[2+2], [3+2] and [2+2+2] Cycloaddition Reactions of Indole Derivatives

  • Fariborz Firooznia
  • Robert F. Kester
  • Steven J. BerthelEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 26)


A review with 102 references on [2+2], [3+2] and [2+2+2] cycloaddition reactions involving the indole nucleus.


[2+2] Cycloaddition [2+2+2] Cycloaddition [3+2] Cycloaddition Indole 


  1. 1.
    de Sa Alves FR, Barreiro EJ et al (2009) From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 9:782–793CrossRefGoogle Scholar
  2. 2.
    Mancini I, Guella G et al (2008) Synthesis of marine natural products with antimalarial activity. Mini Rev Med Chem 8:1265–1284CrossRefGoogle Scholar
  3. 3.
    Li S-M (2009) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymic synthesis. Nat Prod Rep 27:57–78CrossRefGoogle Scholar
  4. 4.
    Lodyga-Chruscinska E, Turek M (2009) Compounds containing indole ring – the future of medicine. PharmaChem 8:6–8Google Scholar
  5. 5.
    Sarkar FH, Li Y (2009) Harnessing the fruits of nature for the development of multi-targeted cancer therapeutics. Cancer Treat Rev 35:597–607CrossRefGoogle Scholar
  6. 6.
    Osorio EJ, Robledo SM et al (2008) Alkaloids with antiprotozoal activity. Alkaloids Chem Biol 66:113–190CrossRefGoogle Scholar
  7. 7.
    Sottomayor M, Ros Barcelo A (2006) The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells. Stud Nat Prod Chem 33:813–857CrossRefGoogle Scholar
  8. 8.
    Gupta L, Talwar A et al (2007) Bis and tris indole alkaloids from marine organisms: new leads for drug discovery. Curr Med Chem 14:1789–1803CrossRefGoogle Scholar
  9. 9.
    Sanchez C, Mendez C et al (2006) Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Nat Prod Rep 23:1007–1045CrossRefGoogle Scholar
  10. 10.
    Gul W, Hamann MT (2005) Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci 78:442–453CrossRefGoogle Scholar
  11. 11.
    Weedon A (1997) The photochemistry of indoles. Adv Photochem 22:229–277CrossRefGoogle Scholar
  12. 12.
    Bronner SM, Bahnck KB et al (2009) Indolynes as electrophilic indole surrogates: fundamental reactivity and synthetic applications. Org Lett 11:1007–1010CrossRefGoogle Scholar
  13. 13.
    Himeshima Y, Sonoda T, Kobayashi H (1983) Fluoride-induced 1,2-elimination of O-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem Lett 12:1211–1214CrossRefGoogle Scholar
  14. 14.
    Ikeda M, Ohno K et al (1982) Synthesis of 1H-1-benzazepines by thermolysis of 2a,7b-dihydro-3H-cyclobut[b]indoles. J Chem Soc Perkin Trans 1:741–748Google Scholar
  15. 15.
    Ikeda M, Ohno K et al (1980) Synthesis and some properties of 1H-1-benzazepines. Tetrahedron Lett 21:3403–3406CrossRefGoogle Scholar
  16. 16.
    Ikeda M, Ohno K et al (1984) Regio- and stereochemical aspects of [2+2] photocycloaddition between 1-benzoylindoles and olefins. J Chem Soc Perkin Trans 1:405–412Google Scholar
  17. 17.
    Hastings DJ, Weedon AC (1991) Stereochemical studies of the photochemical cycloaddition reaction of alkenes with N-benzoylindole and N-carboethoxyindole: evidence for biradical intermediacy. Can J Chem 69:1171–1181CrossRefGoogle Scholar
  18. 18.
    Andrew D, Hastings DJ et al (1992) Triplet 1, 4-biradical intermediates in the photocycloaddition reactions of enones and N-acylindoles with alkenes. Pure Appl Chem 64:1327–1334CrossRefGoogle Scholar
  19. 19.
    Hastings DJ, Weedon AC (1991) The origin of the regioselectivity in the 2+2 photochemical cycloaddition reactions of N-benzoylindole with alkenes: trapping of 1,4-biradical intermediates with hydrogen selenide. Tetrahedron Lett 32:4107–4110CrossRefGoogle Scholar
  20. 20.
    Hastings DJ, Weedon AC (1991) Structures and lifetimes of 1,4-biradical intermediates in the photochemical cycloaddition reactions of N-benzoylindole with alkenes. J Org Chem 56:6326–6331CrossRefGoogle Scholar
  21. 21.
    Oldroyd DL, Weedon AC (1991) Solvent- and wavelength-dependent photochemistry of N-benzoylindole and N-ethoxycarbonylindole. J Photochem Photobiol A 57:207–216CrossRefGoogle Scholar
  22. 22.
    Weedon AC, Zhang B (1992) Removable groups for activation of indole photochemistry. Synthesis:95–100Google Scholar
  23. 23.
    Ikeda M, Uno T et al (1980) Beckmann fission of some fused cyclobutanones: a new entry into indole-2-acetonitriles and benzo[b]thiophene-2-acetonitrile. Synth Commun 10:437–449CrossRefGoogle Scholar
  24. 24.
    Oldroyd DL, Payne NC et al (1993) Photochemical dimerization reactions of N-acylindoles. Tetrahedron Lett 34:1087–1090CrossRefGoogle Scholar
  25. 25.
    Ito Y, Fujita H (2000) Unusual [2+2] photocycloaddition between tryptamine and 3-nitrocinnamic acid in the solid state. Chem Lett:288–289Google Scholar
  26. 26.
    Winkler JD, Scott RD et al (1990) Asymmetric induction in the vinylogous amide photocycloaddition reaction. A formal synthesis of vindorosine. J Am Chem Soc 112:8971–8975CrossRefGoogle Scholar
  27. 27.
    Ando M, Buechi G et al (1975) Total synthesis of (+−)-vindoline. J Am Chem Soc 97:6880–6881CrossRefGoogle Scholar
  28. 28.
    Buchi G, Matsumoto KE et al (1971) Total synthesis of (+−)-vindorosine. J Am Chem Soc 93:3299–3301CrossRefGoogle Scholar
  29. 29.
    Oldroyd DL, Weedon AC (1992) Intramolecular photochemical cycloadditions of N-alkenyloxycarbonylindoles and N-alkenoylindoles. J Chem Soc Chem Commun:1491–1492Google Scholar
  30. 30.
    White JD, Ihle DC (2006) Tandem photocycloaddition-retro-mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic core of koumine. Org Lett 8:1081–1084CrossRefGoogle Scholar
  31. 31.
    Acheson RM, Elmore NF (1978) Reactions of acetylenecarboxylic esters with nitrogen-containing heterocycles. Adv Heterocycl Chem 23:263–482CrossRefGoogle Scholar
  32. 32.
    Davis PD, Neckers DC (1980) Photocycloaddition of dimethyl acetylenedicarboxylate to activated indoles. J Org Chem 45:456–462CrossRefGoogle Scholar
  33. 33.
    Rodrigues JAR, Verardo LI (1983) Cycloaddition of dimethyl acetylenedicarboxylate to indoles. Isolation of a [2+2] adduct. J Heterocycl Chem 20:1263–1265Google Scholar
  34. 34.
    Machida M, Takechi H et al (1982) Photochemistry of the phthalimide system. 32. Photoreaction of N-(w-indol-3-ylalkyl)phthalimides: intramolecular oxetane formation of the aromatic imide system. Tetrahedron Lett 23:4981–4982CrossRefGoogle Scholar
  35. 35.
    Takechi H, Machida M et al (1988) Photochemistry of the phthalimide system. XLI. Intramolecular photoreactions of phthalimide-alkene systems. Oxetane formation of N-(w-indol-3-ylalkyl)phthalimides. Chem Pharm Bull 36:2853–2863CrossRefGoogle Scholar
  36. 36.
    Takechi H, Machida M et al (1994) Photochemistry of the phthalimide system XLIV. Intramolecular photoreactions of phthalimide-alkene systems. Macrocyclic synthesis through the remote Paterno–Buechi reaction of phthalimide with indole derivatives. Chem Pharm Bull 42:188–196CrossRefGoogle Scholar
  37. 37.
    Takechi H, Machida M et al (1985) Intermolecular photoaddition of N-methylphthalimide to indole derivatives: regio- and stereoselective formation of oxeto[2,3-b]indoles. Heterocycles 23:1373–1376CrossRefGoogle Scholar
  38. 38.
    Takechi H, Machida M et al (1988) Photochemistry of the phthalimide system. XLII. Intermolecular photoreactions of phthalimide-alkene systems. Regio- and stereoselective oxetane formation from N-methylphthalimide and N-acetylindole derivatives. Chem Pharm Bull 36:3770–3779CrossRefGoogle Scholar
  39. 39.
    Meng J-B, Wang W-G et al (1993) A multistep photoreaction of aromatic aldehydes with heteroaromatics in the solid state. J Photochem Photobiol A 74:43–49CrossRefGoogle Scholar
  40. 40.
    Gothelf KV (2002) Asymmetric metal-catalyzed 1,3-dipolar cycloaddition reactions. Cycloaddit React Org Synth:211–247Google Scholar
  41. 41.
    Harju K, Yli-Kauhaluoma J (2004) Progress in the synthesis of five-membered nitrogen-containing heterocycles via 1, 3-dipolar cycloaddition. Recent Res Dev Org Chem 8:111–157Google Scholar
  42. 42.
    Harju K, Yli-Kauhaluoma J (2005) Recent advances in 1,3-dipolar cycloaddition reactions on solid supports. Mol Divers 9:187–207CrossRefGoogle Scholar
  43. 43.
    Ohderaotoshi Y, Komatsu M (2005) Advances in 1,3-dipolar cycloaddition in heterocycle synthesis. Gendai Kagaku Zokan 43:34–50Google Scholar
  44. 44.
    Padwa A (2009) Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chem Soc Rev 38:3072–3081CrossRefGoogle Scholar
  45. 45.
    Savizky RM, Austin DJ (2005) Rhodium(II)-catalyzed 1,3-dipolar cycloaddition reactions. Mod Rhodium Catal Org React:433–454Google Scholar
  46. 46.
    Padwa A, Beall LS et al (2000) A one-pot bicycloannulation method for the synthesis of tetrahydroisoquinoline systems. J Org Chem 65:2684–2695CrossRefGoogle Scholar
  47. 47.
    Baruah B, Prajapati D et al (1997) Microwave induced 1,3-dipolar cycloaddition reactions of nitrones. Synth Commun 27:2563–2567CrossRefGoogle Scholar
  48. 48.
    Bashiardes G, Safir I et al (2007) An efficient one-pot synthesis of novel fused pyrroles and indoles by dipolar cycloaddition under microwave and conventional conditions. Synlett:1707–1710Google Scholar
  49. 49.
    Jones GB, Moody CJ (1988) Cyclopropapyrrolo[1,2-a]indoles. J Chem Soc Chem Commun:166–167Google Scholar
  50. 50.
    Jones GB, Moody CJ (1989) Structurally modified antitumor agents. Part 1. Synthesis of cyclopropapyrrolo[1,2-a]indoles related to mitosenes by intramolecular cycloaddition. J Chem Soc Perkin Trans 1:2449–2454Google Scholar
  51. 51.
    Molteni G (2004) Synthesis of the new pyrazolo[4,3-c]pyrrolizine skeleton via intramolecular nitrilimine cycloaddition. Heterocycles 63:1423–1428CrossRefGoogle Scholar
  52. 52.
    Padwa A, Hertzog DL et al (1994) Studies on the intramolecular cycloaddition reaction of mesoionics derived from the rhodium(II)-catalyzed cyclization of diazoimides. J Org Chem 59:1418–1427CrossRefGoogle Scholar
  53. 53.
    Coutouli-Argyropoulou E, Malamidou-Xenikaki E et al (1990) Formation of oxadiazolo[4,5-a]indolines via addition reactions of cycloalkano[b]indoles with nitrile oxides. Crystal structure of an adduct. J Heterocycl Chem 27:1185–1189CrossRefGoogle Scholar
  54. 54.
    Pirrung MC, Zhang J et al (1995) Reactions of a cyclic rhodium carbenoid with aromatic compounds and vinyl ethers. J Org Chem 60:2112–2124CrossRefGoogle Scholar
  55. 55.
    Pirrung MC, Zhang J et al (1991) Dipolar cycloaddition of cyclic rhodium carbenoids to aromatic heterocycles. J Org Chem 56:6269–6271CrossRefGoogle Scholar
  56. 56.
    Hertzog DL, Austin DJ et al (1992) Intramolecular cycloaddition of isomuenchnones derived from the rhodium(II) catalyzed cyclization of diazoimides. Tetrahedron Lett 33:4731–4734CrossRefGoogle Scholar
  57. 57.
    Padwa A, Hertzog DL et al (1994) Intramolecular cycloaddition of isomunchnone dipoles to heteroaromatic p-systems. J Org Chem 59:7072–7084CrossRefGoogle Scholar
  58. 58.
    Padwa A, Price AT (1995) Tandem cyclization–cycloaddition reaction of rhodium carbenoids as an approach to the aspidosperma alkaloids. J Org Chem 60:6258–6259CrossRefGoogle Scholar
  59. 59.
    Padwa A, Price AT (1998) Synthesis of the pentacyclic skeleton of the aspidosperma alkaloids using rhodium carbenoids as reactive intermediates. J Org Chem 63:556–565CrossRefGoogle Scholar
  60. 60.
    Mejia-Oneto JM, Padwa A (2004) Intramolecular [3+2]-cycloaddition reaction of push-pull dipoles across heteroaromatic p-systems. Org Lett 6:3241–3244CrossRefGoogle Scholar
  61. 61.
    Padwa A, Lynch SM et al (2005) Cycloaddition chemistry of 2-vinyl-substituted indoles and related heteroaromatic systems. J Org Chem 70:2206–2218CrossRefGoogle Scholar
  62. 62.
    Mejia-Oneto JM, Padwa A (2006) Application of the Rh(II) cyclization/cycloaddition cascade for the total synthesis of (+−)-aspidophytine. Org Lett 8:3275–3278CrossRefGoogle Scholar
  63. 63.
    Mejia-Oneto JM, Padwa A (2008) Total synthesis of the alkaloid (+−)-aspidophytine based on carbonyl ylide cycloaddition chemistry. Helv Chim Acta 91:285–302CrossRefGoogle Scholar
  64. 64.
    Hong X, France S et al (2006) Cycloaddition protocol for the assembly of the hexacyclic framework associated with the kopsifoline alkaloids. Org Lett 8:5141–5144CrossRefGoogle Scholar
  65. 65.
    Hong X, France S et al (2007) A dipolar cycloaddition approach toward the kopsifoline alkaloid framework. Tetrahedron 63:5962–5976CrossRefGoogle Scholar
  66. 66.
    Hong X, Mejia-Oneto JM et al (2007) Rhodium carbenoid induced cycloadditions of diazo keto imides across indolyl p-bonds. Synlett:775–779Google Scholar
  67. 67.
    Muthusamy S, Gunanathan C et al (2001) Novel regioselective synthesis of decahydrobenzocarbazoles using rhodium-generated carbonyl ylides with indoles. Tetrahedron Lett 42:523–526CrossRefGoogle Scholar
  68. 68.
    Muthusamy S, Gunanathan C et al (2004) Regioselective synthesis of mono- and bis-decahydrobenzocarbazoles via tandem reactions of a-diazo ketones. Tetrahedron 60:7885–7897CrossRefGoogle Scholar
  69. 69.
    Nambu H, Hikime M et al (2009) Asymmetric approach to the pentacyclic skeleton of aspidosperma alkaloids via enantioselective intramolecular 1,3-dipolar cycloaddition of carbonyl ylides catalyzed by chiral dirhodium(II) carboxylates. Tetrahedron Lett 50:3675–3678CrossRefGoogle Scholar
  70. 70.
    Schreiber S (2003) The small-molecule approach to biology. Chem Eng News 81:51–61Google Scholar
  71. 71.
    Strausberg RL, Schreiber SL (2003) From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300:294–295CrossRefGoogle Scholar
  72. 72.
    Oguri H, Schreiber SL (2005) Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. Org Lett 7:47–50CrossRefGoogle Scholar
  73. 73.
    Wilkie GD, Elliott GI et al (2002) Intramolecular Diels–Alder and tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reactions of 1,3,4-oxadiazoles. J Am Chem Soc 124:11292–11294CrossRefGoogle Scholar
  74. 74.
    Ishikawa H, Boger DL (2007) Total synthesis of (−)- and ent-(+)-4-desacetoxy-5-desethylvindoline. Heterocycles 72:95–102CrossRefGoogle Scholar
  75. 75.
    Ishikawa H, Elliott GI et al (2006) Total synthesis of (−)- and ent-(+)-vindoline and related alkaloids. J Am Chem Soc 128:10596–10612CrossRefGoogle Scholar
  76. 76.
    Yuan ZQ, Ishikawa H et al (2005) Total synthesis of natural (+)- and ent-(−)-4-desacetoxy-6, 7-dihydrovindorosine and natural and ent-minovine: oxadiazole tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reaction. Org Lett 7:741–744CrossRefGoogle Scholar
  77. 77.
    Choi Y, Ishikawa H et al (2005) Total synthesis of (−)- and ent-(+)-vindoline. Org Lett 7:4539–4542CrossRefGoogle Scholar
  78. 78.
    Elliott GI, Fuchs JR et al (2006) Intramolecular Diels–Alder/1,3-dipolar cycloaddition cascade of 1,3,4-oxadiazoles. J Am Chem Soc 128:10589–10595CrossRefGoogle Scholar
  79. 79.
    Dehaen WH, Hassner A (1991) Cycloadditions. 45. Annulation of heterocycles via intramolecular nitrile oxide-heterocycle cycloaddition reaction. J Org Chem 56:896–900CrossRefGoogle Scholar
  80. 80.
    Pelkey ET, Barden TC et al (1999) Nucleophilic addition reactions of 2-nitro-1-(phenylsulfonyl)indole. A new synthesis of 3-substituted-2-nitroindoles. Tetrahedron Lett 40:7615–7619CrossRefGoogle Scholar
  81. 81.
    Bruche L, Zecchi G (1983) Indoles as dipolarophiles towards 3,5-dichloro-2,4,6-trimethylbenzonitrile oxide. J Org Chem 48:2772–2773CrossRefGoogle Scholar
  82. 82.
    Malamidou-Xenikaki E, Coutouli-Argyropoulou E (1992) Synthesis of heterocyclic propellanes by 1,3-dipolar cycloaddition of 2,6-dichlorobenzonitrile oxide to 2,3-fused indoles. Catalytic hydrogenation of the cycloadducts. Liebigs Ann Chem:75–78Google Scholar
  83. 83.
    Fisera L, Mesko P et al (1983) 1,3-Dipolar cycloadditions of heterocyclic compounds. VIII. 1,3-Dipolar cycloadditions of C-benzoyl-N-phenylnitrone with indole derivatives. Collect Czech Chem Commun 48:1854–1863CrossRefGoogle Scholar
  84. 84.
    Daou B, Soufiaoui M (1989) New synthesis of arylpyrazolo[4,3-c]quinolines by 1,3-dipolar cycloaddition. Tetrahedron 45:3351–3361CrossRefGoogle Scholar
  85. 85.
    He P, Zhu S-Z (2005) Study on the reactions of fluoroalkanesulfonyl azides with indole derivatives. J Fluor Chem 126:825–830CrossRefGoogle Scholar
  86. 86.
    He P, Zhu S-Z (2005) Reactions of fluoroalkanesulfonyl azides with N-alkylindoles. J Fluor Chem 126:113–120CrossRefGoogle Scholar
  87. 87.
    de la Mora MA, Cuevas E et al (2001) Synthesis of tricyclic 2-aminoindoles by intramolecular 1,3-dipolar cycloaddition of 1-w-azidoalkylindoles. Tetrahedron Lett 42:5351–5353CrossRefGoogle Scholar
  88. 88.
    Zhang G, Zhang L (2008) Au-containing all-carbon 1,3-dipoles: generation and [3+2] cycloaddition reactions. J Am Chem Soc 130:12598–12599CrossRefGoogle Scholar
  89. 89.
    Venkatesh C, Singh PP et al (2006) Highly diastereoselective [3+2] cyclopenta[b]annulation of indoles with 2-arylcyclopropyl ketones and diesters. Eur J Org Chem:5378–5386Google Scholar
  90. 90.
    Gribble GW, Pelkey ET et al (2000) Regioselective 1,3-dipolar cycloaddition reactions of unsymmetrical munchnones (1,3-oxazolium-5-olates) with 2- and 3-nitroindoles. A new synthesis of pyrrolo[3, 4-b]indoles. Tetrahedron 56:10133–10140CrossRefGoogle Scholar
  91. 91.
    Gribble GW, Pelkey ET et al (1998) New syntheses of pyrrolo[3,4-b]indoles, benzo[b]furo[2,3-c]pyrroles, and benzo[b]thieno[2,3-c]pyrroles. Utilizing the reaction of muenchnones (1,3-oxazolium-5-olates) with nitro heterocycles. Synlett:1061–1062Google Scholar
  92. 92.
    Roy S, Kishbaugh TLS et al (2007) 1,3-Dipolar cycloaddition of 2- and 3-nitroindoles with azomethine ylides. A new approach to pyrrolo[3,4-b]indoles. Tetrahedron Lett 48:1313–1316CrossRefGoogle Scholar
  93. 93.
    Bronner SM, Garg NK (2009) Efficient synthesis of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate: a versatile precursor to o-benzyne. J Org Chem 74:8842–8843CrossRefGoogle Scholar
  94. 94.
    Padwa A, Fryxell GE et al (1989) A dipolar cycloaddition approach to pyrrolo[1,2-a]indoles using N-[(trimethylsilyl)methyl]-substituted indoles. J Org Chem 54:644–653CrossRefGoogle Scholar
  95. 95.
    Padwa A, Gasdaska JR (1986) A new approach to pyrrolo[1,2-a]indoles using azomethine ylides. J Am Chem Soc 108:1104–1106CrossRefGoogle Scholar
  96. 96.
    Kusama H, Miyashita Y et al (2006) Pt(II)- or Au(III)-catalyzed [3+2] cycloaddition of metal-containing azomethine ylides: highly efficient synthesis of the mitosene skeleton. Org Lett 8:289–292CrossRefGoogle Scholar
  97. 97.
    Letcher RM, Sin DWM et al (1993) Oxazolo[3,2-a]indoles, pyrrolo- and azepino[1,2-a]indoles from 3H-indole 1-oxides and acetylenecarboxylic esters by skeletal rearrangements. J Chem Soc Perkin Trans 1:939–944Google Scholar
  98. 98.
    Grotjahn DB, Vollhardt KPC (1986) Cobalt-mediated [2+2+2] cycloadditions of alkynes to the indole 2,3-double bond: an extremely facile entry into the novel 4a, 9a-dihydro-9H-carbazole nucleus. J Am Chem Soc 108:2091–2093CrossRefGoogle Scholar
  99. 99.
    Boese R, Van Sickle AP et al (1994) The cobalt-mediated [2+2+2] cycloaddition of a,w-diynes to the 2,3-double bond of indole. Synthesis:1374–1382Google Scholar
  100. 100.
    Eichberg MJ, Dorta RL et al (2000) The formal total synthesis of (±)-strychnine via a cobalt-mediated [2+2+2] cycloaddition. Org Lett 2:2479–2481CrossRefGoogle Scholar
  101. 101.
    Eichberg MJ, Dorta RL et al (2001) Approaches to the synthesis of (±)-strychnine via the cobalt-mediated [2+2+2] cycloaddition: rapid assembly of a classic framework. J Am Chem Soc 123:9324–9337CrossRefGoogle Scholar
  102. 102.
    Amslinger S, Aubert C et al (2008) Cobalt-mediated [2+2+2] cycloaddition of alkynyl boronates to indole and pyrrole double bonds. Synlett:2056–2060Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fariborz Firooznia
    • 1
  • Robert F. Kester
    • 1
  • Steven J. Berthel
    • 1
    Email author
  1. 1.Discovery ChemistryRoche Research CenterNutleyUSA

Personalised recommendations