Synthesis of Heterocycles via Palladium-Catalyzed Wacker-Type Oxidative Cyclization Reactions of Hydroxy- and Amino-Alkenes

Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 32)

Abstract

Oxygen and nitrogen containing heterocyclic compounds are some of the most important and prominent structures found in biologically active natural and synthetic products, thus their synthesis is of paramount importance to the chemical community. One particularly important route to the synthesis of these structures is that of Wacker-type oxidative cyclizations. Palladium-catalyzed oxidative cyclizations represent an efficient and simple procedure for the synthesis of a variety of heterocyclic structures. The catalytic system can be fine-tuned to promote different oxidative transformations and to induce asymmetry in to the cyclized products, either via the use of chiral ligands or by manipulating chirality present in the starting substrate.

Graphical Abstract

Keywords

Cyclization Heterocycles Oxidation Palladium Wacker 

Abbreviations

Ac

Acetyl

Ar

Aryl

Bn

Benzyl

Boxax

Binaphthyl-2,2′-bis(oxazoline)

Bu

Butyl

dba

Dibenzylideneacetone

DIPEA

Diisopropylethylamine

DME

Dimethoxyethane

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

equiv

Equivalent

Et

Ethyl

h

Hour(s)

i-Pr

Isopropyl

Me

Methyl

MeCN

Acetonitrile

MeOH

Methanol

MOA

Trimethyl orthoacetate

Mol

Mole

MS

Molecular sieves

NHC

N-heterocyclic carbene

Ns

Nosyl

OAc

Acetoxy

Ph

Phenyl

p-Tol

para-Tolyl

py

Pyridine

pyrox

Pyridine-oxazoline

quinox

2-(4,5-Dihydro-2-oxazolyl)quinoline

rt

Room temperature

s

Second(s)

sprix

Spiro-bis(isoxazoline)

t-Bu

tert-Butyl

TFA

Trifluoroacetate

THF

Tetrahydrofuran

THP

Tetrahydropyran

Tol

Toluene

Ts

Tosyl

References

  1. 1.
    McDonald RI, Liu G, Stahl SS (2011) Chem Rev 111:2981Google Scholar
  2. 2.
    Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) Chem Rev 107:5318Google Scholar
  3. 3.
    Stahl SS (2004) Angew Chem Int Ed 43:3400Google Scholar
  4. 4.
    Backvall JE (1983) Acc Chem Res 16:335Google Scholar
  5. 5.
    Takacs JM, Jiang X (2003) Curr Org Chem 7:369Google Scholar
  6. 6.
    Kotov V, Scarborough CC, Stahl SS (2007) Inorg Chem 46:1910Google Scholar
  7. 7.
    Sohn J-H, Waizumi N, Zhong HM, Rawal VH (2005) J Am Chem Soc 127:7290Google Scholar
  8. 8.
    Hosokawa T, Hirata M, Murahashi SI, Sonoda A (1976) Tetrahedron Lett 17:1821Google Scholar
  9. 9.
    Uenishi J, Ohmi M (2005) Angew Chem Int Ed 44:2756Google Scholar
  10. 10.
    Van Benthem RATM, Hiemstra H, Speckamp WN (1992) J Org Chem 57:22Google Scholar
  11. 11.
    Van Benthem RATM, Hiemstra H, Michels JJ, Speckamp WN (1994) J Chem Soc Chem Commun 357Google Scholar
  12. 12.
    Roenn M, Backvall J, Andersson P (1995) Tetrahedron Lett 36:7749Google Scholar
  13. 13.
    Han X, Widenhoefer RA (2004) J Org Chem 69:1738Google Scholar
  14. 14.
    Mmutlane EM, Harris JM, Padwa A (2005) J Org Chem 70:8055Google Scholar
  15. 15.
    Sharma G, Chander A, Krishnudu K, Krishna P (1998) Tetrahedron Lett 39:6957Google Scholar
  16. 16.
    Trend RM, Ramtohul YK, Ferreira EM, Stoltz BM (2003) Angew Chem Int Ed 42:2892Google Scholar
  17. 17.
    Trend RM, Ramtohul YK, Stoltz BM (2005) J Am Chem Soc 127:17778Google Scholar
  18. 18.
    Hosokawa T, Maeda K, Koga K, Moritani I (1973) Tetrahedron Lett 10:739Google Scholar
  19. 19.
    Hosokawa T, Ohkata H, Moritani I (1975) Bull Chem Soc Jpn 48:1533Google Scholar
  20. 20.
    Hosokawa T, Yamashita S, Murahashi S-I, Sonoda A (1976) Bull Chem Soc Jpn 49:3662Google Scholar
  21. 21.
    Muňiz K (2004) Adv Synth Catal 346:1425Google Scholar
  22. 22.
    Larock R, Wei L, Hightower TR (1998) Synlett 522Google Scholar
  23. 23.
    Roshchin AI, Kel SM, Bumagin NA (1998) J Organomet Chem 560:163Google Scholar
  24. 24.
    Kasahara A, Izumi T, Sato K, Maemura M, Hayasaka T (1977) Bull Chem Soc Jpn 50:1899Google Scholar
  25. 25.
    Larock RC, Hightower TR (1993) J Org Chem 58:5298Google Scholar
  26. 26.
    Minami T, Nishimoto A, Nakamura Y, Hanaoka M (1994) Bull Chem Soc Jpn 42:1700Google Scholar
  27. 27.
    Jabre-Truffert S, Waegell B (1997) Tetrahedron Lett 38:835Google Scholar
  28. 28.
    Jacobi PA, Li Y (2003) Org Lett 5:701Google Scholar
  29. 29.
    Shoji M, Uno T, Kakeya H, Onose R, Shiina I, Osada H, Hayashi Y (2005) J Org Chem 70: 9905Google Scholar
  30. 30.
    He Z, Yudin AK (2006) Org Lett 8:5829Google Scholar
  31. 31.
    Arai MA, Kuraishi M, Arai T, Sasai H (2001) J Am Chem Soc 123:2907Google Scholar
  32. 32.
    Koranne PS, Tsujihara T, Arai MA, Bajracharya GB, Suzuki T, Onitsuka K, Sasai H (2007) Tetrahedron Asymmetry 18:919Google Scholar
  33. 33.
    Takenaka K, Mohanta SC, Patil ML, Rao CVL, Takizawa S, Suzuki T, Sasai H (2010) Org Lett 12:3480Google Scholar
  34. 34.
    Reiter M, Ropp S, Gouverneur V (2004) Org Lett 6:91Google Scholar
  35. 35.
    Reiter M, Turner H, Mills-Webb R, Gouverneur V (2005) J Org Chem 70:8478Google Scholar
  36. 36.
    Hosokawa T, Miyagi S, Murahashi S-I, Sonoda A (1978) J Chem Soc Chem Commun 687Google Scholar
  37. 37.
    Hosokawa T, Uno T, Murahashi S-I (1979) J Chem Soc Chem Commun 4:475Google Scholar
  38. 38.
    Hosokawa T, Uno T, Inui S, Murahashi S-I (1981) J Am Chem Soc 103:2318Google Scholar
  39. 39.
    Hosokawa T, Okuda C, Murahashi S-I (1985) J Org Chem 50:1282Google Scholar
  40. 40.
    Uozumi Y, Kato K, Hayashi T (1997) J Am Chem Soc 119:5063Google Scholar
  41. 41.
    Uozumi Y, Kato K, Hayashi T (1998) J Org Chem 63:5071Google Scholar
  42. 42.
    Uozumi Y, Kyota H, Kato K, Ogasawara M, Hayashi T (1999) J Org Chem 64:1620Google Scholar
  43. 43.
    Zhang YJ, Wang F, Zhang W (2007) J Org Chem 72:9208Google Scholar
  44. 44.
    Wang F, Yang G, Zhang YJ, Zhang W (2008) Tetrahedron 64:9413Google Scholar
  45. 45.
    Liu Q, Wen K, Zhang Z, Wu Z, Zhang YJ, Zhang W (2012) Tetrahedron 68:5209Google Scholar
  46. 46.
    Wang F, Zhang YJ, Wei H, Zhang J, Zhang W (2007) Tetrahedron Lett 48:4083Google Scholar
  47. 47.
    Wang F, Zhang YJ, Yang G, Zhang W (2007) Tetrahedron Lett 48:4179Google Scholar
  48. 48.
    Semmelhack MF, Epa WR, Cheung W-H, Gu Y, Kim C, Zhang N, Lew W (1994) J Am Chem Soc 116:7455Google Scholar
  49. 49.
    Holmes CP, Bartlett PA (1989) J Org Chem 54:98Google Scholar
  50. 50.
    Semmelhack MF, Bozell JJ, Sato T, Wulff W, Spiess E, Zask A (1982) J Am Chem Soc 104: 5850Google Scholar
  51. 51.
    Semmelhack MF, Zask A (1983) J Am Chem Soc 105:2034Google Scholar
  52. 52.
    Tamaru Y (1991) J Org Chem 56:1099Google Scholar
  53. 53.
    Boukouvalas J, Fortier G, Radu L-L (1998) J Org Chem 63:916Google Scholar
  54. 54.
    Semmelhack MF, Hooley RJ, Kraml CM (2006) Org Lett 8:5203Google Scholar
  55. 55.
    Babjak M, Zálupský P, Gracza T (2005) Arkivoc 5:45Google Scholar
  56. 56.
    Tang Y, Zhang Y, Dai M, Luo T, Deng L, Chen J, Yang Z (2005) Org Lett 7:885Google Scholar
  57. 57.
    Tietze LF, Sommer KM, Zinngrebe J, Stecker F (2005) Angew Chem Int Ed 44:257Google Scholar
  58. 58.
    Tietze LF, Stecker F, Zinngrebe J, Sommer KM (2006) Chemistry 12:8770Google Scholar
  59. 59.
    Tietze LF, Spiegl DA, Stecker F, Major J, Raith C, Grosse C (2008) Chemistry 14:8956Google Scholar
  60. 60.
    Kapitán P, Gracza T (2008) Arkivoc 8:8Google Scholar
  61. 61.
    Evans MA, Morken JP (2005) Org Lett 7:3367Google Scholar
  62. 62.
    Minami K, Kawamura Y, Koga K, Hosokawa T (2005) Org Lett 7:5689Google Scholar
  63. 63.
    Kawamura Y, Imai T, Hosokawa T (2006) Synlett 3110Google Scholar
  64. 64.
    Kawamura Y, Kawano Y, Matsuda T, Ishitobi Y, Hosokawa T (2009) J Org Chem 74:3048Google Scholar
  65. 65.
    Henry PM (1964) J Am Chem Soc 86:3246Google Scholar
  66. 66.
    Keith JA, Henry PM (2009) Angew Chem Int Ed 48:9038Google Scholar
  67. 67.
    Comas-Vives A, Stirling A, Lledós A, Ujaque G (2010) Chemistry 16:8738Google Scholar
  68. 68.
    James DE, Hines LF, Stille JK (1976) J Am Chem Soc 98:1806Google Scholar
  69. 69.
    Majima T, Kurosawa H (1977) J Chem Soc Chem Commun 610Google Scholar
  70. 70.
    Stille JK, Divakaruni R (1978) J Am Chem Soc 100:1303Google Scholar
  71. 71.
    Backvall JE, Akermark B, Ljunggren SO (1979) J Am Chem Soc 101:2411Google Scholar
  72. 72.
    Zaw K, Henry PM (1990) J Org Chem 55:1842Google Scholar
  73. 73.
    Francis JW, Henry PM (1991) Organometallics 10:3498Google Scholar
  74. 74.
    Hamed O, Thompson C, Henry PM (1997) J Org Chem 62:7082Google Scholar
  75. 75.
    Hayashi T, Yamasaki K, Mimura M, Uozumi Y (2004) J Am Chem Soc 126:3036Google Scholar
  76. 76.
    Cornell CN, Sigman MS (2005) J Am Chem Soc 127:2796Google Scholar
  77. 77.
    Anderson BJ, Keith JA, Sigman MS (2010) J Am Chem Soc 132:11872Google Scholar
  78. 78.
    Hegedus LS, McKearin JM (1982) J Am Chem Soc 104:2444Google Scholar
  79. 79.
    Pugin B, Venanzi LM (1983) J Am Chem Soc 105:6877Google Scholar
  80. 80.
    Heathcock CH, Stafford JA, Clark DL (1992) J Org Chem 57:2575Google Scholar
  81. 81.
    Larock RC, Hightower TR, Hasvold LA, Peterson KP (1996) J Org Chem 61:3584Google Scholar
  82. 82.
    Fix SR, Brice JL, Stahl SS (2002) Angew Chem Int Ed 41:164Google Scholar
  83. 83.
    Revuelta J, Cicchi S, Brandi A (2005) J Org Chem 70:5636Google Scholar
  84. 84.
    Lu Z, Stahl SS (2012) Org Lett 14:1234Google Scholar
  85. 85.
    Hegedus LS, Allen GF, Bozell JJ, Waterman EL (1978) J Am Chem Soc 100:5800Google Scholar
  86. 86.
    Hegedus LS, Allen G, Olsen D (1980) J Am Chem Soc 102:3583Google Scholar
  87. 87.
    Harrington PJ, Hegedus LS (1984) J Org Chem 49:2657Google Scholar
  88. 88.
    Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C (2004) J Org Chem 69:5627Google Scholar
  89. 89.
    Zhang Z, Tan J, Wang Z (2008) Org Lett 10:173Google Scholar
  90. 90.
    Rogers MM, Wendlandt JE, Guzei IA, Stahl SS (2006) Org Lett 8:2257Google Scholar
  91. 91.
    Yang G, Zhang W (2012) Org Lett 14:268Google Scholar
  92. 92.
    Tsujihara T, Shinohara T, Takenaka K, Takizawa S, Onitsuka K, Hatanaka M, Sasai H (2009) J Org Chem 74:9274Google Scholar
  93. 93.
    Mcdonald RI, White PB, Weinstein AB, Tam CP, Stahl SS (2011) Org Lett 13:2830Google Scholar
  94. 94.
    Redford JE, Mcdonald RI, Rigsby ML, Wiensch JD, Stahl SS (2012) Org Lett 14:1242Google Scholar
  95. 95.
    Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS (2009) Tetrahedron 65:5084Google Scholar
  96. 96.
    Jiang F, Wu Z, Zhang W (2010) Tetrahedron Lett 51:5124Google Scholar
  97. 97.
    Yang G, Shen C, Zhang W (2012) Angew Chem Int Ed 51:9141Google Scholar
  98. 98.
    Ham W-H, Hoon Jung Y, Kyunghae L, Oh C-Y, Lee K-Y (1997) Tetrahedron Lett 38:3247Google Scholar
  99. 99.
    Oh C-Y, Kim K-S, Ham W-H (1998) Tetrahedron Lett 39:2133Google Scholar
  100. 100.
    Szolcsa P, Gracza T, Koman M, Pronayova N, Liptaj T (2000) Tetrahedron Asymmetry 11: 2579Google Scholar
  101. 101.
    Szolcsányi P, Gracza T, Koman M, Prónayovác N, Liptaj T (2000) Chem Commun 471Google Scholar
  102. 102.
    Tamaru Y, Hojo M, Higashimura H, Yoshida Z (1988) J Am Chem Soc 110:3994Google Scholar
  103. 103.
    Tamaru Y, Hojo M, Yoshida Z (1988) J Org Chem 53:5731Google Scholar
  104. 104.
    Harayama H, Takahashi Y, Kimura M, Fugami K, Tanaka S, Tamaru Y (1996) Tetrahedron Lett 37:7287Google Scholar
  105. 105.
    Koóš P, Špánik I, Gracza T (2009) Tetrahedron Asymmetry 20:2720Google Scholar
  106. 106.
    Shinohara T, Arai MA, Wakita K, Arai T, Sasai H (2003) Tetrahedron Lett 44:711Google Scholar
  107. 107.
    Harayama H, Abe A, Sakado T, Kimura M, Fugami K, Tanaka S, Tamaru Y (1997) J Org Chem 62:2113Google Scholar
  108. 108.
    Yip K-T, Yang M, Law K-L, Zhu N-Y, Yang D (2006) J Am Chem Soc 128:3130Google Scholar
  109. 109.
    Yip K, Zhu N, Yang D (2009) Org Lett 11:1911Google Scholar
  110. 110.
    He W, Yip K-T, Zhu N-Y, Yang D (2009) Org Lett 11:5626Google Scholar
  111. 111.
    Åkermark B, Bäckvall JE, Siiralah K, Sjoberg K, Zetterberg (1974) Tetrahedron Lett 15:1363Google Scholar
  112. 112.
    Backvall J, Bjorkman EE (1980) J Org Chem 45:2893Google Scholar
  113. 113.
    Akermark B, Zetterberg K (1984) J Am Chem Soc 106:5560Google Scholar
  114. 114.
    Backvall J, Bjorkman EE (1984) Acta Chem Scand 8:91Google Scholar
  115. 115.
    Hegedus LS, Akermark B, Zetterberg K, Olsson LF (1984) J Am Chem Soc 106:7122Google Scholar
  116. 116.
    Isomura K, Okada N, Saruwatari M, Yamasaki H, Taniguchi H (1985) Chem Lett 385Google Scholar
  117. 117.
    Desai LV, Sanford MS (2007) Angew Chem Int Ed 46:5737Google Scholar
  118. 118.
    Liu G, Stahl SS (2006) J Am Chem Soc 128:7179Google Scholar
  119. 119.
    Mai DN, Wolfe JP (2010) J Am Chem Soc 132:12157Google Scholar
  120. 120.
    Brice JL, Harang JE, Timokhin VI, Anastasi NR, Stahl SS (2005) J Am Chem Soc 127:2868Google Scholar
  121. 121.
    Hanley PS, Markovic D, Hartwig JF (2010) J Am Chem Soc 132:6302Google Scholar
  122. 122.
    Liu G, Stahl SS (2007) J Am Chem Soc 129:6328Google Scholar
  123. 123.
    White PB, Stahl SS (2011) J Am Chem Soc 133:18594Google Scholar
  124. 124.
    Ye X, Liu G, Popp BV, Stahl SS (2011) J Org Chem 76:1031Google Scholar
  125. 125.
    Weinstein AB, Stahl SS (2012) Angew Chem Int Ed 51:11505Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations