Skip to main content

Sources, Occurrence and Fate of Halogenated Heterocyclic Pharmaceuticals in the Environment

  • Chapter
  • First Online:
Halogenated Heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 27))

Abstract

After pharmaceuticals are excreted from target organisms, they enter the environment, where they can be diluted, dissociated, biologically or abiotically degraded or sorbed/accumulated in various environmental compartments, depending on their physicochemical properties. This chapter will review the existing literature on three model halogenated heterocyclic pharmaceuticals belonging to different pharmaceutical classes as environmental contaminants. Their occurrence and fate in the environment will be discussed and conclusions will be drawn regarding their common structure and fate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5–FU:

5-Fluoroacil

AOP:

Advanced oxidation processes

BCF:

Bioconcentration factor

CIP:

Ciprofloxacin

DOC:

Dissolved organic carbon

DZ:

Diazepam

HHPh:

Halogenated heterocyclic pharmaceuticals

K d :

Distribution coefficient

k H :

Henry’s coefficient

K oc :

Organic carbon partition coefficient

K ow :

Octanol-water partition coefficient

LOD:

Limit of detection

˙OH:

Hydroxyl radicals

PBT profiler:

Persistent, bioaccumulative, and toxic profiles estimated for organic chemicals

pK a :

Dissociation constant

WW:

Wastewater

WWTP:

Wastewater treatment plants

References

  1. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Nature 427:630–633

    Article  CAS  Google Scholar 

  2. Ternes T, Joss A (2006) Human pharmaceuticals, hormones and fragrances: the challenge of micropollutants in urban water management. IWA Publishing, London

    Google Scholar 

  3. Foye WO (1995) Parasite chemotherapy. In: Lemke TL, Williams DA, Foye WO (eds) Principles of medicinal chemistry, 4th edn. Williams & Wilkins, Philadephia

    Google Scholar 

  4. Johnson AC, Jürgens MD, Williams RJ, Kümmerer K, Kortenkamp A, Sumpter JP (2008) J Hydrol 348:167–175

    Article  CAS  Google Scholar 

  5. Kosjek T, Heath E (2011) Halogenated heterocycles as pharmaceuticals. In: Iskra J (ed) Halogenated heterocycles: synthesis, application and environment. Springer, Berlin

    Google Scholar 

  6. ChemIDplus Advanced (Online) United States National Library of Medicine. http://chem.sis.nlm.nih.gov/chemidplus/. Accessed Apr 2011

  7. TOXNET: Hazardous Substances Data Bank (HSDB) (Online) U.S. National Library of Medicine. http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB. Accessed Apr 2011

  8. PBT profiler: Persistent, Bioaccumulative, and Toxic profiles estimated for organic chemicals (Online) U.S. EPA. http://www.pbtprofiler.net/. Accessed Apr 2011

  9. Straub JO (2009) Integr Environ Assess Manag 6:540–566

    Google Scholar 

  10. Chambers HF, Sande MA (1996) Antimicrobial agents: general considerations. In: Limbird LE, Hardman JG (eds) Goodman & Gilman's the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York

    Google Scholar 

  11. Nowara A, Burhenne J, Spiteller M (1997) J Agric Food Chem 45:1459–1463

    Article  CAS  Google Scholar 

  12. Cardoza LA, Knapp CW, Larive CK, Belden JB, Lydy MJ, Graham DW (2005) Water Air Soil Pollut 161:383–398

    Article  CAS  Google Scholar 

  13. Belden JB, Maul JD, Lydy MJ (2007) Chemosphere 66:1390–1395

    Article  CAS  Google Scholar 

  14. Lyman WJ (1985) Estimation of physical properties. In: Neely WB, Blau GE (eds) Environmental exposure from chemicals. CRC Press, Boca Raton, FL

    Google Scholar 

  15. Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Chemosphere 40:701–710

    Article  Google Scholar 

  16. Al-Ahmad A, Daschner FD, Kümmerer K (1999) Arch Environ Contam Toxicol 37:158–163

    Article  CAS  Google Scholar 

  17. Meylan WM, Howard PH (1993) Chemosphere 26:2293–2299

    Article  CAS  Google Scholar 

  18. Coeur-Tourneur C, Cassez A, Wenger JC (2010) J Phys Chem A 114:11645–11650

    Article  CAS  Google Scholar 

  19. Meylan WM, Howard PH (2005) Chemosphere 61:640–644

    Article  CAS  Google Scholar 

  20. Torniainen K, Tammilehto S, Ulvi V (1996) Int J Pharm 132:53–61

    Article  CAS  Google Scholar 

  21. De Bel E, Dewulf J, De Witte B, Van Langenhove H, Janssen C (2009) Chemosphere 77:291–295

    Article  Google Scholar 

  22. Burhenne J, Ludwig M, Spiteller M (1999) Chemosphere 38:1279–1286

    Article  CAS  Google Scholar 

  23. Vasconcelosa TG, Kummerer K, Henriques DM, Martins AF (2009) J Hazard Mater 169:1154–1158

    Article  Google Scholar 

  24. Lam MW, Tantuca K, Mabury SA (2003) Environ Sci Technol 37:899–907

    Article  CAS  Google Scholar 

  25. Golet EM, Alder AC, Giger W (2002) Environ Sci Technol 36:3645–3651

    Article  CAS  Google Scholar 

  26. Kosjek T, Perko S, Zupanc M, Zanoški Hren M, Landeka Dragičević T, Kompare B, Heath E (2011) Wat Resl. Sent for publication (July, 2011)

    Google Scholar 

  27. Ternes TA, Janex-Habibi ML, Knacker T, Kreuzinger N, Siegrist H (2004) Detailed report related to the overall project POSEIDON (Contract No. EVK1-CT-2000-00047) duration (2001-2004) Assessment of technologies for the removal of pharmaceuticals and personal care products in sewage and drinking water facilities to improve the indirect potable water reuse

    Google Scholar 

  28. Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Ecotoxicol Environ Saf 67:128–139

    Article  CAS  Google Scholar 

  29. Löffler D, Rombke J, Meller M, Ternes TA (2005) Environ Sci Technol 39:5209–5218

    Article  Google Scholar 

  30. Redshaw CH, Cooke MP, Talbot HM, McGrath S, Rowland SJ (2008) J Soils Sediments 8:217–230

    Article  CAS  Google Scholar 

  31. Calisto V, Esteves VI (2009) Chemosphere 77:1257–1274

    Article  CAS  Google Scholar 

  32. Kiffmeyer T, Götze HJ, Jursch M, Luders U (1998) Fresenius J Anal Chem 361:185–191

    Article  CAS  Google Scholar 

  33. Mahnik SN, Lenz K, Weissenbacher N, Mader RM, Fuerhacker M (2007) Chemosphere 66:30–37

    Article  CAS  Google Scholar 

  34. Kümmerer K, Al-Ahmad A (1997) Acta Hydrochim Hydrobiol 25:166–172

    Article  Google Scholar 

  35. Rossi Bautitz I, Pupo Nogueira RF (2010) Catal Today 151:94–99

    Article  Google Scholar 

  36. O'Neil MJ (2001) The Merck Index, 13th edn. Merck and Co., Inc., Whitehouse Station, New Jersey

    Google Scholar 

  37. Rey RP, Padron AS, Leon LG, Pozo MM, Baluja C (1999) Ozone: Sci Eng 21:69–77

    Article  CAS  Google Scholar 

  38. Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB (2006) Sci Total Environ 366:772–783

    Article  CAS  Google Scholar 

  39. Alder AC, Golet E, Ibric S, Giger W (2000) Fate of fluoroquinolone antibiotics during municipal wastewater treatment. In: Keith LH, Needham LL, Jones-Lepp TL (org.) Issues in the analysis of environmental endocrine disruptors. Amer Chem Soc, Div Environ Chem, Preprint Ext Abstr, 219th ACS Nat Meet, 40:103–104

    Google Scholar 

  40. Verlicchi P, Galletti A, Petrovic M, Barceló D (2010) J Hydrol 389:416–428

    Article  CAS  Google Scholar 

  41. Hartmann A, Alder AC, Koller T, Widmer RM (1998) Environ Toxicol Chem 17:377–382

    CAS  Google Scholar 

  42. Hartmann A, Golet EM, Gartiser S, Alder AC, Koller T, Widmer RM (1999) Arch Environ Contam Toxicol 36:115–119

    Article  CAS  Google Scholar 

  43. Ternes T, Bonerz M, Schmidt T (2001) J Chromatogr A 938:175–185

    Article  CAS  Google Scholar 

  44. Kümmerer K (2001) Chemosphere 45:957–969

    Article  Google Scholar 

  45. Mahnik SN, Rizovski B, Fuerhacker M, Mader RM (2004) Anal Bioanal Chem 380:31–35

    Article  CAS  Google Scholar 

  46. Kovalova L (2009) Cytostatics in the aquatic environment: analysis, occurrence, and possibilities for removal. Doctoral Dissertation, RWTH Aachen University, Aachen

    Google Scholar 

  47. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  48. Stuer-Lauridsen F, Birkved M, Hansen LP, Holten Lützhøft HC, Halling-Sørensen B (2000) Chemosphere 40:783–793

    Article  CAS  Google Scholar 

  49. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) J Lancet 355:1789–1790

    Article  CAS  Google Scholar 

  50. Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, Clément M, Chevreuil M (2008) Sci Total Environ 393:84–95

    Article  CAS  Google Scholar 

  51. Jiang L, Hu X, Yin D, Zhang H, Yu Z (2011) Chemosphere 82:822–828

    Article  CAS  Google Scholar 

  52. Batt AL, Sungpyo K, Aga DS (2007) Chemosphere 68:428–435

    Article  CAS  Google Scholar 

  53. Kosjek T, Heath E (2011) TrAC, Trends Anal. Chem. 30:1065–1087

    Google Scholar 

  54. Buerge I, Buser HR, Poiger T, Muller MD (2006) Environ Sci Technol 40:7242–7250

    Article  CAS  Google Scholar 

  55. Tauxe-Wuersch A, de Alencastro LF, Grandjean D, Tarradellas J (2006) J Environ Anal Chem 86:473–485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Slovenian Research Agency under Research Programme P1-0143 – “Cycling of nutrients and contaminants in the environment, mass balances and modelling of environmental processes and risk analysis” and from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n. 265264: “CytoThreat”: “Fate and effects of cytostatic pharmaceuticals in the environment and the identification of biomarkers for improved risk assessment on environmental exposure”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ester Heath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heath, E., Kosjek, T. (2011). Sources, Occurrence and Fate of Halogenated Heterocyclic Pharmaceuticals in the Environment. In: Iskra, J. (eds) Halogenated Heterocycles. Topics in Heterocyclic Chemistry, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7081_2011_59

Download citation

Publish with us

Policies and ethics