Skip to main content

Synthesis of Heterocycles via Metal-Catalyzed Domino/One-Pot Reactions That Generate a C—N or C—O Bond

  • Chapter
  • First Online:
Book cover Synthesis of Heterocycles via Metal-Catalyzed Reactions that Generate One or More Carbon-Heteroatom Bonds

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 32))

Abstract

This chapter focuses on transition metal-catalyzed domino (cascade) or one-pot syntheses of heterocycles via the formation of a carbon–nitrogen, –oxygen, or –sulfur bond. A precise classification of domino, one-pot, and tandem reactions is given. However, despite that rather strict definition, the chapter includes a variety of processes that are important from a mechanistic and synthetic point of view. These are methods which showcase both ingenious and efficient reaction design while simultaneously aiming to minimize deleterious byproduct formation as well as uneconomical workup and purification steps. While there are several types of protocols highlighted within this section, there is a larger emphasis on transition metal-catalyzed cycloisomerization methods, the utility of gem-dihaloolefins, and C—H functionalization protocols within the framework of domino catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There have been recorded instances in literature by Bolm, Buchwald, and others where it has been determined that trace metal impurities are the catalytically active species in transition metal-catalyzed reactions. This is especially relevant in many iron-catalyzed methods.

References

  1. Tietze LF, Beifuss U (1993) Angew Chem Int Ed 32:131

    Article  Google Scholar 

  2. Tietze LF (1996) Chem Rev 96:115

    Article  CAS  Google Scholar 

  3. Fogg DE, dos Santos EN (2004) Coord Chem Rev 248:2365

    Article  CAS  Google Scholar 

  4. Chapman CJ, Frost CG (2007) Synthesis 1

    Google Scholar 

  5. Singh BN, Vaughan Williams EM (1970) Br J Pharmacol 39:657

    Article  CAS  Google Scholar 

  6. Baba K, Takeuchi K, Hamasaki F, Kozawa M (1986) Chem Pharm Bull 34:595

    Article  CAS  Google Scholar 

  7. Lounasmaa M, Tolvanen A (2000) Nat Prod Rep 17:175

    Article  CAS  Google Scholar 

  8. Katritzky A, Rees C, Scriven E (eds) (1996) Indoles. In: Gribble GW (ed) Comprehensive heterocyclic chemistry II. Pergamon, Oxford, p 207

    Google Scholar 

  9. Kadieva MG, Oganesyan ÉT (1997) Chem Heterocycl Compd 33:1245

    Article  CAS  Google Scholar 

  10. Krüger K, Tillack A, Beller M (2008) Adv Synth Catal 350:2153

    Article  Google Scholar 

  11. Zeni G, Larock RC (2004) Chem Rev 104:2285

    Article  CAS  Google Scholar 

  12. Fürstner A, Davies PW (2005) J Am Chem Soc 127:15024

    Article  Google Scholar 

  13. Li G, Huang X, Zhang L (2008) Angew Chem Int Ed 47:346

    Article  CAS  Google Scholar 

  14. Koradin C, Dohle W, Rodriguez AL, Schmid B, Knochel P (2003) Tetrahedron 59:1571

    Article  CAS  Google Scholar 

  15. Shimada T, Nakamura I, Yamamoto Y (2004) J Am Chem Soc 126:10546

    Article  CAS  Google Scholar 

  16. Nakamura I, Mizushima Y, Yamamoto Y (2005) J Am Chem Soc 127:15022

    Article  CAS  Google Scholar 

  17. Bates CG, Saejueng P, Murphy JM, Venkataraman D (2002) Org Lett 4:4727

    Article  CAS  Google Scholar 

  18. Carril M, Correa A, Bolm C (2008) Angew Chem Int Ed 47:4862

    Article  CAS  Google Scholar 

  19. Buchwald SL, Bolm C (2009) Angew Chem Int Ed 48:5586

    Article  CAS  Google Scholar 

  20. Thomé I, Nijs A, Bolm C (2012) Chem Soc Rev 41:979

    Article  Google Scholar 

  21. Kondo Y, Shiga F, Murata N, Sakamoto T, Yamanaka H (1994) Tetrahedron 50:11803

    Article  CAS  Google Scholar 

  22. Lu BZ, Zhao W, Wei H-X, Dufour M, Farina V, Senanayake CH (2006) Org Lett 8:3271

    Article  CAS  Google Scholar 

  23. Nakamura M, Ilies L, Otsubo S, Nakamura E (2006) Org Lett 8:2803

    Article  CAS  Google Scholar 

  24. Isono N, Lautens M (2009) Org Lett 12:1329

    Article  Google Scholar 

  25. Boyer A, Isono N, Lackner S, Lautens M (2010) Tetrahedron 66:6468

    Article  CAS  Google Scholar 

  26. Rao MLN, Jadhav DN, Dasgupta P (2010) Org Lett 12:2048

    Article  CAS  Google Scholar 

  27. Berciano BP, Lebrequier S, Besselièvre F, Pigue S (2010) Org Lett 12:4038

    Article  Google Scholar 

  28. Coste A, Karthikeyan G, Couty F, Evano G (2009) Angew Chem Int Ed 48:4381

    Article  CAS  Google Scholar 

  29. Coste A, Couty F, Evano G (2009) Org Lett 11:4454

    Article  CAS  Google Scholar 

  30. Wang Z-J, Yang J-G, Yang F, Bao W (2010) Org Lett 12:3034

    Article  CAS  Google Scholar 

  31. Xu H, Zhang Y, Huang J, Chen W (2010) Org Lett 12:3704

    Article  CAS  Google Scholar 

  32. Qin X-R, Cong X-F, Zhao D-B, You J-S, Lan J-B (2011) Chem Commun 47:5611

    Article  CAS  Google Scholar 

  33. Zeng F, Alper H (2011) Org Lett 13:2868

    Article  CAS  Google Scholar 

  34. Ramirez F, Desal NB, McKelvie N (1962) J Am Chem Soc 84:1745

    Article  CAS  Google Scholar 

  35. Corey EJ, Fuchs PL (1972) Tetrahedron Lett 36:3769

    Article  Google Scholar 

  36. Eymery F, Iorga B, Savignac P (2000) Synthesis 85

    Google Scholar 

  37. Fang Y-Q, Karisch R, Lautens M (2007) J Org Chem 72:1341

    Article  CAS  Google Scholar 

  38. Fang Y-Q, Lautens M (2005) Org Lett 7:3549

    Article  CAS  Google Scholar 

  39. Fang Y-Q, Lautens M (2008) J Org Chem 73:538

    Article  CAS  Google Scholar 

  40. Fayol A, Fang Y-Q, Lautens M (2006) Org Lett 8:4203

    Article  CAS  Google Scholar 

  41. Fang Y-Q, Yuen J, Lautens M (2007) J Org Chem 72:5152

    Article  CAS  Google Scholar 

  42. Yuen J, Fang Y-Q, Lautens M (2006) Org Lett 8:653

    Article  CAS  Google Scholar 

  43. Nagamochi M, Fang Y-Q, Lautens M (2007) Org Lett 9:2955

    Article  CAS  Google Scholar 

  44. Bryan CS, Lautens M (2008) Org Lett 10:4633

    Article  CAS  Google Scholar 

  45. Newman SG, Aureggi V, Bryan CS, Lautens M (2009) Chem Commun 5236

    Google Scholar 

  46. Thielges S, Meddah E, Bisseret P, Eustache J (2004) Tetrahedron Lett 45:907

    Article  CAS  Google Scholar 

  47. Vieira TO, Meaney LA, Shi Y-L, Alper H (2008) Org Lett 10:4899

    Article  CAS  Google Scholar 

  48. Arthuis M, Pontikis R, Florent J-C (2009) Org Lett 11:4608

    Article  CAS  Google Scholar 

  49. Xia Z, Wang K, Zheng J, Ma Z, Jiang Z, Wang X, Lv X (2012) Org Biomol Chem 10:1602

    Article  CAS  Google Scholar 

  50. Wang Z-J, Yang F, Lv X, Bao W (2011) J Org Chem 76:967

    Article  CAS  Google Scholar 

  51. He H-F, Dong S, Chen Y, Yang Y, Le Y, Bao W (2012) Tetrahedron 68:3112

    Article  CAS  Google Scholar 

  52. Bryan CS, Braunger JA, Lautens M (2009) Angew Chem Int Ed 48:7064

    Article  CAS  Google Scholar 

  53. Alberico D, Scott ME, Lautens M (2007) Chem Rev 107:174

    Article  CAS  Google Scholar 

  54. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Angew Chem Int Ed 51:10236

    Article  CAS  Google Scholar 

  55. Cuny G, Bois-Choussy M, Zhu J (2003) Angew Chem Int Ed 42:4774

    Article  CAS  Google Scholar 

  56. Cuny G, Bois-Choussy M, Zhu J (2004) J Am Chem Soc 126:14475

    Article  CAS  Google Scholar 

  57. Ackermann L, Althammer A (2007) Angew Chem Int Ed 46:1627

    Article  CAS  Google Scholar 

  58. Knölker H-J, Reddy KR (2002) Chem Rev 102:4303

    Article  Google Scholar 

  59. Jensen T, Pedersen H, Bang-Andersen B, Madsen R, Jørgensen M (2008) Angew Chem Int Ed 47:888

    Article  CAS  Google Scholar 

  60. Pinto A, Neuville L, Zhu J (2009) Tetrahedron Lett 50:3602

    Article  CAS  Google Scholar 

  61. Catellani M, Fagnola MC (1994) Angew Chem Int Ed Engl 33:2421

    Article  Google Scholar 

  62. Catellani M (2003) Synlett 298

    Google Scholar 

  63. Motti E, Ippomei G, Deledda S, Catellani M (2003) Synthesis 2671

    Google Scholar 

  64. Faccini F, Motti E, Catellani M (2004) J Am Chem Soc 126:78

    Article  CAS  Google Scholar 

  65. Thansandote P, Raemy M, Rudolph A, Lautens M (2007) Org Lett 9:5255

    Article  CAS  Google Scholar 

  66. Candito DA, Lautens M (2010) Org Lett 12:3312

    Article  CAS  Google Scholar 

  67. Candito DA, Lautens M (2009) Angew Chem Int Ed 48:6713

    Article  CAS  Google Scholar 

  68. Blanchot M, Candito DA, Larnaud F, Lautens M (2011) Org Lett 13:1486

    Article  CAS  Google Scholar 

  69. Thansandote P, Chong E, Feldmann K-O, Lautens M (2010) J Org Chem 75:3495

    Article  CAS  Google Scholar 

  70. Knapp JM, Zhu JS, Tantillo DJ, Kurth MJ (2012) Angew Chem Int Ed 51:10588

    Article  CAS  Google Scholar 

  71. Panteleev J, Zhang L, Lautens M (2011) Angew Chem Int Ed 50:9089

    Article  CAS  Google Scholar 

  72. Barluenga J, Jiménez-Aquino A, Valdés C, Aznar F (2007) Angew Chem Int Ed 46:1529

    Article  CAS  Google Scholar 

  73. Willis MC, Snell RH, Fletcher AJ, Woodward RL (2006) Org Lett 8:5089

    Article  CAS  Google Scholar 

  74. Ohta Y, Chiba H, Oishi S, Fujii N, Ohno H (2008) Org Lett 10:3535

    Article  CAS  Google Scholar 

  75. Barluenga J, Quiñones, Cabal M-P, Aznar F, Valdés C (2011) Angew Chem Int Ed 50:2350

    Google Scholar 

  76. Li L, Wang M, Zhang X, Jiang Y, Ma D (2009) Org Lett 11:1309

    Article  CAS  Google Scholar 

  77. Nakamura I, Okamoto M, Sato Y, Terada M (2012) Angew Chem Int Ed 51:10816

    Article  CAS  Google Scholar 

  78. Qian J, Liu Y, Zhu J, Jiang B, Xu Z (2011) Org Lett 13:4220

    Article  CAS  Google Scholar 

  79. Martín R, Rodríguez Rivero M, Buchwald SL (2006) Angew Chem Int Ed 45:7079

    Article  Google Scholar 

  80. Yang M, Tang J, Fan R (2012) Chem Commun 48:11775

    Article  CAS  Google Scholar 

  81. Tadd AC, Matsuno A, Fielding MR, Willis MC (2009) Org Lett 11:583

    Article  CAS  Google Scholar 

  82. Yeom H-S, Lee J-E, Shin S (2008) Angew Chem Int Ed 47:7040

    Article  CAS  Google Scholar 

  83. Murata T, Murai M, Ikeda Y, Miki K, Ohe K (2012) Org Lett 14:2296

    Article  CAS  Google Scholar 

  84. Zhou L, Shi Y, Xiao Q, Liu Y, Ye F, Zhang Y, Wang J (2011) Org Lett 13:968

    Article  CAS  Google Scholar 

  85. Altenhoff G, Glorius F (2004) Adv Synth Catal 346:1661

    Article  CAS  Google Scholar 

  86. Trost BM, Crawley ML (2003) Chem Rev 103:2921

    Article  CAS  Google Scholar 

  87. Balme G, Bouyssi D, Monteiro N (2006) Pure Appl Chem 78:231

    Article  CAS  Google Scholar 

  88. Wang L, Li P, Menche D (2010) Angew Chem Int Ed 49:9270

    Article  CAS  Google Scholar 

  89. Wang L, Menche D (2012) Angew Chem Int Ed 51:9425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Council of Canada (NSERC) and the University of Toronto for financial support. NSERC/Merck-Frosst Canada is thanked for an Industrial Research Chair. JK thanks the Deutsche Forschungsgemeinschaft for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Lautens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keilitz, J., Malik, H.A., Lautens, M. (2013). Synthesis of Heterocycles via Metal-Catalyzed Domino/One-Pot Reactions That Generate a C—N or C—O Bond. In: Wolfe, J. (eds) Synthesis of Heterocycles via Metal-Catalyzed Reactions that Generate One or More Carbon-Heteroatom Bonds. Topics in Heterocyclic Chemistry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2013_106

Download citation

Publish with us

Policies and ethics