Metal Catalyzed Cross-Coupling Reactions in the Decoration of Pyrimidine, Pyridazine, and Pyrazine

  • Laurin Wimmer
  • Lukas Rycek
  • Moumita Koley
  • Michael Schnürch
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 45)

Abstract

This chapter treats the cross-coupling chemistry of electron-deficient N-heterocycles containing two nitrogen atoms. The chapter is ordered according to heterocycle, coupling method, and the role of the N-heterocycle within the coupling process. The focus lies on new developments in the field, e.g., regarding new catalytic systems, and covers literature from 2008 until late 2013.

Keywords

Cross-coupling Metal catalysis Palladium Pyrazine Pyridazine Pyrimidine 

Abbreviations

9-BBN

3-Borabicyclo[3.3.1]nonane

acac

Acetylacetonate

BMIM

1-Butyl-3-methylimidazolium

BrettPhos

2-(Dicyclohexylphosphino)3,6-dimethoxy-2′,4′,6′-tri-i-propyl-1,1′-biphenyl

cBRIDP

Di-tert-butyl(2,2-diphenyl-1-methyl-1-cyclopropyl)phosphine

cod

Cyclooctadiene

CPhos

2-(2-dicyclohexylphosphanylphenyl)-N1,N1,N3,N3-tetramethyl-benzene-1,3-diamine

CuMeSal

Copper(I) 3-methylsalicilate

CuTC

Copper(I) thiophene-2-carboxylate

Cy

Cyclohexyl

CyPF-tBu

(R)-1-[(SP)-2-(Dicyclohexylphosphino)ferrocenyl]ethyldi-tert-butylphosphine

DABCO

Diazabicyclo[2.2.2]octane

DavePhos

2-Dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl

dba

Dibenzylideneacetone

DIPEA

N,N-Diisopropylethylamine

DMF

N,N-Dimethylformamide

DPE-Phos

Bis[(2-diphenylphosphino)phenyl] ether

dppf

1,1′-Bis( diphenylphosphino) ferrocene

dppp

1,3-Bis(diphenylphosphino)propane

DSC

Dye-sensitized solar cell

dtbpf

1,1′-Bis(di-t-butylphosphino)ferrocene

EDG

Electron donating group

EWG

Electron withdrawing group

HASPO

Heteroatom-substituted secondary phosphine oxide

IMes.HCl

1,3-Bis(2,4,6-trimethylphenyl)imidazolium chloride

IPrNi(allyl)Cl

Allyl[1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]chloropalladium(II)

JosiPhos

(R)-1-[(SP)-2-(Dicyclohexylphosphino)ferrocenyl]ethyldi-tert-butylphosphine

MIDA

N-methyliminodiacetic acid

MTBE

Methyl t-butylether

NHC

N-heterocyclic carbene

NMP

N-methylpyrrolidone

OLED

Organic light-emitting diode

PEG

Polyethylene glycol

PEPPSI-IPent

Dichloro[1,3-bis(2,6-di-3-pentylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium(II)

PEPPSI-IPr

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene](3-chloropyridyl)palladium(II) dichloride

