Advertisement

Oxindoles and Spirocyclic Variations: Strategies for C3 Functionalization

  • Jonathon S. RusselEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 26)

Abstract

This chapter provides an overview of emerging strategies for the selective introduction of functionality at oxindole C3. Specific emphasis has been devoted toward asymmetric methods for the introduction of C3 quaternary centers and spirocyclic ring systems. The chapter has been divided into two sections on general methodology for the stereoselective synthesis of oxindoles and spirooxindoles, respectively. A third section is devoted toward efforts in natural product total synthesis involving oxindole or spirocyclic variants as targets or key intermediates.

Keywords

Chiral quaternary center Diastereoselective Enantioselective Oxindole Spirooxindole 

References

  1. 1.
    Trost BM, Brennan MK (2009) Synthesis 18:3003–3025Google Scholar
  2. 2.
    Mohr JT, Krout MR, Stoltz BM (2008) Nature 455:323–332Google Scholar
  3. 3.
    Richter JM, Ishihara Y, Masuda T, Whitefield BW, Llamas T, Pohjakallio A, Baran PS (2008) J Am Chem Soc 130:17938–17954Google Scholar
  4. 4.
    Marti C, Carreira EM (2003) Eur J Org Chem:2209–2219Google Scholar
  5. 5.
    Williams RM, Cox RJ (2003) Acc Chem Res 36:127–139Google Scholar
  6. 6.
    Altman RA, Hyde AM, Huang X, Buchwald SL (2008) J Am Chem Soc 130:9613–9620Google Scholar
  7. 7.
    Durbin MJ, Willis MC (2008) Org Lett 10:1413–1415Google Scholar
  8. 8.
    Jensen T, Madsen R (2009) J Org Chem 74:3990–3992Google Scholar
  9. 9.
    Trost BM, Zhang Y, Zhang T (2009) J Org Chem 74:5115–5117Google Scholar
  10. 10.
    Erb W, Neuville L, Zhu J (2009) J Org Chem 74:3109–3115Google Scholar
  11. 11.
    Felpin F-X, Ibarguren O, Nassar-Hardy L, Fouquet E (2009) J Org Chem 74:1349–1352Google Scholar
  12. 12.
    Xie J, Sun J, Zhang G, Houghten RA, Yu Y (2007) J Comb Chem 9:566–568Google Scholar
  13. 13.
    Gauthier D, Dodd RH, Dauban P (2009) Tetrahedron 65:8542–8555Google Scholar
  14. 14.
    Grigg R, Whitney S, Sridharan V, Keep A, Derrick A (2009) Tetrahedron 65:4375–4383Google Scholar
  15. 15.
    Duffy TA, Shaw SA, Vedejs E (2009) J Am Chem Soc 131:14–15Google Scholar
  16. 16.
    Linton EC, Kozlowski MC (2008) J Am Chem Soc 130:16162–16163Google Scholar
  17. 17.
    Lachia M, Poriel C, Slawin AMZ, Moody CJ (2007) Chem Commun:286–288Google Scholar
  18. 18.
    Movassaghi M, Schmidt MA, Ashenhurst JA (2008) Org Lett 10:4009–4012Google Scholar
  19. 19.
    Taylor AM, Altman RA, Buchwald SL (2009) J Am Chem Soc 131:9900–9901Google Scholar
  20. 20.
    Tian X, Jiang K, Peng J, Du W, Chen Y-C (2008) Org Lett 10:3583–3586Google Scholar
  21. 21.
    Galzerano P, Bencivenni G, Pesciaioli G, Mazzanti A, Giannichi B, Sambri L, Bartoli G, Melchiorre P (2009) Chem Eur J 15:7846–7849Google Scholar
  22. 22.
    Cheng L, Liu L, Jia H, Wang D, Chen Y-J (2009) J Org Chem 74:4650–4653Google Scholar
  23. 23.
    Jiang K, Peng J, Cui H-L, Chen Y-C (2009) Chem Commun:3955–3957Google Scholar
  24. 24.
    Ogawa S, Shibata N, Inagaki J, Nakamura S, Toru T, Shiro M (2007) Angew Chem Int Ed 46:8666–8669Google Scholar
  25. 25.
    Kato Y, Furutachi M, Chen Z, Mitsunuma H, Matsunaga S, Shibasaki M (2009) J Am Chem Soc 131:9168–9169Google Scholar
  26. 26.
    He R, Shirakawa S, Maruoka K (2009) J Am Chem Soc 131:16620–16621Google Scholar
  27. 27.
    He R, Ding C, Maruoka K (2009) Angew Chem Int Ed 48:4559–4561Google Scholar
  28. 28.
    Krishnan S, Stoltz BM (2007) Tetrahedron Lett 48:7571–7573Google Scholar
  29. 29.
    Ma S, Han X, Krishnan S, Virgil SC, Stoltz BM (2009) Angew Chem Int Ed 48:8037–8041Google Scholar
  30. 30.
    Lapierre AJB, Geib SJ, Curran DP (2007) J Am Chem Soc 129:494–495Google Scholar
  31. 31.
    Lee S, Hartwig JF (2001) J Org Chem 66:3402–3415Google Scholar
  32. 32.
    Luan X, Mariz R, Robert C, Gatti M, Blumentritt S, Linden A, Dorta R (2008) Org Lett 10:5569–5572Google Scholar
  33. 33.
    Kündig PE, Seidel TM (2007) Jia Y-X, Bernardinelli G. Angew Chem Int Ed 46:8484–8487Google Scholar
  34. 34.
    Jia Y-X, Hillgren JM, Watson EL, Marsden SP, Kündig PE (2008) Chem Commun:4040–4042Google Scholar
  35. 35.
    Yasui Y, Kamisaki H, Takemato Y (2008) Org Lett 10:3303–3306Google Scholar
  36. 36.
    Reddy VJ, Douglas CJ (2010) Org Lett 12:952–955Google Scholar
  37. 37.
    Duguet N, Slawin AMZ, Smith AD (2009) Org Lett 11:3858–3861Google Scholar
  38. 38.
    Sai KKS, Esteves PM, Tanoue de Penha E, Klumpp DA (2008) J Org Chem 73:6506–6512Google Scholar
  39. 39.
    Ackermann L, Vicente R, Hofmann N (2009) Org Lett 11:4274–4276Google Scholar
  40. 40.
    Perry A, Taylor RJK (2009) Chem Comun:3249–3251Google Scholar
  41. 41.
    Toullec PY, Jagt RBC, deVries JG, Feringa BL, Minnaard AJ (2006) Org Lett 8:2715–2718Google Scholar
  42. 42.
    Shintani R, Inoue M, Hayashi T (2006) Angew Chem Int Ed 45:3353–3356Google Scholar
  43. 43.
    Lai H, Huang Z, Wu Q, Qin Y (2009) J Org Chem 74:283–288Google Scholar
  44. 44.
    Tomita D, Yamatsugu K, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:6946–6948Google Scholar
  45. 45.
    Grant CD, Krische MJ (2009) Org Lett 11:4485–4487Google Scholar
  46. 46.
    Itoh J, Han SB, Krische MJ (2009) Angew Chem Int Ed 48:6313–6316Google Scholar
  47. 47.
    Kumar VP, Reddy VP, Srinivas SB, Narender M, Rao KR (2008) J Org Chem 73:1646–1648Google Scholar
  48. 48.
    Skucas E, Bower JF, Krische MJ (2007) J Am Chem Soc 129:12678–12679Google Scholar
  49. 49.
    Chen G, Wang Y, Gao S, He H-P, Li S-L, Zhang J-X, Ding J, Hao XJ (2009) J Heterocycl Chem 46:217–220Google Scholar
  50. 50.
    Guo X, Huang H, Yang L, Hu W (2007) Org Lett 9:4721–4723Google Scholar
  51. 51.
    Yadav JS, Reddy BVS, Gayathri KU, Meraj S, Prasad AR (2006) Synthesis:4121–4123Google Scholar
  52. 52.
    Srihari G, Murthy MM (2008) Chem Lett 37:268–269Google Scholar
  53. 53.
    Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S (2006) J Am Chem Soc 128:16488–16489Google Scholar
  54. 54.
    Sano D, Nagata K, Itoh T (2008) Org Lett 10:1593–1595Google Scholar
  55. 55.
    Kitajima M, Mori I, Kogure N, Takayama H (2006) Tetrahedron Lett 47:3199Google Scholar
  56. 56.
    Suárez-Castillo OR, Sánchez-Zavala M, Meléndez-Rodríguez M, Castelán-Duarte LE, Morales-Ríos MS, Joseph-Nathan P (2006) Tetrahedron 62:3040–3051Google Scholar
  57. 57.
    Yadav JS, Reddy BVS, Reddy CS, Krishna AD (2007) Tetrahedron Lett 48:2029–2032Google Scholar
  58. 58.
    Kumar CNSSP, Devi CL, Rao VJ, Palaniappan S (2008) Synlett:2023–2027Google Scholar
  59. 59.
    Emura T, Esaki T, Tachibana K, Shimizu M (2006) J Org Chem 71:8559–8564Google Scholar
  60. 60.
    Lesma G, Landoni N, Pilati T, Sacchetti A, Silvani A (2009) J Org Chem 74:4537–4541Google Scholar
  61. 61.
    Bui T, Borregan M, Barbas CF III (2009) J Org Chem 74:8935–8938Google Scholar
  62. 62.
    Cheng L, Liu L, Wang D, Chen Y-J (2009) Org Lett 11:3874–3877Google Scholar
  63. 63.
    Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M (2010) J Am Chem Soc 132:1255–1257Google Scholar
  64. 64.
    Marsden SP, Watson EL, Raw SA (2008) Org Lett 10:2905–2908Google Scholar
  65. 65.
    Hillgren JM, Marsden SP (2008) J Org Chem 73:6459–6461Google Scholar
  66. 66.
    Watson EL, Marsden SP, Raw SA (2009) Teterhedron Lett 50:3318–3320Google Scholar
  67. 67.
    Overman LE, Watson DA (2006) J Org Chem 71:2587–2599Google Scholar
  68. 68.
    Overman LE, Watson DA (2006) J Org Chem 71:2600–2608Google Scholar
  69. 69.
    Dounay AB, Overman LE (2003) Chem Rev 103:2945–2963Google Scholar
  70. 70.
    Feldman KS, Karatjas AG (2006) Org Lett 8:4137–4140Google Scholar
  71. 71.
    Miyamoto H, Okawa Y, Nakazaki A, Kobayashi S (2006) Angew Chem Int Ed 45:2274–2277Google Scholar
  72. 72.
    Miyamoto H, Okawa Y, Nakazaki A, Kobayashi S (2007) Tetrahedron Lett 48:1805–1808Google Scholar
  73. 73.
    Amat M, Santos MMM, Gómez AM, Jokic D, Molins E, Bosch J (2007) Org Lett 9:2907–2910Google Scholar
  74. 74.
    Trost BA, Cramer N, Silverman SM (2007) J Am Chem Soc 129:12396–12397Google Scholar
  75. 75.
    Trost BA, Crame N, Bernsmann H (2007) J Am Chem Soc 129:3086–3087Google Scholar
  76. 76.
    Chen X-H, Wei Q, Luo S-W, Xiao H, Gong L-Z (2009) J Am Chem Soc 131:13819–13825Google Scholar
  77. 77.
    Wei Q, Gong L-Z (2010) Org Lett 12:1008–1011Google Scholar
  78. 78.
    Zhang Y, Panek JS (2009) Org Lett 11:3366–3369Google Scholar
  79. 79.
    Castaldi MP, Troast DM, Porco JA Jr (2009) Org Lett 11:3362–3365Google Scholar
  80. 80.
    Shintani R (2009) Hayashi S-y, Murakami M, Takeda M, Hayashi T. Org Lett 11:3754–3756Google Scholar
  81. 81.
    Nair V, Vellalath S, Poonoth M, Mohan R, Suresh E (2006) Org Lett 8:507–509Google Scholar
  82. 82.
    Sato S, Shibuya M, Kanoh N, Iwabuchi Y (2009) J Org Chem 74:7522–7524Google Scholar
  83. 83.
    Hazra A, Paira P, Sahu KB, Naskar S, Saha P, Paira R, Mondal S, Maity A, Luger P, Weber M, Mondal NB, Banerjee S (2010) Teterhedron Lett 51:1585–1588Google Scholar
  84. 84.
    Kawasaki T, Takamiya W, Okamoto N, Nagaoka M, Hirayama T (2006) Tetrahedron Lett 47:5379–5382Google Scholar
  85. 85.
    Takiguchi S, Iizuka T, Kumakura Y, Murasaki K, Ban N, Higuchi K, Kawasaki T (2010) J Org Chem 75:1126–1131Google Scholar
  86. 86.
    Itoh T, Ishikawa H, Hayashi Y (2009) Org Lett 11:3854–3857Google Scholar
  87. 87.
    Trost BM, Zhang Y (2006) J Am Chem Soc 128:4590–4591Google Scholar
  88. 88.
    Trost BM, Zhang Y (2007) J Am Chem Soc 129:14548–14549Google Scholar
  89. 89.
    Nakao Y, Ebata S, Yada A, Hiyama T, Ikawa M, Ogoshi S (2008) J Am Chem Soc 130:12874–12875Google Scholar
  90. 90.
    Pinto A, Jia Y, Neuville L, Zhu J (2007) Chem Eur J 13:961–967Google Scholar
  91. 91.
    Overman LE, Shin Y (2007) Org Lett 9:339–341Google Scholar
  92. 92.
    Govek SP, Overman LE (2007) Tetrahedron 63:8499–8513Google Scholar
  93. 93.
    Li C, Chan C, Heimann AC, Danishefsky SJ (2007) Angew Chem Int Ed 46:1448–1450Google Scholar
  94. 94.
    Li C, Chan C, Heimann AC, Danishefsky SJ (2007) Angew Chem Int Ed 46:1444–1447Google Scholar
  95. 95.
    Seo JH, Artmann GD III, Weinreb SM (2006) J Org Chem 71:8891–8900Google Scholar
  96. 96.
    Seo JH, Liu P, Weinreb SM (2010) J Org Chem 75:2667–2680Google Scholar
  97. 97.
    Li J, Jeong S, Esser L, Harran PG (2001) Angew Chem Int Ed 40:4770–4773Google Scholar
  98. 98.
    Burgett AWG, Li Q, Wei Q, Harran PG (2003) Angew Chem Int Ed 42:4961–4966Google Scholar
  99. 99.
    Nicolaou KC, Chen DY-K, Huang X, Ling T, Bella M, Snyder SA (2004) J Am Chem Soc 126:12888–12896Google Scholar
  100. 100.
    Nicolaou KC, Hao J, Reddy MV, Rao PB, Rassias G, Snyder SA, Huang X, Chen DY-K, Brenzovich WE, Giuseppone N, Giannakakou P, O’Brate A (2004) J Am Chem Soc 126:12897–12906Google Scholar
  101. 101.
    Cheung C-M, Goldberg FW, Magnus P, Russell CJ, Turnbull R, Lynch V (2007) J Am Chem Soc 129:12320–12327Google Scholar
  102. 102.
    Magnus P, Turnbull R (2006) Org Lett 8:3497–3499Google Scholar
  103. 103.
    Goldberg FW, Magnus P, Turnbull R (2005) Org Lett 7:4531–4534Google Scholar
  104. 104.
    Lin J, Gerstenberger BS, Stessman NYT, Konopelski JP (2008) Org Lett 10:3969–3972Google Scholar
  105. 105.
    Zajac MA, Vedejs E (2004) Org Lett 6:237–240Google Scholar
  106. 106.
    Poriel C, Lachia M, Wilson C, Davies JR, Moody CJ (2007) J Org Chem 72:2978–2987Google Scholar
  107. 107.
    Grubbs AW, Artman GD III, Tsukamoto S, Williams RM (2007) Angew Chem Int Ed 46:2257–2261Google Scholar
  108. 108.
    Greshock TJ, Grubbs AW, Tsukamoto S, Williams RM (2007) Angew Chem Int Ed 46:2262–2265Google Scholar
  109. 109.
    Miller KA, Tsukamoto S, Williams RM (2009) Nat Chem 1:63–68Google Scholar
  110. 110.
    Yang J, Wearing XZ, Le Quesne PW, Deschamps JR, Cook JM (2008) J Nat Prod 71:1431–1440Google Scholar
  111. 111.
    Pettersson M, Knueppel D, Martin SF (2007) Org Lett 9:4623–4626Google Scholar
  112. 112.
    Walker SJ, Hart DJ (2007) Tetrahedron Lett 48:6214–6216Google Scholar
  113. 113.
    Hart DJ, Oba G (2007) Tetrahedron Lett 48:7069–7071Google Scholar
  114. 114.
    Ueda T, Inada M, Okamoto I, Morita N, Tamura O (2008) Org Lett 10:2043–2046Google Scholar
  115. 115.
    Baran PS, Maimone TJ, Richter JM (2007) Nature 446:404–408Google Scholar
  116. 116.
    Baran PS, Richter JM (2005) J Am Chem Soc 127:15394–15396Google Scholar
  117. 117.
    Gademann K, Bonazzi S (2007) Angew Chem Int Ed 46:5656–5658Google Scholar
  118. 118.
    Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL (2008) J Am Chem Soc 130:2087–2100Google Scholar
  119. 119.
    Tian X, Huters AD, Douglas CJ, Garg NK (2009) Org Lett 11:2349–2351Google Scholar
  120. 120.
    Brailsford JA, Lauchli R (2009) Shea K J. Org Lett 11:5330–5333Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Division of Natural ScienceSt. Norbert CollegeDe PereUSA

Personalised recommendations