (PEG 400). J Mol Catal A Chem 357:154–161CrossRefGoogle Scholar
  136. 136.
    He T et al (2008) Acetylation of N-heteroaryl bromides via PdCl2/(o-tolyl)3P catalyzed Heck reactions. Synthesis 6:887–890Google Scholar
  137. 137.
    Elboray EE, Gao C, Grigg R (2012) Skeletal diversity via Pd(0) catalysed three-component cascades of allene and halides or triflates with protected hydroxylamines and formamide. Tetrahedron 68(14):3103–3111CrossRefGoogle Scholar
  138. 138.
    Goegsig TM et al (2009) Heteroaromatic tosylates as electrophiles in regioselective Mizoroki–Heck-coupling reactions with electron-rich olefins. Chem Eur J 15(24):5950–5955, S5950/1-S5950/89CrossRefGoogle Scholar
  139. 139.
    Kubelka T, Slavetinska L, Hocek M (2012) A general regioselective approach to 2,4-disubstituted pyrimidin-5-yl C-2-deoxyribonucleosides. Synthesis 44(6):953–965CrossRefGoogle Scholar
  140. 140.
    Kubelka T et al (2010) Synthesis of 2,4-disubstituted pyrimidin-5-yl C-2′-deoxyribonucleosides by sequential regioselective reactions of 2,4-dichloropyrimidine nucleosides. Eur J Org Chem 2100(14):2666–2669CrossRefGoogle Scholar
  141. 141.
    Mehta VP, Modha SG, Van der Eycken E (2009) Mild room-temperature palladium-catalyzed C3-arylation of 2(1H)-pyrazinones via a desulfitative Kumada-type cross-coupling reaction. J Org Chem 74(17):6870–6873CrossRefGoogle Scholar
  142. 142.
    Prokopcova H, Kappe CO (2009) The Liebeskind–Srogl C–C cross-coupling reaction. Angew Chem Int Ed 48(13):2276–2286CrossRefGoogle Scholar
  143. 143.
    Liebeskind LS, Srogl J (2002) Heteroaromatic thioether-boronic acid cross-coupling under neutral reaction conditions. Org Lett 4(6):979–981CrossRefGoogle Scholar
  144. 144.
    Manolikakes G, Knochel P (2009) Radical catalysis of Kumada cross-coupling reactions using functionalized Grignard reagents. Angew Chem Int Ed 48(1):205–209CrossRefGoogle Scholar
  145. 145.
    Iglesias MJ, Prieto A, Nicasio MC (2012) Kumada–Tamao–Corriu coupling of heteroaromatic chlorides and aryl ethers catalyzed by (IPr)Ni(allyl)Cl. Org Lett 14(17):4318–4321CrossRefGoogle Scholar
  146. 146.
    Xi Z et al (2007) Synthesis and structural characterization of nickel(II) complexes supported by pyridine-functionalized N-heterocyclic carbene ligands and their catalytic activities for Suzuki coupling. Organometallics 26(26):6636–6642CrossRefGoogle Scholar
  147. 147.
    Xi Z, Liu B, Chen W (2008) Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes. J Org Chem 73(10):3954–3957CrossRefGoogle Scholar
  148. 148.
    Gu S, Chen W (2009) Pincer complexes of palladium- and nickel-containing 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene as efficient aqueous Sonogashira and Kumada coupling reactions. Organometallics 28(3):909–914CrossRefGoogle Scholar
  149. 149.
    Chen C, Qiu H, Chen W (2012) Trinuclear copper(I) complex of 1,3-bis(2-pyridinylmethyl)imidazolylidene as a carbene-transfer reagent for the preparation of catalytically active nickel(II) and palladium(II) complexes. J Organomet Chem 696(26):4166–4172CrossRefGoogle Scholar
  150. 150.
    Ackermann L et al (2010) Kumada–Corriu cross-couplings with 2-pyridyl grignard reagents. Chem Eur J 16(11):3300–3303CrossRefGoogle Scholar
  151. 151.