PMB

p-Methoxybenzyl

PTS

Polyoxyethanyl-α-tocopheryl sebacate

PyBroP

Bromotripyrrolidinophosphonium hexafluorophosphate

rt

Room temperature

RuPhos

2-Dicyclohexylphosphino-2′,6′-diisopropoxybiphenyl

Salen

2,2′-Ethylenebis(nitrilomethylidene)diphenol

SDPP

Silicadiphenyl phosphinite

SDS

Sodium dodecylsulfate

SES-NH2

2-(trimethylsilyl)ethansulfonyl

SNAr

Substitution nucleophilic aromatic

SPhos

2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl

SPO

Secondary phosphine oxide

TBAB

Tetrabutylammonium bromide

TBAF

Tetrabutylammonium fluoride

TBS

Tert-butyldimethylsilyl

t-BuJosiPhos

(R)-1-[(SP)-2-(Diphenylphosphino)ferrocenyl]ethyldi-t-butylphosphine

THF

Tetrahydrofuran

TMEDA

N,N,N′,N′-Tetramethylethylenediamine

tmp

Tetramethylpiperidide

TON

Turnover number

Xantphos

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

XPhos

2-Dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl

References

  1. 1.
    Kinzel T, Zhang Y, Buchwald SL (2010) A new palladium precatalyst allows for the fast Suzuki–Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J Am Chem Soc 132(40):14073–14075CrossRefGoogle Scholar
  2. 2.
    Fleckenstein CA, Plenio H (2008) Efficient Suzuki–Miyaura coupling of (Hetero)aryl chlorides with thiophene- and furanboronic acids in aqueous n-butanol. J Org Chem 73(8):3236–3244CrossRefGoogle Scholar
  3. 3.
    Ackermann L, Potukuchi HK (2009) Palladium-catalyzed cross-coupling reactions of 2-pyridylborates with air-stable HASPO preligands. Synlett 17:2852–2856CrossRefGoogle Scholar
  4. 4.
    Zhou Y et al (2008) Dinickel(II) complexes of bis(N-heterocyclic carbene) ligands containing [Ni2(μ-OH)] cores as highly efficient catalysts for the coupling of aryl chlorides. Organometallics 27(22):5911–5920CrossRefGoogle Scholar
  5. 5.
    Liu T et al (2012) General and highly efficient fluorinated-N-heterocyclic carbene-based catalysts for the palladium-catalyzed Suzuki–Miyaura reaction. Tetrahedron 68(32):6535–6547CrossRefGoogle Scholar
  6. 6.
    Kolychev EL et al (2013) Expanded ring diaminocarbene palladium complexes: synthesis, structure, and Suzuki–Miyaura cross-coupling of heteroaryl chlorides in water. Dalton Trans 42(19):6859–6866CrossRefGoogle Scholar
  7. 7.
    Gupta S, Basu B, Das S (2013) Benzimidazole-based palladium-N-heterocyclic carbene: a useful catalyst for C–C cross-coupling reaction at ambient condition. Tetrahedron 69(1):122–128CrossRefGoogle Scholar
  8. 8.
    Tu T et al (2012) Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for Suzuki–Miyaura couplings with sterically hindered substrates. Org Lett 14(16):4250–4253CrossRefGoogle Scholar
  9. 9.
    Kumar MR, Park K, Lee S (2010) Synthesis of amido-N-imidazolium salts and their applications as ligands in Suzuki–Miyaura reactions: coupling of hetero- aromatic halides and the synthesis of milrinone and irbesartan. Adv Synth Catal 352(18):3255–3266CrossRefGoogle Scholar
  10. 10.
    Yang J et al (2012) Room-temperature Suzuki–Miyaura coupling of heteroaryl chlorides and tosylates. Eur J Org Chem 2012(31):6248–6259CrossRefGoogle Scholar
  11. 11.
    Asano S, Kamioka S, Isobe Y (2012) Suzuki–Miyaura cross-coupling reaction of aryl and heteroaryl pinacol boronates for the synthesis of 2-substituted pyrimidines. Tetrahedron 68(1):272–279CrossRefGoogle Scholar
  12. 12.
    Moseley JD et al (2012) A mild robust generic protocol for the Suzuki reaction using an air stable catalyst. Tetrahedron 68(30):6010–6017CrossRefGoogle Scholar
  13. 13.
    Lou S, Fu GC (2010) Palladium/tris(tert-butyl)phosphine-catalyzed Suzuki cross-couplings in the presence of water. Adv Synth Catal 352:2081–2084CrossRefGoogle Scholar
  14. 14.
    Bedford RB et al (2009) Simple mixed Fe-Zn catalysts for the Suzuki couplings of tetraarylborates with benzyl halides and 2-halopyridines. Chem Commun 2009(42):6430–6432CrossRefGoogle Scholar
  15. 15.
    Liu C, Yang W (2009) A fast and oxygen-promoted protocol for the ligand-free Suzuki reaction of 2-halogenated pyridines in aqueous media. Chem Commun 2009(41):6267–6269CrossRefGoogle Scholar
  16. 16.
    Liu C, Ni Q, Qiu J (2011) Very fast, ligand-free and aerobic protocol for the synthesis of 4-aryl-substituted triphenylamine derivatives. Eur J Org Chem 16:3009–3015CrossRefGoogle Scholar
  17. 17.
    Liu C et al (2011) Oxygen-promoted PdCl2-catalyzed ligand-free Suzuki reaction in aqueous media. Org Biomol Chem 9(4):1054–1060CrossRefGoogle Scholar
  18. 18.
    Colombo M, Giglio M, Peretto I (2008) Simple microwave-assisted ligand-free Suzuki Cross-coupling: functionalization of halo-pyrimidine moieties. J Heterocycl Chem 45(4):1077–1081CrossRefGoogle Scholar
  19. 19.
    Lipshutz BH, Abela AR (2008) Micellar catalysis of Suzuki–Miyaura cross-couplings with heteroaromatics in water. Org Lett 10(23):5329–5332CrossRefGoogle Scholar
  20. 20.
    Vashchenko V et al (2008) Palladium-catalyzed Suzuki cross-coupling reactions in a microemulsion. Tetrahedron Lett 49(9):1445–1449CrossRefGoogle Scholar
  21. 21.
    Mao S-L et al (2012) A highly active catalytic system for Suzuki–Miyaura cross-coupling reactions of aryl and heteroaryl chlorides in water. Org Biomol Chem 10(47):9410–9417CrossRefGoogle Scholar
  22. 22.
    Alacid E, Najera C (2008) First cross-coupling reaction of potassium aryltrifluoroborates with organic chlorides in aqueous media catalyzed by an oxime-derived palladacycle. Org Lett 10(21):5011–5014CrossRefGoogle Scholar
  23. 23.
    Susanto W et al (2012) Development of a fluorous, oxime-based palladacycle for microwave-promoted carbon–carbon coupling reactions in aqueous media. Green Chem 14(1):77–80CrossRefGoogle Scholar
  24. 24.
    Susanto W et al (2012) Fluorous oxime palladacycle: a precatalyst for carbon–carbon coupling reactions in aqueous and organic medium. J Org Chem 77(6):2729–2742CrossRefGoogle Scholar
  25. 25.
    Rao GK et al (2010) Palladacycle containing nitrogen and selenium: highly active pre-catalyst for the Suzuki–Miyaura coupling reaction and unprecedented conversion into nano-sized Pd17Se15. Chem Commun 46(32):5954–5956CrossRefGoogle Scholar
  26. 26.
    Bolliger JL, Frech CM (2010) Dichloro-bis(aminophosphine) complexes of palladium: highly convenient, reliable and extremely active Suzuki–Miyaura catalysts with excellent functional group tolerance. Chem Eur J 16(13):4075–4081CrossRefGoogle Scholar
  27. 27.
    Shi S, Zhang Y (2008) Silica-assisted Suzuki–Miyaura reactions of heteroaryl bromides in aqueous media. Green Chem 10(8):868–872CrossRefGoogle Scholar
  28. 28.
    Razler TM et al (2009) A preparatively convenient ligand-free catalytic PEG 2000 Suzuki–Miyaura coupling. J Org Chem 74(3):1381–1384CrossRefGoogle Scholar
  29. 29.
    Tao L et al (2009) Generation of Pd nanoparticles in situ from PdCl2 in TBAF: an efficient and reusable catalytic system for the Suzuki–Miyaura reaction under ligand- and solvent-free conditions. Chin J Chem 27(7):1365–1373CrossRefGoogle Scholar
  30. 30.
    Islam RU et al (2011) Conjugated polymer stabilized palladium nanoparticles as a versatile catalyst for Suzuki cross-coupling reactions for both aryl and heteroaryl bromide systems. Catal Sci Technol 1(2):308–315CrossRefGoogle Scholar
  31. 31.
    Lee D-H, Jung J-Y, Jin M-J (2010) Highly active and recyclable silica gel-supported palladium catalyst for mild cross-coupling reactions of unactivated heteroaryl chlorides. Green Chem 12(11):2024–2029CrossRefGoogle Scholar
  32. 32.
    Kitamura Y et al (2010) Ligand-free and heterogeneous palladium on carbon-catalyzed hetero-Suzuki–Miyaura cross-coupling. Adv Synth Catal 352(4):718–730CrossRefGoogle Scholar
  33. 33.
    Firouzabadi H et al (2011) Agarose hydrogel as an effective bioorganic ligand and support for the stabilization of palladium nanoparticles. Application as a recyclable catalyst for Suzuki–Miyaura reaction in aqueous media. RSC Adv 1(6):1013–1019CrossRefGoogle Scholar
  34. 34.
    Firouzabadi H et al (2011) Palladium nanoparticles supported on aminopropyl-functionalized clay as efficient catalysts for phosphine-free C–C bond formation via Mizoroki–Heck and Suzuki–Miyaura reactions. Bull Chem Soc Jpn 84(1):100–109CrossRefGoogle Scholar
  35. 35.
    Schoeps D et al (2009) Solvent-resistant nanofiltration of enlarged (NHC)Pd(allyl)Cl complexes for cross-coupling reactions. Organometallics 28(13):3922–3927CrossRefGoogle Scholar
  36. 36.
    Borhade SR, Waghmode SB (2011) Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls. Beilstein J Org Chem 7(41):310–319CrossRefGoogle Scholar
  37. 37.
    Amoroso F et al (2009) An efficient and reusable catalyst based on Pd/CeO2 for the room temperature aerobic Suzuki–Miyaura reaction in water/ethanol. J Mol Catal A Chem 315(2):197–204CrossRefGoogle Scholar
  38. 38.
    Zhang P-P et al (2009) Pd-CNT-catalyzed ligand-less and additive-free heterogeneous Suzuki–Miyaura cross-coupling of aryl bromides. Tetrahedron Lett 50(31):4455–4458CrossRefGoogle Scholar
  39. 39.
    Fernando DP et al (2012) Spiroazetidine-piperidine bromoindane as a key modular template to access a variety of compounds via C–C and C–N bond-forming reactions. Tetrahedron Lett 53(47):6351–6354CrossRefGoogle Scholar
  40. 40.
    Siddle JS, Batsanov AS, Bryce MR (2008) Sequential metal-catalyzed N-heteroarylation and C–C cross-coupling reactions: an expedient route to tris(hetero)aryl systems. Eur J Org Chem 16:2746–2750CrossRefGoogle Scholar
  41. 41.
    Anderson SC, Handy ST (2010) One-pot double Suzuki couplings of dichloropyrimidines. Synthesis 16:2721–2724Google Scholar
  42. 42.
    Tasch BOA, Merkul E, Mueller TJJ (2011) One-pot synthesis of diazine-bridged bisindoles and concise synthesis of the marine alkaloid hyrtinadine A. Eur J Org Chem 2011(24):4532–4535CrossRefGoogle Scholar
  43. 43.
    Merkul E, Schaefer E, Mueller TJJ (2011) Rapid synthesis of bis(hetero)aryls by one-pot Masuda borylation-Suzuki coupling sequence and its application to concise total syntheses of meridianins A and G. Org Biomol Chem 9(9):3139–3141CrossRefGoogle Scholar
  44. 44.
    Grob JE et al (2011) One-pot reductive amination and Suzuki–Miyaura cross-coupling of formyl aryl and heteroaryl MIDA boronates in array format. J Org Chem 76(12):4930–4940CrossRefGoogle Scholar
  45. 45.
    Molander GA, Trice SLJ, Kennedy SM (2012) Scope of the two-step, one-pot palladium-catalyzed borylation/Suzuki cross-coupling reaction utilizing bis-boronic acid. J Org Chem 77(19):8678–8688CrossRefGoogle Scholar
  46. 46.
    Avitia B et al (2011) Single-flask preparation of polyazatriaryl ligands by sequential borylation/Suzuki–Miyaura coupling. Tetrahedron Lett 52(14):1631–1634CrossRefGoogle Scholar
  47. 47.
    Whelligan DK et al (2010) Two-step synthesis of aza- and diazaindoles from chloroamino-N-heterocycles using ethoxyvinylborolane. J Org Chem 75(1):11–15CrossRefGoogle Scholar
  48. 48.
    Roy S et al (2010) Direct synthesis of Cbz-protected (2-amino)-6-(2-aminoethyl)pyridines. Tetrahedron 66(11):1973–1979CrossRefGoogle Scholar
  49. 49.
    Achelle S et al (2008) Bis- and tris(arylethynyl)pyrimidine oligomers: synthesis and light-emitting properties. Tetrahedron 64(12):2783–2791CrossRefGoogle Scholar
  50. 50.
    Achelle S et al (2009) Star-shaped ethynylpyrimidine with long alkoxyl side chains: synthesis, fluorescence and 2D self-assembling. Tetrahedron Lett 50(50):7055–7058CrossRefGoogle Scholar
  51. 51.
    Hussain M et al (2010) Synthesis of aryl-substituted pyrimidines by site-selective Suzuki–Miyaura cross-coupling reactions of 2,4,5,6-tetrachloropyrimidine. Adv Synth Catal 352(9):1429–1433CrossRefGoogle Scholar
  52. 52.
    Molander GA, Sandrock DL (2009) Utilization of potassium vinyltrifluoroborate in the development of a 1,2-dianion equivalent. Org Lett 11(11):2369–2372CrossRefGoogle Scholar
  53. 53.
    Noel T, Musacchio AJ (2011) Suzuki–Miyaura cross-coupling of heteroaryl halides and arylboronic acids in continuous flow. Org Lett 13(19):5180–5183CrossRefGoogle Scholar
  54. 54.
    Shu W et al (2011) Continuous-flow synthesis of biaryls enabled by multistep solid-handling in a lithiation/borylation/Suzuki–Miyaura cross-coupling sequence. Angew Chem Int Ed 50(45):10665–10669CrossRefGoogle Scholar
  55. 55.
    Oberli MA, Buchwald SL (2012) A general method for Suzuki-Miyaura coupling reactions using lithium triisopropyl borates. Org Lett 14(17):4606–4609CrossRefGoogle Scholar
  56. 56.
    Radkowski K, Seidel G, Fuerstner A (2011) Suzuki–Miyaura cross coupling reactions of B-allenyl-9-BBN. Chem Lett 40(9):950–952CrossRefGoogle Scholar
  57. 57.
    Billingsley KL, Buchwald SL (2008) A general and efficient method for the Suzuki–Miyaura coupling of 2-pyridyl nucleophiles. Angew Chem Int Ed 47(25):4695–4698CrossRefGoogle Scholar
  58. 58.
    Dick GR, Woerly EM, Burke MD (2012) A general solution for the 2-pyridyl problem. Angew Chem Int Ed 51(11):2667–2672, S2667/1-S2667/80CrossRefGoogle Scholar
  59. 59.
    Molander GA, Canturk B (2008) Preparation of potassium alkoxymethyltrifluoroborates and their cross-coupling with aryl chlorides. Org Lett 10(11):2135–2138CrossRefGoogle Scholar
  60. 60.
    Molander GA, Hiebel M-A (2010) Synthesis of amidomethyltrifluoroborates and their use in cross-coupling reactions. Org Lett 12(21):4876–4879CrossRefGoogle Scholar
  61. 61.
    Fleury-Bregeot N et al (2012) Suzuki-Miyaura cross-coupling of potassium alkoxyethyltrifluoroborates: access to aryl/heteroarylethyloxy motifs. J Org Chem 77(22):10399–10408CrossRefGoogle Scholar
  62. 62.
    Math SK et al (2012) Substituted potassium internal vinyltrifluoroborates: preparation and use in Suzuki–Miyaura cross-coupling reactions. Tetrahedron Lett 53(23):2847–2849CrossRefGoogle Scholar
  63. 63.
    Thakur A, Zhang K, Louie J (2012) Suzuki–Miyaura coupling of heteroaryl boronic acids and vinyl chlorides. Chem Commun 48(2):203–205CrossRefGoogle Scholar
  64. 64.
    Molander GA, Canturk B, Kennedy LE (2009) Scope of the Suzuki–Miyaura cross-coupling reactions of potassium heteroaryltrifluoroborates. J Org Chem 74(3):973–980CrossRefGoogle Scholar
  65. 65.
    Molander GA, Beaumard F (2010) Nickel-catalyzed C–O activation of phenol derivatives with potassium heteroaryltrifluoroborates. Org Lett 12(18):4022–4025CrossRefGoogle Scholar
  66. 66.
    Molander GA et al (2010) Nickel-catalyzed cross-coupling of potassium aryl- and heteroaryltrifluoroborates with unactivated alkyl halides. Org Lett 12(24):5783–5785CrossRefGoogle Scholar
  67. 67.
    Grimm JB, Wilson KJ, Witter DJ (2009) A divergent approach to the synthesis of 3-substituted-2-pyrazolines: Suzuki cross-coupling of 3-sulfonyloxy-2-pyrazolines. J Org Chem 74(16):6390–6393CrossRefGoogle Scholar
  68. 68.
    Menard F, Lautens M (2008) Chemodivergence in enantioselective desymmetrization of diazabicycles: ring-opening versus reductive arylation. Angew Chem Int Ed 47(11):2085–2088CrossRefGoogle Scholar
  69. 69.
    Panteleev J, Menard F, Lautens M (2008) Ligand control in enantioselective desymmetrization of bicyclic hydrazines: Rhodium(I)-catalyzed ring-opening versus hydroarylation. Adv Synth Catal 350(18):2893–2902CrossRefGoogle Scholar
  70. 70.
    Bexrud J, Lautens M (2010) A rhodium IBiox[(-)-menthyl] complex as a highly selective catalyst for the asymmetric hydroarylation of azabicyles: an alternative route to epibatidine. Org Lett 12(14):3160–3163CrossRefGoogle Scholar
  71. 71.
    Hattori K et al (2009) Formation of highly selective and efficient interstrand cross-linking to thymine without photo-irradiation. Chem Commun 2009(42):6463–6465CrossRefGoogle Scholar
  72. 72.
    Wicke L, Engels JW (2012) Postsynthetic on column RNA Labeling via stille coupling. Bioconjugate Chem 23(3):627–642Google Scholar
  73. 73.
    Sun Q, Suzenet F, Guillaumet G (2010) Desulfitative cross-coupling of protecting group-free 2-thiouracil derivatives with organostannanes. J Org Chem 75(10):3473–3476Google Scholar
  74. 74.
    Bukovec C, Kazmaier U (2011) Stannylated allyl carbonates as versatile building blocks for the diversity oriented synthesis of allylic amines and amides. Org Biomol Chem 9(8):2743–2750Google Scholar
  75. 75.
    Hadad C et al (2011) 4-Arylvinyl-2,6-di(pyridin-2-yl)pyrimidines: synthesis and optical properties. J Org Chem 76(10):3837–3845Google Scholar
  76. 76.
    Nyffenegger C et al (2008) An efficient route to polynitrogen-fused tricycles via a nitrene-mediated N–N bond formation under microwave irradiation. Tetrahedron 64(40):9567–9573CrossRefGoogle Scholar
  77. 77.
    Suzuki M et al (2009) Pd0-Mediated rapid coupling between methyl iodide and heteroarylstannanes: an efficient and general method for the incorporation of a positron-emitting 11C radionuclide into heteroaromatic frameworks. Chem Eur J 15(45):12489–12495CrossRefGoogle Scholar
  78. 78.
    Hirano Y, Kojima S, Yamamoto Y (2011) A hypervalent pentacoordinate boron compound with an N-B-N three-center four-electron bond. J Org Chem 76(7):2123–2131Google Scholar
  79. 79.
    Joubert N et al (2008) Modular synthesis of 4-aryl- and 4-amino-substituted benzene C-2′-deoxyribonucleosides. Synthesis 12:1918–1932Google Scholar
  80. 80.
    Bardagi JI, Rossi RA (2008) A novel approach to the synthesis of 6-substituted uracils in three-step, one-pot reactions. J Org Chem 73(12):4491–4495CrossRefGoogle Scholar
  81. 81.
    Calimsiz S et al (2010) Pd-PEPPSI-IPent: low-temperature negishi cross-coupling for the preparation of highly functionalized, tetra-ortho-substituted biaryls. Angew Chem Int Ed 49(11):2014–2017Google Scholar
  82. 82.
    Bolliger JL, Frech CM (2010) Pd(Cl)2{P(NC5H10)(C6H11)2}2 – a highly effective and extremely versatile palladium-based negishi catalyst that efficiently and reliably operates at low catalyst loadings. Chem Eur J 16(36):11072–11081Google Scholar
  83. 83.
    Xi Z, Zhou Y, Chen W (2008) Efficient negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes. J Org Chem 73(21):8497–8501CrossRefGoogle Scholar
  84. 84.
    Gerber R, Frech CM (2011) Negishi cross-coupling reactions catalyzed by an aminophosphine-based Nickel system: a reliable and general applicable reaction protocol for the high-yielding synthesis of biaryls. Chem Eur J 17(42):11893–11904CrossRefGoogle Scholar
  85. 85.
    Begouin J-M, Gosmini C (2009) Cobalt-catalyzed cross-coupling between in situ prepared arylzinc halides and 2-chloropyrimidine or 2-chloropyrazine. J Org Chem 74(8):3221–3224CrossRefGoogle Scholar
  86. 86.
    Begouin J-M, Rivard M, Gosmini C (2010) Cobalt-catalyzed C-SMe bond activation of heteroaromatic thioethers. Chem Commun (Cambridge, UK) 46(32):5972–5974CrossRefGoogle Scholar
  87. 87.
    Milne JE, Buchwald SL (2004) An extremely active catalyst for the negishi cross-coupling reaction. J Am Chem Soc 126(40):13028–13032CrossRefGoogle Scholar
  88. 88.
    Luzung MR, Patel JS, Yin J (2010) A mild Negishi cross-coupling of 2-heterocyclic organozinc reagents and aryl chlorides. J Org Chem 75(23):8330–8332CrossRefGoogle Scholar
  89. 89.
    Dunst C, Knochel P (2011) Selective Mg insertion into substituted mono- and dichloro arenes in the presence of LiCl: a new preparation of boscalid. Synlett (14):2064–2068Google Scholar
  90. 90.
    Mosrin M, Boudet N, Knochel P (2008) Regio- and chemoselective magnesiation of protected uracils and thiouracils using TMPMgCl · LiCl and TMP2Mg · 2LiCl. Org Biomol Chem 6(18):3237–3239CrossRefGoogle Scholar
  91. 91.
    Bluemke T et al (2010) Preparation of functionalized organoaluminiums by direct insertion of aluminum to unsaturated halides. Nat Chem 2(4):313–318CrossRefGoogle Scholar
  92. 92.
    Bluemke TD et al (2011) New preparation of benzylic aluminum and zinc organometallics by direct insertion of aluminum powder. Org Lett 13(24):6440–6443CrossRefGoogle Scholar
  93. 93.
    Omedes M et al (2008) Diastereoselective addition of organozinc and organomagnesium reagents to 2-(2′-pyrimidyl)ferrocenecarbaldehyde. Tetrahedron 64(18):3953–3959CrossRefGoogle Scholar
  94. 94.
    Hasnik Z, Silhar P, Hocek M (2008) Hydroxymethylations of aryl halides by Pd-catalyzed cross-couplings with (benzoyloxy)methylzinc iodide. Scope and limitations of the reaction. Synlett 4:543–546Google Scholar
  95. 95.
    Suhartono M et al (2010) Synthetic aromatic amino acids from a Negishi cross-coupling reaction. Synthesis 2:293–303Google Scholar
  96. 96.
    Kwak Y-S et al (2009) Efficient and convenient preparation of 3-aryl-2,2-dimethylpropanoates via Negishi coupling. Chem Commun (Cambridge, UK) 2009(16):2145–2147CrossRefGoogle Scholar
  97. 97.
    Beng TK, Gawley RE (2011) Application of catalytic dynamic resolution of N-Boc-2-lithiopiperidine to the asymmetric synthesis of 2-aryl and 2-vinyl piperidines. Org Lett 13(3):394–397CrossRefGoogle Scholar
  98. 98.
    Han C, Buchwald SL (2009) Negishi coupling of secondary alkylzinc halides with aryl bromides and chlorides. J Am Chem Soc 131(22):7532–7533CrossRefGoogle Scholar
  99. 99.
    Thaler T et al (2010) Highly diastereoselective Csp3-Csp2 Negishi cross-coupling with 1,2-, 1,3- and 1,4-substituted cycloalkylzinc compounds. Nat Chem 2(2):125–130CrossRefGoogle Scholar
  100. 100.
    Lin L-Y et al (2011) Efficient organic DSSC sensitizers bearing an electron-deficient pyrimidine as an effective π-spacer. J Mater Chem 21(16):5950–5958CrossRefGoogle Scholar
  101. 101.
    Manolikakes G et al (2009) Negishi cross-couplings compatible with unprotected amide functions. Chem Eur J 15(6):1324–1328CrossRefGoogle Scholar
  102. 102.
    Gosselin F et al (2012) Heteroarylation of azine N-oxides. Org Lett 14(3):862–865CrossRefGoogle Scholar
  103. 103.
    Snegaroff K et al (2010) Deprotonative metalation of substituted benzenes and heteroaromatics using amino/alkyl mixed lithium-zinc combinations. Chem Eur J 16(27):8191–8201CrossRefGoogle Scholar
  104. 104.
    Seggio A et al (2008) Synthesis of unsymmetrical heterobiaryls using palladium-catalyzed cross-coupling reactions of lithium organozincates. Synlett 19:2955–2960Google Scholar
  105. 105.
    Seggio A et al (2009) Palladium-catalyzed cross-couplings of lithium arylzincates with aromatic halides: synthesis of analogues of isomeridianin G and evaluation as GSK-3β, inhibitors. Synthesis 21:3617–3632Google Scholar
  106. 106.
    Melzig L, Metzger A, Knochel P (2011) Pd- and Ni-catalyzed cross-coupling reactions of functionalized organozinc reagents with unsaturated thioethers. Chem Eur J 17(10):2948–2956CrossRefGoogle Scholar
  107. 107.
    Metzger A, Melzig L, Knochel P (2010) Scaled-up transition-metal-catalyzed cross-coupling reactions of thioether-substituted N-heterocycles with organozinc reagents. Synthesis 16:2853–2858Google Scholar
  108. 108.
    Metzger A et al (2009) Pd-catalyzed cross-coupling of functionalized organozinc reagents with thiomethyl-substituted heterocycles. Org Lett 11(18):4228–4231CrossRefGoogle Scholar
  109. 109.
    Metzger A et al (2008) A general preparation of polyfunctional benzylic zinc organometallic compounds. Chem Asian J 3(8–9):1678–1691CrossRefGoogle Scholar
  110. 110.
    Schade MA et al (2008) Nickel-catalyzed cross-coupling reactions of benzylic zinc reagents with aromatic bromides, chlorides and tosylates. Chem Commun (Cambridge, UK) 2008(26):3046–3048CrossRefGoogle Scholar
  111. 111.
    Mosrin M, Knochel P (2009) Regio- and chemoselective metalation of chloropyrimidine derivatives with TMPMgCl · LiCl and TMP2Zn · 2MgCl2 · 2LiCl. Chem Eur J 15(6):1468–1477CrossRefGoogle Scholar
  112. 112.
    Saleh S et al (2009) A straightforward copper-free palladium methodology for the selective alkynylation of a wide variety of S-, O-, and N-based mono- and diheterocyclic bromides and chlorides. Tetrahedron 65(34):7146–7150CrossRefGoogle Scholar
  113. 113.
    Yi T et al (2012) Highly efficient Pd/tetraphosphine catalytic system for copper-free Sonogashira reactions of aryl bromides with terminal alkynes. Catal Lett 142(5):594–600CrossRefGoogle Scholar
  114. 114.
    Ngassa FN, Lindsey EA, Haines BE (2009) The first Cu- and amine-free Sonogashira-type cross-coupling in the C-6-alkynylation of protected 2′-deoxyadenosine. Tetrahedron 65(21):4085–4091CrossRefGoogle Scholar
  115. 115.
    Pu X, Li H, Colacot TJ (2013) Heck alkynylation (copper-free Sonogashira coupling) of aryl and heteroaryl chlorides, using Pd complexes of t-Bu2(p-NMe2C6H4)P: understanding the structure-activity relationships and copper effects. J Org Chem 78(2):568–581CrossRefGoogle Scholar
  116. 116.
    Cordoba M et al (2013) Sonogashira reaction on pyridinium N-haloheteroarylaminides: regioselective synthesis of N-alkyl-3-alkynyl-5-arylpyridin-2-yl amines. Tetrahedron 69(11):2484–2493CrossRefGoogle Scholar
  117. 117.
    Fleckenstein CA, Plenio H (2008) Aqueous/organic cross coupling: Sustainable protocol for Sonogashira reactions of heterocycles. Green Chem 10(5):563–570CrossRefGoogle Scholar
  118. 118.
    Lipshutz BH, Chung DW, Rich B (2008) Sonogashira couplings of aryl bromides: room temperature, water only, no copper. Org Lett 10(17):3793–3796CrossRefGoogle Scholar
  119. 119.
    Firouzabadi H, Iranpoor N, Gholinejad M (2010) Recyclable palladium-catalyzed Sonogashira–Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J Mol Catal A Chem 321(1–2):110–116CrossRefGoogle Scholar
  120. 120.
    Barros JC et al (2011) Sonogashira coupling using PdEnCat: a copper-, phosphine-, amine- and microwave-free alternative to the preparation of arylalkynes. Appl Organomet Chem 25(11):820–823CrossRefGoogle Scholar
  121. 121.
    Firouzabadi H, Iranpoor N, Ghaderi A (2011) Gelatin as a bioorganic reductant, ligand and support for palladium nanoparticles. Application as a catalyst for ligand- and amine-free Sonogashira–Hagihara reaction. Org Biomol Chem 9(3):865–871CrossRefGoogle Scholar
  122. 122.
    Firouzabadi H et al (2011) Magnetite (Fe3O4) nanoparticles-catalyzed Sonogashira-Hagihara reactions in ethylene glycol under ligand-free conditions. Adv Synth Catal 353(1):125–132CrossRefGoogle Scholar
  123. 123.
    Wu M et al (2008) The use of a bifunctional copper catalyst in the cross-coupling reactions of aryl and heteroaryl halides with terminal alkynes. Eur J Org Chem 23:4050–4054CrossRefGoogle Scholar
  124. 124.
    Torborg C, Zapf A, Beller M (2008) Palladium catalysts for highly selective Sonogashira reactions of aryl and heteroaryl bromides. ChemSusChem 1(1–2):91–96CrossRefGoogle Scholar
  125. 125.
    Chowdhury C et al (2009) Expedient and rapid synthesis of 1,2,3-triazolo[5,1-c]morpholines through Palladium-copper catalysis. J Org Chem 74(9):3612–3615CrossRefGoogle Scholar
  126. 126.
    Gendron T, Davioud-Charvet E, Muller TJJ (2012) Versatile synthesis of dissymmetric diarylideneacetones via a palladium-catalyzed coupling-isomerization reaction. Synthesis 44(24):3829–3835CrossRefGoogle Scholar
  127. 127.
    West K et al (2008) Synthesis, structures and reactions of isolable terminal aryl/biaryl-butadiynes (Ar-C≡C-C≡CH). Eur J Org Chem 30:5093–5098CrossRefGoogle Scholar
  128. 128.
    West K et al (2008) Carbon-rich molecules: synthesis and isolation of aryl/heteroaryl terminal bis(butadiynes) (HC≡C-C≡C-Ar-C≡C-C≡CH) and their applications in the synthesis of oligo(arylenebutadiynylene) molecular wires. Org Biomol Chem 6(11):1934–1937CrossRefGoogle Scholar
  129. 129.
    Malik I et al (2011) Synthesis and photophysical properties of alkynylated pyrimidines by site-selective Sonogashira reactions of 2,4,5,6-tetrachloropyrimidine; first synthesis of tetraalkynyl-pyrimidines. Eur J Org Chem 11:2088–2093CrossRefGoogle Scholar
  130. 130.
    Kantchev EAB et al (2008) Practical Heck–Mizoroki coupling protocol for challenging substrates mediated by an N-heterocyclic carbene-ligated palladacycle. Org Lett 10(18):3949–3952CrossRefGoogle Scholar
  131. 131.
    Peh G-R et al (2009) N-Heterocycle carbene (NHC)-ligated cyclopalladated N,N-dimethylbenzylamine: a highly active, practical and versatile catalyst for the Heck–Mizoroki reaction. Org Biomol Chem 7(10):2110–2119CrossRefGoogle Scholar
  132. 132.
    Firouzabadi H, Iranpoor N, Gholinejad M (2009) 2-Aminophenyl diphenylphosphinite as a new ligand for heterogeneous palladium-catalyzed Heck–Mizoroki reactions in water in the absence of any organic co-solvent. Tetrahedron 65(34):7079–7084CrossRefGoogle Scholar
  133. 133.
    Firouzabadi H, Iranpoor N, Ghaderi A (2011) Solvent-free Mizoroki–Heck reaction catalyzed by palladium nanoparticles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support. J Mol Catal A Chem 347(1–2):38–45CrossRefGoogle Scholar
  134. 134.
    Iranpoor N et al (2012) Palladium nanoparticles supported on silicadiphenyl phosphinite (SDPP) as efficient catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. J Organomet Chem 708–709:118–124CrossRefGoogle Scholar
  135. 135.
    Firouzabadi H et al (2012) Palladium nano-particles supported on agarose as efficient catalyst and bioorganic ligand for C–C bond formation via solventless Mizoroki–Heck reaction and Sonogashira–Hagihara reaction in polyethylene glycol (PEG 400). J Mol Catal A Chem 357:154–161CrossRefGoogle Scholar
  136. 136.
    He T et al (2008) Acetylation of N-heteroaryl bromides via PdCl2/(o-tolyl)3P catalyzed Heck reactions. Synthesis 6:887–890Google Scholar
  137. 137.
    Elboray EE, Gao C, Grigg R (2012) Skeletal diversity via Pd(0) catalysed three-component cascades of allene and halides or triflates with protected hydroxylamines and formamide. Tetrahedron 68(14):3103–3111CrossRefGoogle Scholar
  138. 138.
    Goegsig TM et al (2009) Heteroaromatic tosylates as electrophiles in regioselective Mizoroki–Heck-coupling reactions with electron-rich olefins. Chem Eur J 15(24):5950–5955, S5950/1-S5950/89CrossRefGoogle Scholar
  139. 139.
    Kubelka T, Slavetinska L, Hocek M (2012) A general regioselective approach to 2,4-disubstituted pyrimidin-5-yl C-2-deoxyribonucleosides. Synthesis 44(6):953–965CrossRefGoogle Scholar
  140. 140.
    Kubelka T et al (2010) Synthesis of 2,4-disubstituted pyrimidin-5-yl C-2′-deoxyribonucleosides by sequential regioselective reactions of 2,4-dichloropyrimidine nucleosides. Eur J Org Chem 2100(14):2666–2669CrossRefGoogle Scholar
  141. 141.
    Mehta VP, Modha SG, Van der Eycken E (2009) Mild room-temperature palladium-catalyzed C3-arylation of 2(1H)-pyrazinones via a desulfitative Kumada-type cross-coupling reaction. J Org Chem 74(17):6870–6873CrossRefGoogle Scholar
  142. 142.
    Prokopcova H, Kappe CO (2009) The Liebeskind–Srogl C–C cross-coupling reaction. Angew Chem Int Ed 48(13):2276–2286CrossRefGoogle Scholar
  143. 143.
    Liebeskind LS, Srogl J (2002) Heteroaromatic thioether-boronic acid cross-coupling under neutral reaction conditions. Org Lett 4(6):979–981CrossRefGoogle Scholar
  144. 144.
    Manolikakes G, Knochel P (2009) Radical catalysis of Kumada cross-coupling reactions using functionalized Grignard reagents. Angew Chem Int Ed 48(1):205–209CrossRefGoogle Scholar
  145. 145.
    Iglesias MJ, Prieto A, Nicasio MC (2012) Kumada–Tamao–Corriu coupling of heteroaromatic chlorides and aryl ethers catalyzed by (IPr)Ni(allyl)Cl. Org Lett 14(17):4318–4321CrossRefGoogle Scholar
  146. 146.
    Xi Z et al (2007) Synthesis and structural characterization of nickel(II) complexes supported by pyridine-functionalized N-heterocyclic carbene ligands and their catalytic activities for Suzuki coupling. Organometallics 26(26):6636–6642CrossRefGoogle Scholar
  147. 147.
    Xi Z, Liu B, Chen W (2008) Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes. J Org Chem 73(10):3954–3957CrossRefGoogle Scholar
  148. 148.
    Gu S, Chen W (2009) Pincer complexes of palladium- and nickel-containing 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene as efficient aqueous Sonogashira and Kumada coupling reactions. Organometallics 28(3):909–914CrossRefGoogle Scholar
  149. 149.
    Chen C, Qiu H, Chen W (2012) Trinuclear copper(I) complex of 1,3-bis(2-pyridinylmethyl)imidazolylidene as a carbene-transfer reagent for the preparation of catalytically active nickel(II) and palladium(II) complexes. J Organomet Chem 696(26):4166–4172CrossRefGoogle Scholar
  150. 150.
    Ackermann L et al (2010) Kumada–Corriu cross-couplings with 2-pyridyl grignard reagents. Chem Eur J 16(11):3300–3303CrossRefGoogle Scholar
  151. 151.
    Jin Z et al (2012) Biphenyl-based diaminophosphine oxides as air-stable preligands for the nickel-catalyzed Kumada–Tamao–Corriu coupling of deactivated aryl chlorides, fluorides, and tosylates. Chem Eur J 18(2):446–450, S446/1-S446/93CrossRefGoogle Scholar
  152. 152.
    Goegsig TM, Lindhardt AT, Skrydstrup T (2009) Heteroaromatic sulfonates and phosphates as electrophiles in iron-catalyzed cross-couplings. Org Lett 11(21):4886–4888CrossRefGoogle Scholar
  153. 153.
    Kuzmina OM et al (2012) Iron-catalyzed cross-coupling of N-heterocyclic chlorides and bromides with arylmagnesium reagents. Org Lett 14(18):4818–4821CrossRefGoogle Scholar
  154. 154.
    Modha SG et al (2011) An expeditious route toward pyrazine-containing nucleoside analogues. J Org Chem 76(3):846–856CrossRefGoogle Scholar
  155. 155.
    Arshad N, Hashim J, Kappe CO (2009) Palladium(0)-catalyzed, copper(I)-mediated coupling of cyclic thioamides with alkenylboronic acids, organostannanes, and siloxanes. J Org Chem 74(14):5118–5121CrossRefGoogle Scholar
  156. 156.
    Farahat AA, Boykin DW (2011) Unusual regioselective reactions of 2,4-bis(methylsulfanyl)pyrimidine under modified Suzuki and Stille cross-coupling conditions. Synthesis 44(1):120–124Google Scholar
  157. 157.
    Brehova P et al (2011) The efficient synthesis of 2-arylpyrimidine acyclic nucleoside phosphonates using Liebeskind–Srogl cross-coupling reaction. Tetrahedron 67(38):7379–7385CrossRefGoogle Scholar
  158. 158.
    Van Rossom W et al (2008) Efficient post-macrocyclization functionalizations of oxacalix[2]arene[2]pyrimidines. Org Lett 10(4):585–588CrossRefGoogle Scholar
  159. 159.
    Shen Q, Ogata T, Hartwig JF (2008) Highly reactive, general and long-lived catalysts for palladium-catalyzed amination of heteroaryl and aryl chlorides, bromides, and iodides: scope and structure–activity relationships. J Am Chem Soc 130(20):6586–6596CrossRefGoogle Scholar
  160. 160.
    Maiti D et al (2011) Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chem Sci 2(1):57–68CrossRefGoogle Scholar
  161. 161.
    McGowan MA, Henderson JL, Buchwald SL (2012) Palladium-catalyzed N-arylation of 2-aminothiazoles. Org Lett 14(6):1432–1435CrossRefGoogle Scholar
  162. 162.
    Fors BP et al (2009) An efficient system for the Pd-catalyzed cross-coupling of amides and aryl chlorides. Tetrahedron 65(33):6576–6583CrossRefGoogle Scholar
  163. 163.
    Fors BP, Davis NR, Buchwald SL (2009) An efficient process for Pd-catalyzed C–N cross-coupling reactions of aryl iodides: insight into controlling factors. J Am Chem Soc 131(16):5766–5768CrossRefGoogle Scholar
  164. 164.
    Ueda S, Su M-J, Buchwald SL (2011) Highly N2-selective palladium-catalyzed arylation of 1,2,3-triazoles. Angew Chem Int Ed 50(38):8944–8947CrossRefGoogle Scholar
  165. 165.
    Ueda S et al (2012) Me3(OMe)tBuXPhos: a surrogate ligand for Me4tBuXPhos in palladium-catalyzed C–N and C–O bond-forming reactions. J Org Chem 77(5):2543–2547CrossRefGoogle Scholar
  166. 166.
    Rodriguez S et al (2011) Oxaphosphole-based monophosphorus ligands for palladium-catalyzed amination reactions. Adv Synth Catal 353(4):533–537CrossRefGoogle Scholar
  167. 167.
    Marion N et al (2006) Modified (NHC)Pd(allyl)Cl (NHC=N-heterocyclic carbene) complexes for room-temperature Suzuki–Miyaura and Buchwald–Hartwig reactions. J Am Chem Soc 128(12):4101–4111CrossRefGoogle Scholar
  168. 168.
    Organ MG et al (2008) Pd-catalyzed aryl amination mediated by well defined, N-heterocyclic carbene (NHC)-Pd precatalysts, PEPPSI. Chem Eur J 14(8):2443–2452CrossRefGoogle Scholar
  169. 169.
    Elmkaddem MK et al (2010) Efficient synthesis of aminopyridine derivatives by copper catalyzed amination reactions. Chem Commun (Cambridge, UK) 46(6):925–927CrossRefGoogle Scholar
  170. 170.
    Xi Z et al (2008) CuI/L (L=pyridine-functionalized 1,3-diketones) catalyzed C–N coupling reactions of aryl halides with NH-containing heterocycles. Tetrahedron 64(19):4254–4259CrossRefGoogle Scholar
  171. 171.
    Chen H et al (2010) Mild conditions for copper-catalyzed N-arylation of imidazoles. Synthesis 9:1505–1511Google Scholar
  172. 172.
    Cao C et al (2012) Cheap Cu(I)/hexamethylenetetramine (HMTA) catalytic system for C–N coupling reactions. Synth Commun 42(2):279–284CrossRefGoogle Scholar
  173. 173.
    Cheng D et al (2008) D-Glucosamine – a natural ligand for the N-arylation of imidazoles with aryl and heteroaryl bromides catalyzed by CuI. Green Chem 10(2):171–173CrossRefGoogle Scholar
  174. 174.
    Suresh P, Pitchumani K (2008) Per-6-amino-β-cyclodextrin as an efficient supramolecular ligand and host for Cu(I)-catalyzed N-arylation of imidazole with aryl bromides. J Org Chem 73(22):9121–9124CrossRefGoogle Scholar
  175. 175.
    Kwon JK et al (2011) N-Arylation of carbazole by microwave-assisted ligand-free catalytic CuI reaction. Tetrahedron 67(26):4820–4825CrossRefGoogle Scholar
  176. 176.
    Liu Z-J et al (2010) Ligand-free copper-catalyzed amination of heteroaryl halides with alkyl- and arylamines. Adv Synth Catal 352(18):3158–3162CrossRefGoogle Scholar
  177. 177.
    Johansson Seechurn CCC, Parisel SL, Colacot TJ (2011) Air-stable Pd(R-allyl)LCl (L=Q-Phos, P(t-Bu)3, etc.) systems for C-C/N couplings: insight into the structure–activity relationship and catalyst activation pathway. J Org Chem 76(19):7918–7932CrossRefGoogle Scholar
  178. 178.
    Moss TA et al (2012) Room-temperature palladium-catalyzed coupling of heteroaryl amines with aryl or heteroaryl bromides. Synlett 23(2):285–289CrossRefGoogle Scholar
  179. 179.
    Tang B-X et al (2008) N-arylations of nitrogen-containing heterocycles with aryl and heteroaryl halides using a copper(I) oxide nanoparticle/1,10-phenanthroline catalytic system. Synthesis 11:1707–1716Google Scholar
  180. 180.
    Kantam ML, Ramani T, Chakrapani L (2008) N-Arylation of heterocycles with chloro- and fluoroarenes using resin-supported sulfonato-Cu(salen) complex. Synth Commun 38(4):626–636CrossRefGoogle Scholar
  181. 181.
    Vimolratana M, Simard JL, Brown SP (2011) Palladium-catalyzed amidation of 2-chloropyrimidines. Tetrahedron Lett 52(9):1020–1022CrossRefGoogle Scholar
  182. 182.
    Baffoe J, Hoe MY, Toure BB (2010) Copper-mediated N-heteroarylation of primary sulfonamides: synthesis of mono-N-heteroaryl sulfonamides. Org Lett 12(7):1532–1535CrossRefGoogle Scholar
  183. 183.
    Wang X et al (2012) Copper-catalyzed N-arylation of sulfonamides with aryl bromides under mild conditions. Tetrahedron Lett 53(1):7–10CrossRefGoogle Scholar
  184. 184.
    Anjanappa P et al (2008) 2-(Trimethylsilyl)ethanesulfonyl amide as a new ammonia equivalent for palladium-catalyzed amination of aryl halides. Tetrahedron Lett 49(31):4585–4587CrossRefGoogle Scholar
  185. 185.
    Prakash A et al (2011) Efficient indoles and anilines syntheses employing tert-butyl sulfinamide as ammonia surrogate. Tetrahedron Lett 52(43):5625–5628CrossRefGoogle Scholar
  186. 186.
    Funes Maldonado M et al (2012) Synthesis and arylation of unprotected sulfonimidamides. Tetrahedron 68(36):7456–7462CrossRefGoogle Scholar
  187. 187.
    Breitler S et al (2011) Synthesis of unsymmetrical diarylureas via Pd-catalyzed C-N cross-coupling reactions. Org Lett 13(12):3262–3265CrossRefGoogle Scholar
  188. 188.
    Hammoud H et al (2012) Direct guanidinylation of aryl and heteroaryl halides via copper-catalyzed cross-coupling reaction. J Org Chem 77(1):417–423CrossRefGoogle Scholar
  189. 189.
    Thiel OR et al (2010) Palladium-catalyzed coupling of aldehyde-derived hydrazones: practical synthesis of triazolopyridines and related heterocycles. Angew Chem Int Ed 49(45):8395–8398CrossRefGoogle Scholar
  190. 190.
    Vinogradova EV et al (2013) Palladium-catalyzed synthesis of N-Aryl carbamates. Org Lett 15(6):1394–1397CrossRefGoogle Scholar
  191. 191.
    Das AR, Medda A, Singha R (2010) Synthesis of biologically potent new 3-(heteroaryl)aminocoumarin derivatives via Buchwald–Hartwig C–N coupling. Tetrahedron Lett 51(7):1099–1102CrossRefGoogle Scholar
  192. 192.
    Shen Z et al (2010) Switching the chemoselectivity in the amination of 4-chloroquinazolines with aminopyrazoles. Org Lett 12(3):552–555CrossRefGoogle Scholar
  193. 193.
    Cordoba M, Izquierdo ML, Alvarez-Builla J (2008) New approaches to the synthesis of pyridinium N-heteroarylaminides. Tetrahedron 64(34):7914–7919CrossRefGoogle Scholar
  194. 194.
    Zhang G et al (2013) Palladium-catalyzed cross-coupling of electron-deficient heteroaromatic amines with heteroaryl halides. Synth Commun 43(3):456–463CrossRefGoogle Scholar
  195. 195.
    Lach F, Pasquet M-J, Chabanne M (2011) A general route to unsubstituted N-aryl and heteroarylaminobenzenesulfonamides. Tetrahedron Lett 52(16):1882–1887CrossRefGoogle Scholar
  196. 196.
    Hirao T et al (1982) Palladium-catalyzed new carbon-phosphorus bond formation. Bull Chem Soc Jpn 55(3):909–913CrossRefGoogle Scholar
  197. 197.
    Belabassi Y, Alzghari S, Montchamp J-L (2008) Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J Organomet Chem 693(19):3171–3178CrossRefGoogle Scholar
  198. 198.
    Deal EL, Petit C, Montchamp J-L (2011) Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org Lett 13(12):3270–3273CrossRefGoogle Scholar
  199. 199.
    Zhang H-Y et al Nickel-catalyzed C–P cross-coupling of diphenylphosphine oxide with aryl chlorides. Org Biomol Chem 10(48):9627–9633Google Scholar
  200. 200.
    Kosugi M et al (1985) Palladium-catalyzed reaction of stannyl sulfide with aryl bromide. Preparation of aryl sulfide. Bull Chem Soc Jpn 58(12):3657–3658CrossRefGoogle Scholar
  201. 201.
    Xin K et al (2009) Efficient iron/copper cocatalyzed S-arylations of thiols with aryl halides. J Comb Chem 11(3):338–340CrossRefGoogle Scholar
  202. 202.
    Mo J et al (2011) Palladium-catalyzed carbon-sulfur cross-coupling reactions of aryl chlorides with indium tris(organothiolates). Chem Lett 40(9):980–982CrossRefGoogle Scholar
  203. 203.
    Babu SG, Karvembu R. Room temperature Ullmann type C–O and C–S cross coupling of aryl halides with phenol/thiophenol catalyzed by CuO nanoparticles. Tetrahedron Lett 54(13):1677–1680Google Scholar
  204. 204.
    Dash P, Janni M, Peruncheralathan S (2012) Trideuteriomethoxylation of aryl and heteroaryl halides. Eur J Org Chem 26:4914–4917CrossRefGoogle Scholar
  205. 205.
    Schoenberg A, Heck RF (1974) Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J Org Chem 39(23):3327–3331CrossRefGoogle Scholar
  206. 206.
    Roberts B, Liptrot D, Alcaraz L (2010) Novel aryl and heteroaryl acyl sulfamide synthesis via microwave-assisted palladium-catalyzed carbonylation. Org Lett 12(6):1264–1267CrossRefGoogle Scholar
  207. 207.
    Qu B et al (2009) Palladium-catalyzed aminocarbonylation of heteroaryl halides using di-tert-butylphosphinoferrocene. Tetrahedron Lett 50(45):6126–6129CrossRefGoogle Scholar
  208. 208.
    Borhade SR, Sandstroem A, Arvidsson PI (2013) Synthesis of novel aryl and heteroaryl acyl sulfonimidamides via Pd-catalyzed carbonylation using a nongaseous precursor. Org Lett 15(5):1056–1059CrossRefGoogle Scholar
  209. 209.
    Schareina T et al (2010) An improved protocol for palladium-catalyzed alkoxycarbonylations of aryl chlorides with alkyl formates. Adv Synth Catal 352(7):1205–1209CrossRefGoogle Scholar
  210. 210.
    Ueda T, Konishi H, Manabe K (2012) Palladium-catalyzed carbonylation of aryl, alkenyl, and allyl halides with phenyl formate. Org Lett 14(12):3100–3103CrossRefGoogle Scholar
  211. 211.
    Kang F-A, Sui Z, Murray WV (2008) Pd-catalyzed direct arylation of tautomerizable heterocycles with aryl boronic acids via C-OH bond activation using phosphonium salts. J Am Chem Soc 130(34):11300–11302CrossRefGoogle Scholar
  212. 212.
    Sharma A, Vachhani D, Van der Eycken E (2012) Direct heteroarylation of tautomerizable heterocycles into unsymmetrical and symmetrical biheterocycles via Pd/Cu-catalyzed phosphonium coupling. Org Lett 14(7):1854–1857CrossRefGoogle Scholar
  213. 213.
    Wang X et al (2008) Palladium-catalyzed one-pot synthesis of 2-alkyl-2-arylcyanoacetates. J Org Chem 73(4):1643–1645CrossRefGoogle Scholar
  214. 214.
    Mosquera A et al (2008) Cross-coupling reactions of indium organometallics with 2,5-dihalopyrimidines: synthesis of hyrtinadine A. Org Lett 10(17):3745–3748CrossRefGoogle Scholar
  215. 215.
    Schareina T et al (2008) A bio-inspired copper catalyst system for practical catalytic cyanation of aryl bromides. Synthesis 20:3351–3355Google Scholar
  216. 216.
    Chen Y-H, Knochel P (2008) Preparation of Aryl and heteroaryl indium(III) reagents by the direct insertion of indium in the presence of LiCl. Angew Chem Int Ed 47(40):7648–7651CrossRefGoogle Scholar
  217. 217.
    Chen Y-H, Sun M, Knochel P (2009) LiCl-mediated preparation of functionalized benzylic indium(III) halides and highly chemoselective palladium-catalyzed cross-coupling in a protic cosolvent. Angew Chem Int Ed 48(12):2236–2239CrossRefGoogle Scholar
  218. 218.
    Zhao X et al (2010) Microwave-assisted, Pd(0)-catalyzed cross-coupling of diazirines with aryl halides. Org Lett 12(23):5580–5583CrossRefGoogle Scholar
  219. 219.
    Sengmany S, Le Gall E, Leonel E (2011) An electrochemical synthesis of functionalized arylpyrimidines from 4-amino-6-chloropyrimidines and aryl halides. Molecules 16:5550–5560CrossRefGoogle Scholar
  220. 220.
    Bochatay VN et al (2013) Mechanistic exploration of the palladium-catalyzed process for the synthesis of benzoxazoles and benzothiazoles. J Org Chem 78(4):1471–1477CrossRefGoogle Scholar
  221. 221.
    Colomb J, Billard T (2013) Palladium-catalyzed desulfitative arylation of 3-haloquinolines with arylsulfinates. Tetrahedron Lett 54(11):1471–1474CrossRefGoogle Scholar
  222. 222.
    Zhou C et al (2012) Palladium-catalyzed desulfitative arylation by C–O bond cleavage of aryl triflates with sodium arylsulfinates. J Org Chem 77(22):10468–10472CrossRefGoogle Scholar
  223. 223.
    Asaki T et al (2007) Structure-activity studies on diphenylpyrazine derivatives: a novel class of prostacyclin receptor agonists. Bioorg Med Chem 15(21):6692–6704CrossRefGoogle Scholar
  224. 224.
    Buron F et al (2005) Synthesis of pyrazine alkaloids from Botryllus leachi. Diazines 43. J Org Chem 70(7):2616–2621CrossRefGoogle Scholar
  225. 225.
    Buron F et al (2007) Towards a biomimetic synthesis of barrenazine A. Tetrahedron Lett 48(25):4327–4330CrossRefGoogle Scholar
  226. 226.
    Corbett JW et al (2007) Heteroatom-linked indanylpyrazines are corticotropin releasing factor type-1 receptor antagonists. Bioorg Med Chem Lett 17(22):6250–6256CrossRefGoogle Scholar
  227. 227.
    Dembitsky VM, Gloriozova TA, Poroikov VV (2007) Natural peroxy anticancer agents. Mini-Rev Med Chem 7(6):571–589CrossRefGoogle Scholar
  228. 228.
    Geiger C et al (2007) Synthesis of bicyclic σ receptor ligands with cytotoxic activity. J Med Chem 50(24):6144–6153CrossRefGoogle Scholar
  229. 229.
    Martinez MM, Sarandeses LA, Sestelo JP (2007) Enantioselective synthesis of (-)-barrenazines A and B. Tetrahedron Lett 48(48):8536–8539CrossRefGoogle Scholar
  230. 230.
    Kim KB, Crews CM (2008) Chemical genetics: exploring the role of the proteasome in cell biology using natural products and other small molecule proteasome inhibitors. J Med Chem 51(9):2600–2605CrossRefGoogle Scholar
  231. 231.
    Ge S, Hartwig JF (2012) Highly reactive, single-component nickel catalyst precursor for Suzuki–Miyuara cross-coupling of heteroaryl boronic acids with heteroaryl halides. Angew Chem Int Ed 51(51):12837–12841CrossRefGoogle Scholar
  232. 232.
    Dowlut M, Mallik D, Organ MG (2010) An efficient low-temperature Stille-Migita cross-coupling reaction for heteroaromatic compounds by Pd-PEPPSI-IPent. Chem Eur J 16(14):4279–4283, S4279/1-S4279/53CrossRefGoogle Scholar
  233. 233.
    Brandsma L, Vasilevsky SF, Verkruijsse HD (1997) Application of transition metal catalysts in organic synthesis. Springer-Verlag/Heidelberg, Berlin/New YorkGoogle Scholar
  234. 234.
    Diederich F, Stang PJ (eds) (1998) Metal-catalyzed cross-coupling reactions. Wiley-VCH, Weinheim, 517 ppGoogle Scholar
  235. 235.
    Pattenden G (ed) (1992) Comprehensive organic synthesis: selectivity, strategy and efficiency in modern organic chemistry, volume 3: carbon–carbon σ-bond formation. Pergamon, New YorkGoogle Scholar
  236. 236.
    Rossi R, Carpita A, Bellina F (1995) Palladium- and/or copper-mediated cross-coupling reactions between 1-alkynes and vinyl, aryl, 1-alkynyl, 1,2-propadienyl, propargyl and allylic halides or related compounds. A review Org Prep Proced Int 27(2):127–160CrossRefGoogle Scholar
  237. 237.
    Ali H, van Lier JE (2012) An easy route for the synthesis of pyrazine-2,3-dicarbonitrile 5,6-bis-substituted derivatives using a palladium catalyst. Tetrahedron Lett 53(36):4824–4827CrossRefGoogle Scholar
  238. 238.
    Malik I et al (2010) Synthesis of 2,3-disubstituted pyrazines and quinoxalines by Heck cross-coupling reactions of 2,3-dichloropyrazine and 2,3-dichloroquinoxaline. Influence of the temperature on the product distribution. Tetrahedron 66(9):1637–1642CrossRefGoogle Scholar
  239. 239.
    Mehta VP et al (2008) A novel and versatile entry to asymmetrically substituted pyrazines. J Org Chem 73(6):2382–2388CrossRefGoogle Scholar
  240. 240.
    Modha SG et al (2012) Efficient preparation of tetrasubstituted pyrazines starting from pyrazin-2(1H)-ones. Synthesis 44(11):1614–1624CrossRefGoogle Scholar
  241. 241.
    Won Y-H, Park M-S (2010) Synthesis and anticancer activities of new 3-allylthio-6-(mono or disubstituted)aminopyridazines. Arch Pharmacal Res 33(2):189–196CrossRefGoogle Scholar
  242. 242.
    Rohet F et al (1997) Synthesis and analgesic effects of 3-substituted 4,6-diarylpyridazine derivatives of the arylpiperazine class. Bioorg Med Chem 5(4):655–659CrossRefGoogle Scholar
  243. 243.
    Allerton CMN et al (2009) Design and synthesis of pyridazinone-based 5-HT2C agonists. Bioorg Med Chem Lett 19(19):5791–5795CrossRefGoogle Scholar
  244. 244.
    Gleave RJ et al (2010) Synthesis and evaluation of 3-amino-6-aryl-pyridazines as selective CB2 agonists for the treatment of inflammatory pain. Bioorg Med Chem Lett 20(2):465–468CrossRefGoogle Scholar
  245. 245.
    Isabel E et al (2011) Biological activity and preclinical efficacy of azetidinyl pyridazines as potent systemically-distributed stearoyl-CoA desaturase inhibitors. Bioorg Med Chem Lett 21(1):479–483CrossRefGoogle Scholar
  246. 246.
    Liu G et al (2007) Discovery of potent, selective, orally bioavailable stearoyl-CoA desaturase 1 inhibitors. J Med Chem 50(13):3086–3100CrossRefGoogle Scholar
  247. 247.
    Wan Z et al (2011) Pyridazine-derived γ-secretase modulators. Bioorg Med Chem Lett 21(13):4016–4019CrossRefGoogle Scholar
  248. 248.
    Contreras J-M et al (1999) Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42(4):730–741CrossRefGoogle Scholar
  249. 249.
    Contreras J-M et al (2001) Design, synthesis, and structure–activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. J Med Chem 44(17):2707–2718CrossRefGoogle Scholar
  250. 250.
    Gavande N et al (2010) Microwave-enhanced synthesis of 2,3,6-trisubstituted pyridazines: application to four-step synthesis of gabazine (SR-95531). Org Biomol Chem 8(18):4131–4136CrossRefGoogle Scholar
  251. 251.
    Woodward RM, Polenzani L, Miledi R (1993) Characterization of bicuculline/baclofen-insensitive (ρ-like) γ-aminobutyric acid receptors expressed in Xenopus oocytes. II Pharmacology of γ-aminobutyric acidA and γ-aminobutyric acidB receptor agonists and antagonists. Mol Pharmacol 43(4):609–625Google Scholar
  252. 252.
    Zhang J, Xue F, Chang Y (2008) Structural determinants for antagonist pharmacology that distinguish the ρ1 GABAC receptor from GABAA receptors. Mol Pharmacol 74(4):941–951CrossRefGoogle Scholar
  253. 253.
    Sengmany S et al (2013) An electrochemical nickel-catalyzed arylation of 3-amino-6-chloropyridazines. J Org Chem 78(2):370–379CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Laurin Wimmer
    • 1
  • Lukas Rycek
    • 1
  • Moumita Koley
    • 2
  • Michael Schnürch
    • 1
  1. 1.Institute of Applied Synthetic ChemistryVienna University of TechnologyViennaAustria
  2. 2.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations