Advertisement

[4+2] Cycloaddition Reactions of Indole Derivatives

  • Robert F. Kester
  • Steven J. BerthelEmail author
  • Fariborz Firooznia
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 26)

Abstract

A review with 141 references on [4+2] cycloaddition reactions involving the indole nucleus.

Keywords

[4+2] Cycloaddition Diels–Alder reaction Indole 

References

  1. 1.
    Juhl M, Tanner D (2009) Recent applications of intramolecular Diels–Alder reactions to natural product synthesis. Chem Soc Rev 38:2983–2992Google Scholar
  2. 2.
    Tadano K-i (2009) Natural product synthesis featuring intramolecular Diels–Alder approaches – Total Syntheses of tubelactomicins and spiculoic acid A. Eur J Org Chem 4381–4394Google Scholar
  3. 3.
    Hassfeld J, Kalesse M et al (2005) Asymmetric total synthesis of complex marine natural products. Adv Biochem Eng Biotechnol 97:133–203Google Scholar
  4. 4.
    Takao K, Munakata R et al (2005) Recent advances in natural product synthesis by using intramolecular Diels–Alder reactions. Chem Rev (Washington, DC) 105:4779–4807Google Scholar
  5. 5.
    Tietze LF, Rackelmann N (2004) Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl Chem 76:1967–1983Google Scholar
  6. 6.
    Suzuki Y, Murata T et al (2002) The intramolecular Diels–Alder strategy: applications to total synthesis of natural products. Yuki Gosei Kagaku Kyokaishi 60:679–690Google Scholar
  7. 7.
    Nicolaou KC, Snyder SA et al (2002) The Diels–Alder reaction in total synthesis. Angew Chem Int Ed 41:1668–1698Google Scholar
  8. 8.
    Helmchen G, Goeke A et al (1991) Cyclopentanoid natural products via asymmetric Diels–Alder reactions. Stud Nat Prod Chem 8:139–158Google Scholar
  9. 9.
    Lee L, Snyder JK (1999) Indole as a dienophile in inverse electron demand Diels–Alder and related reactions. Adv Cycloaddit 6:119–171Google Scholar
  10. 10.
    Boger DL (1996) Azadiene Diels–Alder reactions: scope and applications. Total synthesis of natural and ent-fredericamycin A. J Heterocycl Chem 33:1519–1531Google Scholar
  11. 11.
    Boger DL, Patel M (1989) Recent applications of the inverse electron demand Diels–Alder reaction. Prog Heterocycl Chem 1:30–64Google Scholar
  12. 12.
    Boger DL, Panek JS et al (1992) Preparation and Diels–Alder reaction of a reactive, electron-deficient heterocyclic azadiene: dimethyl 1, 2, 4, 5-tetrazine-3, 6-dicarboxylate. 1, 2-Diazine (dimethyl 4-phenyl-1, 2-diazine-3, 6-dicarboxylate) and pyrrole (dimethyl 3-phenylpyrrole-2, 5-dicarboxylate) introduction. Organic Synth 70:335Google Scholar
  13. 13.
    Gonzalez JC, Lobo-Antunes J et al (2002) Synthesis of angular pyrrolocoumarins. Synthesis 475–478Google Scholar
  14. 14.
    Helliwell M, Corden S et al (2007) 5, 7-Diacetyl-13-benzyl-7, 8-dihydro-5H, 8aH, 13H-diindolo[2, 3-c;2, 3-d]pyrimidin-8-yl acetate, the result of an intramolecular cycloaddition between an N-benzylindole and a 1, 2, 4, 5-tetrazine. Acta Crystallogr Sect E Struct Rep Online E63:o1993–o1995Google Scholar
  15. 15.
    Giomi D, Cecchi M (2002) Study on direct benzoannelations of pyrrole and indole systems by domino reactions with 4, 5-dicyanopyridazine. Tetrahedron 58:8067–8071Google Scholar
  16. 16.
    Haider N, Kaeferboeck J (2004) Intramolecular [4 + 2]-cycloaddition reactions of indolylalkylpyridazines: Synthesis of annulated carbazoles. Tetrahedron 60:6495–6507Google Scholar
  17. 17.
    Kobayashi S (2002) Catalytic enantioselective aza Diels–Alder reactions. Cycloaddit React Org Synth 187–209Google Scholar
  18. 18.
    Sarkar N, Banerjee A et al (2008) [4 + 2] Cycloadditions of N-alkenyl iminium ions: Structurally complex heterocycles from a three-component Diels–Alder reaction sequence. J Am Chem Soc 130:9222–9223Google Scholar
  19. 19.
    Noland WE, Kedrowski BL (1999) Synthesis of angular quinoid heterocycles from 2-(2-nitrovinyl)-1, 4-benzoquinone. J Org Chem 64:596–603Google Scholar
  20. 20.
    Blattes E, Fleury M-B et al (2004) Simultaneously electrogenerated cycloaddition partners for regiospecific inverse-electron-demand Diels–Alder reactions: a route for polyfunctionalized 1, 4-benzoxazine derivatives. J Org Chem 69:882–890Google Scholar
  21. 21.
    Hu Z-L, Qian W-J et al (2009) Transformation of reactive isochromenylium intermediates to stable salts and their cascade reactions with olefins. Org Lett 11:4676–4679Google Scholar
  22. 22.
    May JA, Zeidan RK et al (2003) Biomimetic approach to communesin B (a.k.a. nomofungin). Tetrahedron Lett 44:1203–1205Google Scholar
  23. 23.
    Steinhagen H, Corey EJ (1999) A convenient and versatile route to hydroquinolines by inter- and intramolecular aza-Diels–Alder pathways. Angew Chem Int Ed 38:1928–1931Google Scholar
  24. 24.
    Crawley SL, Funk RL (2003) A synthetic approach to nomofungin/communesin B. Org Lett 5:3169–3171Google Scholar
  25. 25.
    Crawley SL, Funk RL (2006) Generation of aza-ortho-xylylenes via ring opening of 2-(2-acylaminophenyl)aziridines: application in the construction of the communesin ring system. Org Lett 8:3995–3998Google Scholar
  26. 26.
    George JH, Adlington RM (2008) A synthetic approach to the communesins. Synlett 2093–2096Google Scholar
  27. 27.
    Fuchs JR, Funk RL (2004) Total synthesis of (+-)-perophoramidine. J Am Chem Soc 126:5068–5069Google Scholar
  28. 28.
    Menozzi C, Dalko PI et al (2006) Concise synthesis of the (+/−)-Nb-desmethyl-meso-chimonanthine. Chem Commun (Cambridge, U K). 4638–4640Google Scholar
  29. 29.
    Biolatto B, Kneeteman M et al (1999) Diels–Alder reactions of N-tosyl-3-nitroindole and dienamides: synthesis of intermediates of Aspidospermine alkaloids. Tetrahedron Lett 40:3343–3346Google Scholar
  30. 30.
    Biolatto B, Kneeteman M et al (2000) N, N-diethyl-1-tosyl-3-indoleglyoxamide as a dienophile in Diels–Alder reactions. Hyperbaric vs. thermal conditions. Molecules 5:393–395Google Scholar
  31. 31.
    Kishbaugh TLS, Gribble GW (2001) Diels–Alder reactions of 2- and 3-nitroindoles. A simple hydroxycarbazole synthesis. Tetrahedron Lett 42:4783–4785Google Scholar
  32. 32.
    Chataigner I, Panel C et al (2007) Sulfonyl vs. carbonyl group: which is the more electron-withdrawing? Chem Commun (Cambridge, UK) 3288–3290Google Scholar
  33. 33.
    Chataigner I, Hess E et al (2001) Activation of the dienophilicity of indoles in normal electron demand [4 + 2] cycloadditions under high pressure. Org Lett 3:515–518Google Scholar
  34. 34.
    Chretien A, Chataigner I et al (2003) Complete and remarkable reversal of chemoselectivity in [4 + 2] cycloadditions involving electron-poor indoles as dienophiles. Diels–Alder versus hetero-Diels–Alder processes. J Org Chem 68:7990–8002Google Scholar
  35. 35.
    Victoria Gomez M, Aranda AI et al (2009) Microwave-assisted reactions of nitroheterocycles with dienes. Diels–Alder and tandem hetero Diels–Alder/[3, 3] sigmatropic shift. Tetrahedron 65:5328–5336Google Scholar
  36. 36.
    Lynch SM, Bur SK et al (2002) Intramolecular amidofuran cycloadditions across an indole p-Bond: an efficient approach to the aspidosperma and strychnos ABCE core. Org Lett 4:4643–4645Google Scholar
  37. 37.
    Zhang H, Boonsombat J et al (2007) Total synthesis of (+-)-strychnine via a [4 + 2]-cycloaddition/rearrangement cascade. Org Lett 9:279–282Google Scholar
  38. 38.
    Boonsombat J, Zhang H et al (2008) A general synthetic entry to the pentacyclic strychnos alkaloid family, using a [4 + 2]-cycloaddition/rearrangement cascade sequence. J Org Chem 73:3539–3550Google Scholar
  39. 39.
    Steinhardt SE, Vanderwal CD (2009) Complex polycyclic lactams from pericyclic cascade reactions of Zincke aldehydes. J Am Chem Soc 131:7546–7547Google Scholar
  40. 40.
    Steinhardt SE, Silverston JS et al (2008) Stereocontrolled synthesis of Z-dienes via an unexpected pericyclic cascade rearrangement of 5-amino-2, 4-pentadienals. J Am Chem Soc 130:7560–7561Google Scholar
  41. 41.
    Sissouma D, Maingot L et al (2006) Concise and efficient synthesis of calothrixin B. J Org Chem 71:8384–8389Google Scholar
  42. 42.
    Poumaroux A, Bouaziz Z et al (1997) Regiospecific hetero Diels–Alder synthesis of pyrido[2, 3-b]- and pyrido[3, 2-b]carbazole-5, 11-diones. Heterocycles 45:585–596Google Scholar
  43. 43.
    Poumaroux A, Bouaziz Z et al (1999) Regiospecific synthesis of pyrido[3, 4-b]- and pyrido[4, 3-b]carbazole-5, 11-dione derivatives. Evaluation of their in vitro antifungal or antiprotozoological activities. Chem Pharm Bull 47:643–646Google Scholar
  44. 44.
    Carr G, Chung MKW et al (2008) Synthesis of indoleamine 2, 3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J Med Chem 51:2634–2637Google Scholar
  45. 45.
    Tapia RA, Prieto Y et al (2003) Synthesis and antiprotozoal evaluation of benzothiazolopyrroloquinoxalinones, analogues of kuanoniamine A. Bioorg Med Chem 11:3407–3412Google Scholar
  46. 46.
    Tapia RA, Prieto Y et al (2002) Synthesis and antileishmanial activity of indoloquinones containing a fused benzothiazole ring. Eur J Org Chem 4005–4010Google Scholar
  47. 47.
    Bouaziz Z, Gherardi A et al (2002) Synthesis of carbazolequinone derivatives as inhibitors of Toxoplasma gondii purine nucleoside phosphorylase. Eur J Org Chem 1834–1838Google Scholar
  48. 48.
    Beneteau V, Besson T (2001) Synthesis of novel pentacyclic pyrrolothiazolobenzoquinolinones, analogs of natural marine alkaloids. Tetrahedron Lett 42:2673–2676Google Scholar
  49. 49.
    Weeratunga G, Prasad GKB et al (1990) Regioselective Diels–Alder reactions of N-cyanoindole-4, 7-diones: elaboration of the A-ring of the kinamycins on a BC ring template. Tetrahedron Lett 31:5713–5716Google Scholar
  50. 50.
    Andersen R, Leblanc M et al (2008) Syntheses of substituted tryptophan quinones as inhibitors of indoleamine 2,3-dioxygenase (IDO). WO2008052352Google Scholar
  51. 51.
    Chernov SV, Shults EE et al (2000) Synthetic transformations of higher terpenoids. V. 2-Methyl-4, 5-dioxo-3-ethoxycarbonyl-4, 5-dihydroindole, a new dienophile. Synthesis of indoloterpenes from levopimaric acid. Russ J Org Chem 36:1623–1633Google Scholar
  52. 52.
    Cai P, Snyder JK (1990) Preparation, reactivity, and neurotoxicity of tryptamine-4, 5-dione. Tetrahedron Lett 31:969–972Google Scholar
  53. 53.
    Buszek KR, Luo D et al (2007) Indole-derived arynes and their Diels–Alder reactivity with furans. Org Lett 9:4135–4137Google Scholar
  54. 54.
    Brown N, Luo D et al (2009) Regioselective Diels–Alder cycloadditions and other reactions of 4, 5-, 5, 6-, and 6, 7-indole arynes. Tetrahedron Lett 50:63–65Google Scholar
  55. 55.
    Buszek KR, Brown N et al (2009) Concise total synthesis of (+-)-cis-trikentrin A and (+-)-herbindole A via intermolecular indole aryne cycloaddition. Org Lett 11:201–204Google Scholar
  56. 56.
    Brown N, Luo D et al (2009) New synthesis of (+-)-cis-trikentrin A via tandem indole aryne cycloaddition/Negishi reaction. Applications to library development. Tetrahedron Lett 50:7113–7115Google Scholar
  57. 57.
    Bronner SM, Bahnck KB et al (2009) Indolynes as electrophilic indole surrogates: fundamental reactivity and synthetic applications. Org Lett 11:1007–1010Google Scholar
  58. 58.
    Pindur U (1988) New Diels–Alder reactions with vinylindoles. A regio- and stereocontrolled access to annellated indoles and derivatives. Heterocycles 27:1253–1268Google Scholar
  59. 59.
    Pindur U (1995) Cycloaddition reactions of indole derivatives. Adv Nitrogen Heterocycl 1:121–172Google Scholar
  60. 60.
    Eitel M, Pindur U (1990) Reactions of 2-vinylindoles with carbodienophiles: synthetic and mechanistic aspects. J Org Chem 55:5368–5374Google Scholar
  61. 61.
    Abbiati G, Canevari V et al (2007) Diels–Alder reactions of 2-vinylindoles with open-chain C=C dienophiles. Eur J Org Chem 517–525Google Scholar
  62. 62.
    Back TG, Bethell RJ et al (2001) Preparation of vinylogous 2-sulfonylindolines by the palladium-catalyzed heteroannulation of o-iodoanilines with dienyl sulfones and their further transformation to indoles and carbazoles. J Org Chem 66:8599–8605Google Scholar
  63. 63.
    Back TG, Pandyra A et al (2003) Regiochemical switching in Diels–Alder cycloadditions by change in oxidation state of removable diene sulfur substituents. Synthesis of carbazoles by sequential heteroannulation and Diels–Alder cycloaddition. J Org Chem 68:3299–3302Google Scholar
  64. 64.
    Wilkens J, Kuehling A et al (1987) Hetero-cope rearrangements. VI. short and stereoselective synthesis of 2-vinylindoles by a tandem-process. Tetrahedron 43:3237–3246Google Scholar
  65. 65.
    Blechert S, Knier R et al (1995) Domino reactions – new concepts in the synthesis of indole alkaloids and other polycyclic indole derivatives. Synthesis 592–604Google Scholar
  66. 66.
    Cavdar H, Saracoglu N (2006) Synthesis of new 2-vinylation products of indole via a Michael-type addition reaction with dimethyl acetylenedicarboxylate and their Diels–Alder reactivity as precursors of new carbazoles. J Org Chem 71:7793–7799Google Scholar
  67. 67.
    McCort G, Duclos O et al (1999) A versatile new synthesis of 4-aryl- and heteroaryl-[3, 4-c]pyrrolocarbazoles by [4+2] cycloaddition followed by palladium catalyzed cross coupling. Tetrahedron Lett 40:6211–6215Google Scholar
  68. 68.
    Marques MMB, Lobo AM et al (1999) A Diels–Alder, retro-Diels–Alder approach to arcyriaflavin-A. Tetrahedron Lett 40:3795–3796Google Scholar
  69. 69.
    Barry JF, Wallace TW et al (1995) On the [4 + 2] cycloaddition approach to indolo[2, 3-a]carbazoles. Tetrahedron 51:12797–12806Google Scholar
  70. 70.
    Kuethe JT, Davies IW (2004) Formal [4+2] cycloaddition reactions of N-sulfonyl-2, 2'-biindoles: synthesis of indolo[2, 3-a]carbazoles and indigo azines. Tetrahedron Lett 45:4009–4012Google Scholar
  71. 71.
    Kuehne ME, Roland DM et al (1978) Studies in biomimetic alkaloid syntheses. 2. Synthesis of vincadifformine from tetrahydro-b-carboline through a secodine intermediate. J Org Chem 43:3705–3710Google Scholar
  72. 72.
    Overman LE, Sworin M (1985) Recent advances in the total synthesis of pentacyclic Aspidosperma alkaloids. Alkaloids: Chem Biol Perspect 3:275–307Google Scholar
  73. 73.
    Kalaus G, Vago I et al (1995) Synthesis of vinca alkaloids and related compounds. 776. Synthesis and ring transformations of compounds with the aspidospermane- and D-noraspidospermane skeleton. A formal synthesis of (+-)-12-demethoxy-N(1)-acetylcylindrocarine. Nat Prod Lett 7:197–204Google Scholar
  74. 74.
    Pegram JJ, Anderson CB (1988) Synthesis of 1-benzyldimethylsilyl-4-phenylthio-1, 3-butadiene. New diene-regenerable Diels–Alder synthon. Tetrahedron Lett 29:6719–6720Google Scholar
  75. 75.
    Kalaus G, Juhasz I et al (1997) Synthesis of vinca alkaloids and related compounds. 90. New results in the synthesis of alkaloids with the aspidospermane skeleton. First total synthesis of (+-)-3-oxominovincine. J Org Chem 62:9188–9191Google Scholar
  76. 76.
    Kalaus G, Leder L et al (2003) Synthesis of vinca alkaloids and related compounds. Part 102. Simple synthesis and ring transformation of (+-)-minovincine. First synthesis of (+-)-vincaminine. Tetrahedron 59:5661–5666Google Scholar
  77. 77.
    Eles J, Kalaus G et al (2002) Synthesis of vinca alkaloids and related compounds. Part 101: A new convergent synthetic pathway to build up the aspidospermane skeleton. Simple synthesis of 3-oxovincadifformine and 3-oxominovincine. Attempts to produce 15b-hydroxyvincadifformine. Tetrahedron 58:8921–8927Google Scholar
  78. 78.
    Kalaus G, Toth F et al (2006) Synthesis of vinca alkaloids and related compounds. Part 103. Recognition of an unexpected reaction and its application in building the aspidospermane skeleton. Simple synthesis of 15b-hydroxyvincadifformine. Heterocycles 68:257–270Google Scholar
  79. 79.
    Kalaus G, Juhasz I et al (2000) Synthesis of vinca alkaloids and related compounds. Part 94. Epimerization of compounds with aspidospermane and D-secoaspidospermane skeleton. J Heterocycl Chem 37:245–251Google Scholar
  80. 80.
    Toth F, Kalaus G et al (2006) Synthesis of vinca alkaloids and related compounds. Part 105: Efficient convergent synthetic pathway to the ibophyllidine skeleton and synthesis of (+-)-19-hydroxy-ibophyllidine and (+-)-19-hydroxy-20-epiibophyllidine. Tetrahedron 62:12011–12016Google Scholar
  81. 81.
    Toth F, Kalaus G et al (2006) Synthesis of vinca alkaloids and related compounds. Part 106. An efficient convergent synthetic pathway to build up the ibophyllidine skeleton II. Total synthesis of (+-)-deethylibophyllidine and (+-)-14-epi-deethylibophyllidine. Heterocycles 68:2301–2317Google Scholar
  82. 82.
    Toth F, Kalaus G et al (2007) Synthesis of vinca alkaloids and related compounds. Part 107. An efficient convergent synthetic pathway to build up the ibophyllidine skeleton. III. Total synthesis of (+-)-ibophyllidine and (+-)-20-epiibophyllidine. Heterocycles 71:865–880Google Scholar
  83. 83.
    Toth F, Kalaus G et al (2007) Synthesis of vinca alkaloids and related compounds. Part 108: Efficient convergent synthetic pathway to the ibophyllidine skeleton IV. First synthesis of (+-)-18-hydroxy-20-epiibophyllidine. Tetrahedron 63:7823–7827Google Scholar
  84. 84.
    Toth F, Kalaus G et al (2008) Synthesis of vinca alkaloids and related compounds. Part 109. An intramolecular [4+2] cycloaddition mediated biomimetic synthesis of (+-)-iboxyphylline. Heterocycles 75:65–76Google Scholar
  85. 85.
    Toth F, Olah J et al (2008) Synthesis of Vinca alkaloids and related compounds. Part 110: A new synthetic method for the preparation of pandoline-type alkaloid-like molecules. Tetrahedron 64:7949–7955Google Scholar
  86. 86.
    Vago I, Kalaus G et al (2001) Synthesis of vinca alkaloids and related compounds. 95. Attempted build-up of the aspidospermidine skeleton by [4+2] cycloaddition. Some unexpected reactions, and formation of a new ring system. Heterocycles 55:873–880Google Scholar
  87. 87.
    Fayol A, Fang Y-Q et al (2006) Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction. Org Lett 8:4203–4206Google Scholar
  88. 88.
    Passarella D, Giardini A et al (2001) Cyclodimerization of indol-2-ylacetylenes. An example of intermolecular enyne-alkyne cycloaddition. J Chem Soc, Perkin Trans 1 127–129Google Scholar
  89. 89.
    Ishikura M, Uchiyama H et al (2001) Cycloaddition reaction of 2-allenylindoles with diethyl acetylenedicarboxylate under thermal and high pressure conditions. J Heterocycl Chem 38:675–678Google Scholar
  90. 90.
    Anisimova NA, Berkova GA et al (2006) Reaction of methyl 3-nitroacrylate with 3-(2-nitroethenyl)indole. Russ J Org Chem 42:1246–1247Google Scholar
  91. 91.
    Wolter M, Borm C et al (2001) Enantiopure polycycles by sequential cycloadditions. Eur J Org Chem 4051–4060Google Scholar
  92. 92.
    Merour J-Y, Bourlot A-S et al (1995) [4+2] versus [2+2] cycloadditions with 1-ethoxyethene and heterocyclic aldehydes; formation of vinyl compounds. Tetrahedron Lett 36:3527–3530Google Scholar
  93. 93.
    Le Strat F, Maddaluno J (2002) New carbanionic access to 3-vinylindoles and 3-vinylbenzofurans. Org Lett 4:2791–2793Google Scholar
  94. 94.
    Le Strat F, Vallette H et al (2005) Access to tri- and tetracyclic structures by thermally promoted and high-pressure-promoted [4 + 2] cycloadditions of 2-, 3- or 4-vinyl-substituted binuclear heterocycles. Eur J Org Chem 5296–5305Google Scholar
  95. 95.
    Pindur U, Gonzalez E et al (1997) [4+2]Cycloaddition of indole derivatives with bismaleimides: a route to new biscarbazoles. J Chem Soc, Perkin Trans 1 1861–1867Google Scholar
  96. 96.
    Lopez-Alvarado P, Alonso MA et al (2001) One-pot assembly of large heterocyclic quinones through three-component reactions. Tetrahedron Lett 42:7971–7974Google Scholar
  97. 97.
    Gharagozloo P, Miyauchi M et al (1998) Intramolecular Diels–Alder reactions of 3-(tetrahydropyridinyl)indoles: stereoselective synthesis of novel pentacyclic ring systems. J Org Chem 63:1974–1980Google Scholar
  98. 98.
    Desarbre E, Bergman J (1998) Synthesis of symmetric and non-symmetric indolo[2,3-c]carbazole derivatives: preparation of indolo[2,3-c]pyrrolo[3,4-a]carbazoles. J Chem Soc, Perkin Trans 1 2009–2016Google Scholar
  99. 99.
    Somei M, Kodama A (1992) A novel synthesis of 2, 2'-bisindole and its application for the synthesis of indolo[2, 3-a]carbazole derivatives. Heterocycles 34:1285–1288Google Scholar
  100. 100.
    Bleile M, Wagner T et al (2005) Synthesis of substituted pyrrolo[3, 4-a]carbazoles. Helv Chim Acta 88:2879–2891Google Scholar
  101. 101.
    Bleile M, Otto H-H (2005) Substituted pyrrolo[3, 4-a]carbazoles from reactions between 3-(1-methoxy-vinyl)indoles and maleimides. Monatsh Chem 136:1799–1809Google Scholar
  102. 102.
    Hugon B, Pfeiffer B et al (2003) Synthesis of granulatimide analogues bearing a maleimide instead of an imidazole heterocycle. Tetrahedron Lett 44:3935–3937Google Scholar
  103. 103.
    Henon H, Anizon F et al (2006) Synthesis of dipyrrolo[3, 4-a:3, 4-c]carbazole-1, 3, 4, 6-tetraones bearing a sugar moiety. Tetrahedron 62:1116–1123Google Scholar
  104. 104.
    Joseph B, Facompre M et al (2001) Synthesis, cytotoxicity, DNA interaction and topoisomerase II inhibition properties of tetrahydropyrrolo[3, 4-a]carbazole-1, 3-dione and tetrahydropyrido-[3, 2-b]pyrrolo[3, 4-g]indole-1, 3-dione derivatives. Bioorg Med Chem 9:1533–1541Google Scholar
  105. 105.
    Markgraf JH, Synder SA et al (1998) A concise route to isocanthin-6-one. Tetrahedron Lett 39:1111–1112Google Scholar
  106. 106.
    Snyder SA, Vosburg DA et al (2000) Intramolecular hetero Diels–Alder routes to g-carboline alkaloids. Tetrahedron 56:5329–5335Google Scholar
  107. 107.
    Markgraf JH, Finkelstein M et al (1996) Canthine analogs via intramolecular Diels–Alder reactions. Tetrahedron 52:461–470Google Scholar
  108. 108.
    Grieco PA, Kaufman MD (1999) Intramolecular imino Diels–Alder reaction of a 3-vinyl indole: application to a total synthesis of (+-)-eburnamonine. J Org Chem 64:7586–7593Google Scholar
  109. 109.
    Rosillo M, Dominguez G et al (2004) Tandem enyne metathesis-Diels–Alder reaction for construction of natural product frameworks. J Org Chem 69:2084–2093Google Scholar
  110. 110.
    Chataigner I, Piettre SR (2007) Multicomponent domino [4+2]/[3+2] cycloadditions of nitroheteroaromatics: an efficient synthesis of fused nitrogenated polycycles. Org Lett 9:4159–4162Google Scholar
  111. 111.
    Knoelker H-J (1995) Transition metal-mediated synthesis of carbazole derivatives. Adv Nitrogen Heterocycl 1:173–204Google Scholar
  112. 112.
    Pindur U, Erfanian-Abdoust H (1989) Indolo-2, 3-quinodimethanes and stable cyclic analogs for regio- and stereocontrolled syntheses of [b]-annelated indoles. Chem Rev 89:1681–1689Google Scholar
  113. 113.
    Collier SJ, Storr RC (1998) Heterocyclic ortho-quinodimethanes. Prog Heterocycl Chem 10:25–48Google Scholar
  114. 114.
    Terzidis M, Tsoleridis CA et al (2005) Chromone-3-carboxaldehydes in Diels–Alder reactions with indole-ortho-quinodimethane. Synthesis of tetrahydrochromeno[2, 3-b]carbazoles. Tetrahedron Lett 46:7239–7242Google Scholar
  115. 115.
    Terzidis MA, Tsoleridis CA et al (2008) Synthesis of chromeno[2,3-b]carbazole and chromeno[3,2-f]indazole derivatives. A new class of indole- and pyrazole-fused polycyclic compounds using o-quinodimethane chemistry. A reactivity and regioselectivity computational study. ARKIVOC 132–157Google Scholar
  116. 116.
    Tsoleridis CA, Dimtsas J et al (2006) Reactivity and regioselectivity in the synthesis of spiroindoles via indole o-quinodimethanes. An experimental and computational study. Tetrahedron 62:4232–4242Google Scholar
  117. 117.
    Diker K, De Maindreville MD et al (1999) Synthesis and resolution of a C2-symmetrical indolo-2, 3-quinodimethane dimer. Tetrahedron Lett 40:7459–7462Google Scholar
  118. 118.
    Diker K, De Maindreville MD et al (1999) The gramine route to the Diels–Alder adducts of indolo-2, 3-quinodimethanes. Tetrahedron Lett 40:7463–7467Google Scholar
  119. 119.
    Rao MVB, Satyanarayana J et al (1995) Anionic [4 + 2] cycloaddition reactions of indole-2, 3-dienolate with dienophiles: a facile regiospecific route to substituted carbazoles. Tetrahedron Lett 36:3385–3388Google Scholar
  120. 120.
    Laronze M, Sapi J (2002) 3-Cyanomethyl-2-vinylindoles as thermal indole-2, 3-quinodimethane equivalents: synthesis of functionalized 1, 2, 3, 4-tetrahydrocarbazoles. Tetrahedron Lett 43:7925–7928Google Scholar
  121. 121.
    Fuwa H, Sasaki M (2007) A new method for the generation of indole-2,3-quinodimethanes and 2-(N-alkoxycarbonylamino)-1,3-dienes. Intramolecular Heck/Diels–Alder cycloaddition cascade starting from acyclic a-phosphoryloxy enecarbamates. Chem Commun 2876–2878Google Scholar
  122. 122.
    Kuroda N, Takahashi Y et al (2006) A novel generation of indole-2, 3-quinodimethanes. Org Lett 8:1843–1845Google Scholar
  123. 123.
    Inagaki F, Mizutani M et al (2009) Generation of N-(tert-Butoxycarbonyl)indole-2, 3-quinodimethane and Its [4+2]-Type Cycloaddition. J Org Chem 74:6402–6405Google Scholar
  124. 124.
    Royer D, Wong Y-S et al (2008) Diastereodivergence and appendage diversity in the multicomponent synthesis of aryl-pyrrolo-tetrahydrocarbazoles. Tetrahedron 64:9607–9618Google Scholar
  125. 125.
    Cochard F, Laronze M et al (2004) Synthesis of carbazoles by a balanced four-component condensation. Tetrahedron Lett 45:1703–1707Google Scholar
  126. 126.
    Gribble GW (2003) Novel chemistry of indole in the synthesis of heterocycles. Pure Appl Chem 75:1417–1432Google Scholar
  127. 127.
    Gribble GW, Saulnier MG et al (2005) Novel indole chemistry in the synthesis of heterocycles. Curr Org Chem 9:1493–1519Google Scholar
  128. 128.
    Gribble GW, Keavy DJ et al (1992) Syntheses and Diels–Alder cycloaddition reactions of 4H-furo[3, 4-b]indoles. A regiospecific Diels–Alder synthesis of ellipticine. J Org Chem 57:5878–5891Google Scholar
  129. 129.
    Diaz MT, Cobas A, et al (1998) Polar control of the regioselectivity of hetaryne cycloadditions. Synthesis of ellipticine. Synlett. 157.Google Scholar
  130. 130.
    Kappe CO, Padwa A (1996) A facile and efficient synthesis of thieno[2, 3-c]furans and furo[3, 4-b]indoles via a Pummerer-induced cyclization reaction. J Org Chem 61:6166–6174Google Scholar
  131. 131.
    Zhang J, Zhang Y et al (2006) Coupling of N-heterocycle-fused enyne aldehydes with g, d-unsaturated Fischer carbene complexes. Organometallics 25:1279–1284Google Scholar
  132. 132.
    Jeevanandam A, Srinivasan PC (1995) Synthesis and cycloaddition of 2,4-dihydropyrrolo[3,4-b]indoles. J Chem Soc, Perkin Trans 1 2663–2665Google Scholar
  133. 133.
    Diaz M, Cobas A et al (2001) Synthesis of ellipticine by hetaryne cycloadditions – control of regioselectivity. Eur J Org Chem 4543–4549Google Scholar
  134. 134.
    Van Broeck PI, Van Doren PE, et al (1992) Diels–Alder reactions of pyrano[3,4-b]indol-3-ones and a 2-benzopyran-3-one with hetero substituted olefins: generation of carbazole and naphthalene derivatives by elimination instead of dehydrogenation. J Chem Soc, Perkin Trans 1 415–419Google Scholar
  135. 135.
    Bates RW, Pratt AJ et al (1998) Diels–Alder reactions of 1, 1-bis(methylthio)ethene with pyran-2-ones. Aust J Chem 51:383–387Google Scholar
  136. 136.
    Haider N, Kaferbock J et al (1999) Diels–Alder reaction of pyrano[3, 4-b]indolones with an electron-deficient pyridazinone: a new pathway to carbazole-fused pyridazines. Heterocycles 51:2703–2710Google Scholar
  137. 137.
    Chou TS, Tso HH (1989) Use of substituted 3-sulfolenes as precursors for 1, 3-butadienes. Org Prep Proced Int 21:257–296Google Scholar
  138. 138.
    Ko C-W, Chou T-s (1998) Preparation and reactions of benzofurano-, indolo-, and benzothieno-3-sulfolenes. J Org Chem 63:4645–4653Google Scholar
  139. 139.
    Kinsman AC, Snieckus V (1999) Directed ortho metalation-cross coupling route to indolo-4, 5-quinodimethanes. Synthesis of benz[e]indoles. Tetrahedron Lett 40:2453–2456Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert F. Kester
    • 1
  • Steven J. Berthel
    • 1
    Email author
  • Fariborz Firooznia
    • 1
  1. 1.Discovery ChemistryRoche Research CenterNutleyUSA

Personalised recommendations