    Jin Z et al (2012) Biphenyl-based diaminophosphine oxides as air-stable preligands for the nickel-catalyzed Kumada–Tamao–Corriu coupling of deactivated aryl chlorides, fluorides, and tosylates. Chem Eur J 18(2):446–450, S446/1-S446/93CrossRefGoogle Scholar
  152. 152.
    Goegsig TM, Lindhardt AT, Skrydstrup T (2009) Heteroaromatic sulfonates and phosphates as electrophiles in iron-catalyzed cross-couplings. Org Lett 11(21):4886–4888CrossRefGoogle Scholar
  153. 153.
    Kuzmina OM et al (2012) Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents. Org Lett 14(18):4818–4821CrossRefGoogle Scholar
  154. 154.
    Modha SG et al (2011) An expeditious route toward pyrazine-containing nucleoside analogues. J Org Chem 76(3):846–856CrossRefGoogle Scholar
  155. 155.
    Arshad N, Hashim J, Kappe CO (2009) Palladium(0)-catalyzed, copper(I)-mediated coupling of cyclic thioamides with alkenylboronic acids, organostannanes, and siloxanes. J Org Chem 74(14):5118–5121CrossRefGoogle Scholar
  156. 156.
    Farahat AA, Boykin DW (2011) Unusual regioselective reactions of 2,4-bis(methylsulfanyl)pyrimidine under modified Suzuki and Stille cross-coupling conditions. Synthesis 44(1):120–124Google Scholar
  157. 157.
    Brehova P et al (2011) The efficient synthesis of 2-arylpyrimidine acyclic nucleoside phosphonates using Liebeskind–Srogl cross-coupling reaction. Tetrahedron 67(38):7379–7385CrossRefGoogle Scholar
  158. 158.
    Van Rossom W et al (2008) Efficient post-macrocyclization functionalizations of oxacalix[2]arene[2]pyrimidines. Org Lett 10(4):585–588CrossRefGoogle Scholar
  159. 159.
    Shen Q, Ogata T, Hartwig JF (2008) Highly reactive, general and long-lived catalysts for palladium-catalyzed amination of heteroaryl and aryl chlorides, bromides, and iodides: scope and structure–activity relationships. J Am Chem Soc 130(20):6586–6596CrossRefGoogle Scholar
  160. 160.
    Maiti D et al (2011) Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chem Sci 2(1):57–68CrossRefGoogle Scholar
  161. 161.
    McGowan MA, Henderson JL, Buchwald SL (2012) Palladium-catalyzed N-arylation of 2-aminothiazoles. Org Lett 14(6):1432–1435CrossRefGoogle Scholar
  162. 162.
    Fors BP et al (2009) An efficient system for the Pd-catalyzed cross-coupling of amides and aryl chlorides. Tetrahedron 65(33):6576–6583CrossRefGoogle Scholar
  163. 163.
    Fors BP, Davis NR, Buchwald SL (2009) An efficient process for Pd-catalyzed C–N cross-coupling reactions of aryl iodides: insight into controlling factors. J Am Chem Soc 131(16):5766–5768CrossRefGoogle Scholar
  164. 164.
    Ueda S, Su M-J, Buchwald SL (2011) Highly N2-selective palladium-catalyzed arylation of 1,2,3-triazoles. Angew Chem Int Ed 50(38):8944–8947CrossRefGoogle Scholar
  165. 165.
    Ueda S et al (2012) Me3(OMe)tBuXPhos: a surrogate ligand for Me4tBuXPhos in palladium-catalyzed C–N and C–O bond-forming reactions. J Org Chem 77(5):2543–2547CrossRefGoogle Scholar
  166. 166.
    Rodriguez S et al (2011) Oxaphosphole-based monophosphorus ligands for palladium-catalyzed amination reactions. Adv Synth Catal 353(4):533–537CrossRefGoogle Scholar
  167. 167.
    Marion N et al (2006) Modified (NHC)Pd(allyl)Cl (NHC=N-heterocyclic carbene) complexes for room-temperature Suzuki–Miyaura and Buchwald–Hartwig reactions. J Am Chem Soc 128(12):4101–4111CrossRefGoogle Scholar
  168. 168.
    Organ MG et al (2008) Pd-catalyzed aryl amination mediated by well defined, N-heterocyclic carbene (NHC)-Pd precatalysts, PEPPSI. Chem Eur J 14(8):2443–2452CrossRefGoogle Scholar
  169. 169.
    Elmkaddem MK et al (2010) Efficient synthesis of aminopyridine derivatives by copper catalyzed amination reactions. Chem Commun (Cambridge, UK) 46(6):925–927CrossRefGoogle Scholar
  170. 170.
    Xi Z et al (2008) CuI/L (L=pyridine-functionalized 1,3-diketones) catalyzed C–N coupling reactions of aryl halides with NH-containing heterocycles. Tetrahedron 64(19):4254–4259CrossRefGoogle Scholar
  171. 171.
    Chen H et al (2010) Mild conditions for copper-catalyzed N-arylation of imidazoles. Synthesis 9:1505–1511Google Scholar
  172. 172.
    Cao C et al (2012) Cheap Cu(I)/hexamethylenetetramine (HMTA) catalytic system for C–N coupling reactions. Synth Commun 42(2):279–284CrossRefGoogle Scholar
  173. 173.
    Cheng D et al (2008) D-Glucosamine – a natural ligand for the N-arylation of imidazoles with aryl and heteroaryl bromides catalyzed by CuI. Green Chem 10(2):171–173CrossRefGoogle Scholar
  174. 174.
    Suresh P, Pitchumani K (2008) Per-6-amino-β-cyclodextrin as an efficient supramolecular ligand and host for Cu(I)-catalyzed N-arylation of imidazole with aryl bromides. J Org Chem 73(22):9121–9124CrossRefGoogle Scholar
  175. 175.
    Kwon JK et al (2011) N-Arylation of carbazole by microwave-assisted ligand-free catalytic CuI reaction. Tetrahedron 67(26):4820–4825CrossRefGoogle Scholar
  176. 176.
    Liu Z-J et al (2010) Ligand-free copper-catalyzed amination of heteroaryl halides with alkyl- and arylamines. Adv Synth Catal 352(18):3158–3162CrossRefGoogle Scholar
  177. 177.
    Johansson Seechurn CCC, Parisel SL, Colacot TJ (2011) Air-stable Pd(R-allyl)LCl (L=Q-Phos, P(t-Bu)3, etc.) systems for C-C/N couplings: insight into the structure–activity relationship and catalyst activation pathway. J Org Chem 76(19):7918–7932CrossRefGoogle Scholar
  178. 178.
    Moss TA et al (2012) Room-temperature palladium-catalyzed coupling of heteroaryl amines with aryl or heteroaryl bromides. Synlett 23(2):285–289CrossRefGoogle Scholar
  179. 179.
    Tang B-X et al (2008) N-arylations of nitrogen-containing heterocycles with aryl and heteroaryl halides using a copper(I) oxide nanoparticle/1,10-phenanthroline catalytic system. Synthesis 11:1707–1716Google Scholar
  180. 180.
    Kantam ML, Ramani T, Chakrapani L (2008) N-Arylation of heterocycles with chloro- and fluoroarenes using resin-supported sulfonato-Cu(salen) complex. Synth Commun 38(4):626–636CrossRefGoogle Scholar
  181. 181.
    Vimolratana M, Simard JL, Brown SP (2011) Palladium-catalyzed amidation of 2-chloropyrimidines. Tetrahedron Lett 52(9):1020–1022CrossRefGoogle Scholar
  182. 182.
    Baffoe J, Hoe MY, Toure BB (2010) Copper-mediated N-heteroarylation of primary sulfonamides: synthesis of mono-N-heteroaryl sulfonamides. Org Lett 12(7):1532–1535CrossRefGoogle Scholar
  183. 183.
    Wang X et al (2012) Copper-catalyzed N-arylation of sulfonamides with aryl bromides under mild conditions. Tetrahedron Lett 53(1):7–10CrossRefGoogle Scholar
  184. 184.
    Anjanappa P et al (2008) 2-(Trimethylsilyl)ethanesulfonyl amide as a new ammonia equivalent for palladium-catalyzed amination of aryl halides. Tetrahedron Lett 49(31):4585–4587CrossRefGoogle Scholar
  185. 185.
    Prakash A et al (2011) Efficient indoles and anilines syntheses employing tert-butyl sulfinamide as ammonia surrogate. Tetrahedron Lett 52(43):5625–5628CrossRefGoogle Scholar
  186. 186.
    Funes Maldonado M et al (2012) Synthesis and arylation of unprotected sulfonimidamides. Tetrahedron 68(36):7456–7462CrossRefGoogle Scholar
  187. 187.
    Breitler S et al (2011) Synthesis of unsymmetrical diarylureas via Pd-catalyzed C-N cross-coupling reactions. Org Lett 13(12):3262–3265CrossRefGoogle Scholar
  188. 188.
    Hammoud H et al (2012) Direct guanidinylation of aryl and heteroaryl halides via copper-catalyzed cross-coupling reaction. J Org Chem 77(1):417–423CrossRefGoogle Scholar
  189. 189.
    Thiel OR et al (2010) Palladium-catalyzed coupling of aldehyde-derived hydrazones: practical synthesis of triazolopyridines and related heterocycles. Angew Chem Int Ed 49(45):8395–8398CrossRefGoogle Scholar
  190. 190.
    Vinogradova EV et al (2013) Palladium-catalyzed synthesis of N-Aryl carbamates. Org Lett 15(6):1394–1397CrossRefGoogle Scholar
  191. 191.
    Das AR, Medda A, Singha R (2010) Synthesis of biologically potent new 3-(heteroaryl)aminocoumarin derivatives via Buchwald–Hartwig C–N coupling. Tetrahedron Lett 51(7):1099–1102CrossRefGoogle Scholar
  192. 192.
    Shen Z et al (2010) Switching the chemoselectivity in the amination of 4-chloroquinazolines with aminopyrazoles. Org Lett 12(3):552–555CrossRefGoogle Scholar
  193. 193.
    Cordoba M, Izquierdo ML, Alvarez-Builla J (2008) New approaches to the synthesis of pyridinium N-heteroarylaminides. Tetrahedron 64(34):7914–7919CrossRefGoogle Scholar
  194. 194.
    Zhang G et al (2013) Palladium-catalyzed cross-coupling of electron-deficient heteroaromatic amines with heteroaryl halides. Synth Commun 43(3):456–463CrossRefGoogle Scholar
  195. 195.
    Lach F, Pasquet M-J, Chabanne M (2011) A general route to unsubstituted N-aryl and heteroarylaminobenzenesulfonamides. Tetrahedron Lett 52(16):1882–1887CrossRefGoogle Scholar
  196. 196.
    Hirao T et al (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55(3):909–913CrossRefGoogle Scholar
  197. 197.
    Belabassi Y, Alzghari S, Montchamp J-L (2008) Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J Organomet Chem 693(19):3171–3178CrossRefGoogle Scholar
  198. 198.
    Deal EL, Petit C, Montchamp J-L (2011) Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org Lett 13(12):3270–3273CrossRefGoogle Scholar
  199. 199.
    Zhang H-Y et al Nickel-catalyzed C–P cross-coupling of diphenylphosphine oxide with aryl chlorides. Org Biomol Chem 10(48):9627–9633Google Scholar
  200. 200.
    Kosugi M et al (1985) Palladium-catalyzed reaction of stannyl sulfide with aryl bromide. Preparation of aryl sulfide. Bull Chem Soc Jpn 58(12):3657–3658CrossRefGoogle Scholar
  201. 201.
    Xin K et al (2009) Efficient iron/copper cocatalyzed S-arylations of thiols with aryl halides. J Comb Chem 11(3):338–340CrossRefGoogle Scholar
  202. 202.
    Mo J et al (2011) Palladium-catalyzed carbon-sulfur cross-coupling reactions of aryl chlorides with indium tris(organothiolates). Chem Lett 40(9):980–982CrossRefGoogle Scholar
  203. 203.
    Babu SG, Karvembu R. Room temperature Ullmann type C–O and C–S cross coupling of aryl halides with phenol/thiophenol catalyzed by CuO nanoparticles. Tetrahedron Lett 54(13):1677–1680Google Scholar
  204. 204.
    Dash P, Janni M, Peruncheralathan S (2012) Trideuteriomethoxylation of aryl and heteroaryl halides. Eur J Org Chem 26:4914–4917CrossRefGoogle Scholar
  205. 205.
    Schoenberg A, Heck RF (1974) Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J Org Chem 39(23):3327–3331CrossRefGoogle Scholar
  206. 206.
    Roberts B, Liptrot D, Alcaraz L (2010) Novel aryl and heteroaryl acyl sulfamide synthesis via microwave-assisted palladium-catalyzed carbonylation. Org Lett 12(6):1264–1267CrossRefGoogle Scholar
  207. 207.
    Qu B et al (2009) Palladium-catalyzed aminocarbonylation of heteroaryl halides using di-tert-butylphosphinoferrocene. Tetrahedron Lett 50(45):6126–6129CrossRefGoogle Scholar
  208. 208.
    Borhade SR, Sandstroem A, Arvidsson PI (2013) Synthesis of novel aryl and heteroaryl acyl sulfonimidamides via Pd-catalyzed carbonylation using a nongaseous precursor. Org Lett 15(5):1056–1059CrossRefGoogle Scholar
  209. 209.
    Schareina T et al (2010) An improved protocol for palladium-catalyzed alkoxycarbonylations of aryl chlorides with alkyl formates. Adv Synth Catal 352(7):1205–1209CrossRefGoogle Scholar
  210. 210.
    Ueda T, Konishi H, Manabe K (2012) Palladium-catalyzed carbonylation of aryl, alkenyl, and allyl halides with phenyl formate. Org Lett 14(12):3100–3103CrossRefGoogle Scholar
  211. 211.
    Kang F-A, Sui Z, Murray WV (2008) Pd-catalyzed direct arylation of tautomerizable heterocycles with aryl boronic acids via C-OH bond activation using phosphonium salts. J Am Chem Soc 130(34):11300–11302CrossRefGoogle Scholar
  212. 212.
    Sharma A, Vachhani D, Van der Eycken E (2012) Direct heteroarylation of tautomerizable heterocycles into unsymmetrical and symmetrical biheterocycles via Pd/Cu-catalyzed phosphonium coupling. Org Lett 14(7):1854–1857CrossRefGoogle Scholar
  213. 213.
    Wang X et al (2008) Palladium-catalyzed one-pot synthesis of 2-alkyl-2-arylcyanoacetates. J Org Chem 73(4):1643–1645CrossRefGoogle Scholar
  214. 214.
    Mosquera A et al (2008) Cross-coupling reactions of indium organometallics with 2,5-dihalopyrimidines: synthesis of hyrtinadine A. Org Lett 10(17):3745–3748CrossRefGoogle Scholar
  215. 215.
    Schareina T et al (2008) A bio-inspired copper catalyst system for practical catalytic cyanation of aryl bromides. Synthesis 20:3351–3355Google Scholar
  216. 216.
    Chen Y-H, Knochel P (2008) Preparation of Aryl and heteroaryl indium(III) reagents by the direct insertion of indium in the presence of LiCl. Angew Chem Int Ed 47(40):7648–7651CrossRefGoogle Scholar
  217. 217.
    Chen Y-H, Sun M, Knochel P (2009) LiCl-mediated preparation of functionalized benzylic indium(III) halides and highly chemoselective palladium-catalyzed cross-coupling in a protic cosolvent. Angew Chem Int Ed 48(12):2236–2239CrossRefGoogle Scholar
  218. 218.
    Zhao X et al (2010) Microwave-assisted, Pd(0)-catalyzed cross-coupling of diazirines with aryl halides. Org Lett 12(23):5580–5583CrossRefGoogle Scholar
  219. 219.
    Sengmany S, Le Gall E, Leonel E (2011) An electrochemical synthesis of functionalized arylpyrimidines from 4-amino-6-chloropyrimidines and aryl halides. Molecules 16:5550–5560CrossRefGoogle Scholar
  220. 220.
    Bochatay VN et al (2013) Mechanistic exploration of the palladium-catalyzed process for the synthesis of benzoxazoles and benzothiazoles. J Org Chem 78(4):1471–1477CrossRefGoogle Scholar
  221. 221.
    Colomb J, Billard T (2013) Palladium-catalyzed desulfitative arylation of 3-haloquinolines with arylsulfinates. Tetrahedron Lett 54(11):1471–1474CrossRefGoogle Scholar
  222. 222.
    Zhou C et al (2012) Palladium-catalyzed desulfitative arylation by C–O bond cleavage of aryl triflates with sodium arylsulfinates. J Org Chem 77(22):10468–10472CrossRefGoogle Scholar
  223. 223.
    Asaki T et al (2007) Structure-activity studies on diphenylpyrazine derivatives: a novel class of prostacyclin receptor agonists. Bioorg Med Chem 15(21):6692–6704CrossRefGoogle Scholar
  224. 224.
    Buron F et al (2005) Synthesis of pyrazine alkaloids from Botryllus leachi. Diazines 43. J Org Chem 70(7):2616–2621CrossRefGoogle Scholar
  225. 225.
    Buron F et al (2007) Towards a biomimetic synthesis of barrenazine A. Tetrahedron Lett 48(25):4327–4330CrossRefGoogle Scholar
  226. 226.
    Corbett JW et al (2007) Heteroatom-linked indanylpyrazines are corticotropin releasing factor type-1 receptor antagonists. Bioorg Med Chem Lett 17(22):6250–6256CrossRefGoogle Scholar
  227. 227.
    Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589CrossRefGoogle Scholar
  228. 228.
    Geiger C et al (2007) Synthesis of bicyclic σ receptor ligands with cytotoxic activity. J Med Chem 50(24):6144–6153CrossRefGoogle Scholar
  229. 229.
    Martinez MM, Sarandeses LA, Sestelo JP (2007) Enantioselective synthesis of (-)-barrenazines A and B. Tetrahedron Lett 48(48):8536–8539CrossRefGoogle Scholar
  230. 230.
    Kim KB, Crews CM (2008) Chemical genetics: exploring the role of the proteasome in cell biology using natural products and other small molecule proteasome inhibitors. J Med Chem 51(9):2600–2605CrossRefGoogle Scholar
  231. 231.
    Ge S, Hartwig JF (2012) Highly reactive, single-component nickel catalyst precursor for Suzuki–Miyuara cross-coupling of heteroaryl boronic acids with heteroaryl halides. Angew Chem Int Ed 51(51):12837–12841CrossRefGoogle Scholar
  232. 232.
    Dowlut M, Mallik D, Organ MG (2010) An efficient low-temperature Stille-Migita cross-coupling reaction for heteroaromatic compounds by Pd-PEPPSI-IPent. Chem Eur J 16(14):4279–4283, S4279/1-S4279/53CrossRefGoogle Scholar
  233. 233.
    Brandsma L, Vasilevsky SF, Verkruijsse HD (1997) Application of transition metal catalysts in organic synthesis. Springer-Verlag/Heidelberg, Berlin/New YorkGoogle Scholar
  234. 234.
    Diederich F, Stang PJ (eds) (1998) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, 517 ppGoogle Scholar
  235. 235.
    Pattenden G (ed) (1992) Comprehensive organic synthesis: selectivity, strategy and efficiency in modern organic chemistry, volume 3: carbon–carbon σ-bond formation. Pergamon, New YorkGoogle Scholar
  236. 236.
    Rossi R, Carpita A, Bellina F (1995) Palladium- and/or copper-mediated cross-coupling reactions between 1-alkynes and vinyl, aryl, 1-alkynyl, 1,2-propadienyl, propargyl and allylic halides or related compounds. A review Org Prep Proced Int 27(2):127–160CrossRefGoogle Scholar
  237. 237.
    Ali H, van Lier JE (2012) An easy route for the synthesis of pyrazine-2,3-dicarbonitrile 5,6-bis-substituted derivatives using a palladium catalyst. Tetrahedron Lett 53(36):4824–4827CrossRefGoogle Scholar
  238. 238.
    Malik I et al (2010) Synthesis of 2,3-disubstituted pyrazines and quinoxalines by Heck cross-coupling reactions of 2,3-dichloropyrazine and 2,3-dichloroquinoxaline. Influence of the temperature on the product distribution. Tetrahedron 66(9):1637–1642CrossRefGoogle Scholar
  239. 239.
    Mehta VP et al (2008) A novel and versatile entry to asymmetrically substituted pyrazines. J Org Chem 73(6):2382–2388CrossRefGoogle Scholar
  240. 240.
    Modha SG et al (2012) Efficient preparation of tetrasubstituted pyrazines starting from pyrazin-2(1H)-ones. Synthesis 44(11):1614–1624CrossRefGoogle Scholar
  241. 241.
    Won Y-H, Park M-S (2010) Synthesis and anticancer activities of new 3-allylthio-6-(mono or disubstituted)aminopyridazines. Arch Pharmacal Res 33(2):189–196CrossRefGoogle Scholar
  242. 242.
    Rohet F et al (1997) Synthesis and analgesic effects of 3-substituted 4,6-diarylpyridazine derivatives of the arylpiperazine class. Bioorg Med Chem 5(4):655–659CrossRefGoogle Scholar
  243. 243.
    Allerton CMN et al (2009) Design and synthesis of pyridazinone-based 5-HT2C agonists. Bioorg Med Chem Lett 19(19):5791–5795CrossRefGoogle Scholar
  244. 244.
    Gleave RJ et al (2010) Synthesis and evaluation of 3-amino-6-aryl-pyridazines as selective CB2 agonists for the treatment of inflammatory pain. Bioorg Med Chem Lett 20(2):465–468CrossRefGoogle Scholar
  245. 245.
    Isabel E et al (2011) Biological activity and preclinical efficacy of azetidinyl pyridazines as potent systemically-distributed stearoyl-CoA desaturase inhibitors. Bioorg Med Chem Lett 21(1):479–483CrossRefGoogle Scholar
  246. 246.
    Liu G et al (2007) Discovery of potent, selective, orally bioavailable stearoyl-CoA desaturase 1 inhibitors. J Med Chem 50(13):3086–3100CrossRefGoogle Scholar
  247. 247.
    Wan Z et al (2011) Pyridazine-derived γ-secretase modulators. Bioorg Med Chem Lett 21(13):4016–4019CrossRefGoogle Scholar
  248. 248.
    Contreras J-M et al (1999) Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42(4):730–741CrossRefGoogle Scholar
  249. 249.
    Contreras J-M et al (2001) Design, synthesis, and structure–activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J Med Chem 44(17):2707–2718CrossRefGoogle Scholar
  250. 250.
    Gavande N et al (2010) Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Org Biomol Chem 8(18):4131–4136CrossRefGoogle Scholar
  251. 251.
    Woodward RM, Polenzani L, Miledi R (1993) Characterization of bicuculline/baclofen-insensitive (ρ-like) γ-aminobutyric acid receptors expressed in Xenopus oocytes. II Pharmacology of γ-aminobutyric acidA and γ-aminobutyric acidB receptor agonists and antagonists. Mol Pharmacol 43(4):609–625Google Scholar
  252. 252.
    Zhang J, Xue F, Chang Y (2008) Structural determinants for antagonist pharmacology that distinguish the ρ1 GABAC receptor from GABAA receptors. Mol Pharmacol 74(4):941–951CrossRefGoogle Scholar
  253. 253.
    Sengmany S et al (2013) An electrochemical nickel-catalyzed arylation of 3-amino-6-chloropyridazines. J Org Chem 78(2):370–379CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laurin Wimmer
    • 1
  • Lukas Rycek
    • 1
  • Moumita Koley
    • 2
  • Michael Schnürch
    • 1
  1. 1.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria
  2. 2.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations